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1 Real Radiating Element

As reported in Fig.1 the radiating element is composed by two concentric square-ring microstrip, the inner one

for S-band radiation and the outer one for L-band radiation. Both of them are fed by a coupling patch as shown

in Fig.1(a).

Microstrip rings and feeding patches are placed over a substrate of thinckness 1.6 mm and dielectric permittivity

of 3.5. The substrate is spaced from the ground plane of a distance t by using a square cavity.

Feeding patches are fed with two coaxial probes connected by SMA connectors on the bottom side of the ground

plane.

(a)

(b)

Figure 1: Radiating element, 3D view (a), top view (b)

Parameter Value [mm] Parameter Value [mm]

t 12 W3 2
Ucell 65 L4 9
L1 50 W4 2
W1 7.5 s1 1
L2 23.8 s2 1
W2 3.15 d 2
L3 3.4 p 7.5

Table I: Antenna element dimensions

Designing parameters are reported in Tab.I.
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Figure 2: Reflection coefficients for L-band and S-band

In Fig.2 are reported the reflection coefficients for the bands L and S. In particular it is noticeable that for S-

band the badwidth is about 500 MHz and for L-band is about 40 MHz. It is necessary to divide the square-rings

over different layers.

(a) (b)

Figure 3: Power patterns for L-band (a) and S-band (b)

Fig.3 represents power patterns generated by the radiating element, in particular Fig.3(a) and Fig.3(b) represent

the pattern in L-band and S-band respectively.
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1.1 Simulated Single Element

The radiating element is shown bellow.

The simulated model respects the geometrical characteristics reported in Tab. I. For ground plane substrate

the thickness has been set to 0.8 mm.

In figures below are reported simulated element performances. Fig.4.a and Fig.4.b represent scattering coeffi-

cients on ports 1 and ports 2 respectively. Port 1 feeds the S-band patch (the inner one) and port 2 feeds the

L-band patch (the outer one).
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Figure 4: Scattering coefficients, S11 (a), S22 (b)

It is possible to notice that the scattering coefficients behavior of simulated radiating element is similar but

different from the proposed one. In particular the bandwidth in S-band is smaller for both L-band and S-band

square-ring radiation.
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Figure 5: 2D Antenna Gain Pattern for φ = 0[deg]: (a) L-band f = 1.3 GHz, (b) S-band f = 2.8 GHz

Fig.5.a and Fig.5.b show power pattern generated by the simulated model at f = 1.3GHz and f = 2.8GHz

respectively, for θ = 0 and φ = 0.
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Figure 6: 2D Antenna Gain Pattern for φ = 90[deg]: (a) L-band f = 1.3 GHz, (b) S-band f = 2.8 GHz

Fig.6.a and Fig.6.b show power pattern generated by the simulated model at f = 1.3GHz and f = 2.8GHz

respectively, for θ = 0 and φ = 90.
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1.2 Simulated Embedded Element

1.2.1 Model Description

The element previously studied has been used to perform the analysis of the embedded element.

To do that, a geometry composed by five array of five elements each has been taken into account. Array elements

has been placed using MT-BCS elements positions of the solution Best M = 16 at Section 6.6.1, in particular

considering elements 6, 7, 8, 9, 10.
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Figure 7: Embedded Element Configuration

Linear arrays are spaced considering the lowest operational frequency band, central frequency of L-band

(1.282GHz), otherwise the elements touch themselves. In Fig. 7 is reported the geometry of the considered

configuration. In figure above the quantities are defined as follows:

δi,jMT−BCS pos = jthMT−BCS pos − ithMT−BCS pos (1)

Ssup
elem =

2π
[

rsup +∆1,6
MT−BCS posλL sin (T ilt)

]

1.8

360

where

rsup =
C

4π
λL (2)

∆1,6
MT−BCS pos =

6
∑

k=2

(

δk−1,k
MT−BCS pos

)

. (3)

In the above formulation ithMT−BCS pos, j
th
MT−BCS pos are respectively the positions of the i-th and j-th elements

of the MT-BCS linear array obtained from the solution of Section 6.6.1, δi,jMT−BCS pos the distance between
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them, λL the wavelength at f = 1.282GHz and Ssup
elem is the spacing between linear arrays that is grater than

λL/2 because we are considering five elements linear arrays composed by the elements 6, 7, 8, 9, 10 of the MT-

BCS array of Section 6.6.1. rsup is the upper radius of the complete truncated cone geometry with C = 200

total number of MT-BCS arrays and ∆1,6
MT−BCS pos is the distance between elements 1 and 6 of the Section

6.6.1 resulting array, useful to compute the distance Ssup
elem.

Radiating elements respect the geometrical characteristics reported in Tab. I. In order to reduce the complexity

of the CST model, the substrate supporting the groundplane has been removed.
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1.2.2 Model Parameters and Performance

Performance analysis has been performed only considering the L-band part of the radiating elements according

to the spacing applied to the five elements linear arrays considered.

In particular the model is characterized by the following geometrical parameters:

• δ6,7MT−BCS posλL = δ7,8MT−BCS posλL = δ8,9MT−BCS posλL = δ9,10MT−BCS posλL = 0.690987λL

• ∆1,6
MT−BCS posλL = 3.469957λL

• rsup = 3724.2257 mm

• T ilt = 20

• Ssup
elem = 125.7245 mm

In figures below are reported simulated embedded element performance. Fig.8 represents scattering coefficient

on port 1. Port 1 feeds the L-band square ring antenna of the central radiating elements.
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Figure 8: Embedded element scattering coefficients S11

It is noticeable that scattering coefficient does not satisfy the minimum requirement of −10dB and the resonance

peak is slightly outside the L-band operational bandwidth. This performance degradation is due to the mutual

coupling between radiating elements.

Fig.9 shows the radiation diagram at f = 1.215 GHz [Fig.9.a], f = 1.282 GHz [Fig.9.b], f = 1.350 GHz

[Fig.9.c]. It is possible to notice that the embedded element radiation pattern exhibits a single and broad main

lobe directed towards θ = 0 with quite good characteristics in terms of gain only in the third case at f = 1.350

GHz.
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Figure 9: 3D Embedded Element Gain Pattern for: (a) f = 1.215 GHz, (b) f = 1.282 GHz, (c) f = 1.350GHz

Similar consideration can be drawn from the pattern cut in the φ = 0-cut, reported in Fig.10. In particular,

Fig.10 shows the plots of the radiation diagram in the φ = 0 plane at f = 1.215GHz Fig.10.a, f = 1.282 GHz

Fig.10.b and f = 1.350 GHz Fig.10.c.

In addition the radiation pattern at φ = 90-cut is reported in Fig.11. In particular Fig.11 shows the plots of

the radiation diagram in the φ = 90 plane at f = 1.215GHz Fig.11.a, f = 1.282 GHz Fig.11.b and at f = 1.350

GHz Fig.11.c.

As expected, the plots in Fig.10 and Fig.11 confirm that the embedded element radiation pattern is characterized

by a single broad main beam with good performance in terms of gain only at f = 1.350 GHz.
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Figure 10: 2D Embedded Element Gain Pattern for φ = 0[deg]: (a) f = 1.215GHz, (b) f = 1.282GHz, (c)
f = 1.350GHz
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Figure 11: 2D Embedded Element Gain Pattern for φ = 90[deg]: (a) f = 1.215GHz, (b) f = 1.282GHz, (c)
f = 1.350GHz
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More information on the topics of this document can be found in the following list of references.
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