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1 Numerical Results - Non-Iterative MCFC

1.1 Test case 6—Comparison with [Rodriguez 2000], N=50, 3 faulty elements
1.1.1 Goal of the analysis

The goal of test case 6 is that of comparing the MFC method developed using the technique presented by
Rodriguez et al. in [Rodriguez.2000] as reference. The said technique is based on Genetic Algorithms, and also
tries to minimize the number of elements changed. Therefore, it is reasonable to expect that the solutions of
the two methods are similar. However, it must be noted that the reference method uses a cost function also

depending on the directivity and the maximum element-to-element excitation ratio.
1.1.2 Parameters
The array considered in test case 6 has the following properties

e Number of array elements: N = 50

e Tapering: Dolph-Chebyshev, SLL=—25 [dB]|

e Damaged element indexes set: Q0 = {8, 18,38}
e Number of faulty elements: D = 3
e Damaged element excitation: Weqprr immut = [0, 0, 0]

Figure 1 shows the original excitations and the damaged ones.
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Figure 1: Original and damaged excitations for the array considered in test case 6: amplitude (a) and phase

(b).

The parameters used to configure the software are the following;:

e Phase 1
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— Desired SLL: SLL® = —25.0 [dB]
— Mask main lobe width: BW(!) = 6.7 [deg]

— Mask u samples count: K1) = 500
e Phase 2

— Desired SLL: SLL(® = —24.5 [dB]
— Mask main lobe width: BW®) = 6.7 [deg]

— Mask u samples count: K =500

e Use Hessian: Yes

1.1.3 Results

Figure 2 compares the original excitations with the corrected excitations obtained with the proposed method.
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Figure 2: Original and corrected excitations for the array considered in test case 1: amplitude (@) and phase

(b).

Figure 3 compares the original, faulty and corrected radiation patterns.
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Figure 3: The radiation pattern for the original, faulty and corrected excitations.
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Figure 4 shows the value of the L1-norm cost function for each iteration of the algorithm.
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Figure 4: The value of the L1-norm cost function for each iteration of the algorithm.

Table I reports the SLL of the radiation patterns for the original, faulty and corrected excitations.

Pattern SLL [dB] | HPBW [deg] | DRR | |Wcorrmut — Worigmut ||, | |[Wcorr
Original excitations -24.90 2.28 0.258
Faulty excitations -18.51 2.28 0.258
Corrected excitations (Step 1) -13.89 2.02 1.0 8.48
Corrected excitations (Phase 2) -25.10 2.56 0.159 4.59
Corrected excitations (Step 3) -24.58 2.53 0.159 3.55
State of the art [Rodriguez.2000] -24.47 2.49 0.198 2.67

1.1.4

Table I: Comparison of the original, faulty and corrected excitations.

Observations

The proposed method succeeded in providing a set of corrected excitations that matches the SLL and pattern

peak of the original set of excitations. The SLL the solution obtained matches that of the reference solution,

reported in [Rodriguez.2000]. However, the number of excitations changed is higher (33 vs 12).
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1.2 Test case 7—Comparison with [Rodriguez 2000], N=50, 3 faulty elements,

max 5 corrections
1.2.1 Goal of the analysis

The goal of test case 7 is that of comparing the MFC method developed using the technique presented by
Rodriguez et al. in [Rodriguez.2000] as reference. The said technique is based on Genetic Algorithms, and also
tries to minimize the number of elements changed. Therefore, it is reasonable to expect that the solutions of
the two methods are similar. However, it must be noted that the reference method uses a cost function also

depending on the directivity and the maximum element-to-element excitation ratio.

1.2.2 Parameters

The array considered in test case 7 has the following properties

e Number of array elements: N = 50

e Tapering: Dolph-Chebyshev, SLL=-25 [dB]

e Damaged element indexes set: 2 = {8,18, 38}

e Number of faulty elements: D = 3

e Damaged element excitation: Weqpr imput = [0, 0 0]

Figure 5 shows the original excitations and the damaged ones.
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Figure 5: Original and damaged excitations for the array considered in test case 7: amplitude (a) and phase

().
The parameters used to configure the software are the following:

e Phase 1

— Desired SLL: SLL® = —24 [dB]
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— Mask main lobe width: BW®) = 6.7 [deg]

— Mask u samples count: K@) =500
e Phase 2

— Desired SLL: SLL®") = —22.4 [dB]
— Mask main lobe width: BW®) = 6.7 [deg]

— Mask u samples count: K@) =500

e Use Hessian: Yes

1.2.3 Results

Figure 6 compares the original excitations with the corrected excitations obtained with the proposed method.
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Figure 6: Original and corrected excitations for the array considered in test case 1: amplitude (@) and phase

().

Figure 7 compares the original, faulty and corrected radiation patterns.

ELEDIAQUniTN - DICAM, University of Trento - Student Report page 8/23



DC tapering with SLL = -25 [dB], N = 50, Q = {8, 18, 38}, Wiayy,immut = [0 0, O],

SLL® = -22.4 [dB], BW® = 7 [deg], K® = 300
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Figure 7: The radiation pattern for the original, faulty and corrected excitations.

Figure 8 shows the value of the L1-norm cost function for each iteration of the algorithm.
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Figure 8: The value of the L1-norm cost function for each iteration of the algorithm.

Table II reports the SLL of the radiation patterns for the original, faulty and corrected excitations.

Pattern SLL [dB] | HPBW [deg] | DRR | |Wcorrmut — Worigmut ||, | |[Wcorr
Original excitations -24.90 2.28 0.258
Faulty excitations -18.51 2.28 0.258
Corrected excitations (init.) -13.89 2.02 1.0 8.48
Corrected excitations (Phase 1) -24.36 2.48 0.228 2.93
Corrected excitations (Phase 2) -22.77 2.46 0.289 1.51
State of the art [Rodriguez.2000] —224 n.a. n.a. n.a.

1.2.4

Table II: Comparison of the original, faulty and corrected excitations.

Observations

The proposed method succeeded in providing a set of corrected excitations. Moreover, it provided a solution

whose SLL matches that of the reference solution, reported in [Rodriguez.2000], when the number of corrected

elements is constrained to be less than 5. Finally, only 2 excitation corrections are required by the proposed

method.
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2 Conclusions

The failure correction problem was formalized and a novel failure correction technique was introduced. The tech-
nique aims at producing a corrected pattern which satisfies certain SLL and main lobe beamwidth requirements

while minimizing the number of corrected elements.

In Section 1, a number of test cases were reported to study the strengths and weaknesses of the presented
technique, along with brief discussions of our findings. The proposed method was compared to other state-
of-the-art method found in the literature. Furthermore, the presented technique was tested against arrays
of different size, showing that an increase in array elements results in a reduction in the relative number of

corrected excitations.

Future work:

e The [;-minimization is convex, but in this application we have non-linear constraints. Is there a way to
reformulate the SLL constraints so that they are at least quadratic? Or maybe use a different metric which
is quadratic? If that is possible, the problem belongs to the class of quadratically constrained quadratic

programming (QCQP), where, under some conditions, globallly optimal solutions can be found.

e A branch-and-cut algorithm in place of the backtracking algorithm for the selection of the elements to
correct could be theoretically proved to be optimal. In particular, assume we have 4 elements that can be
corrected (N¢ = 4), but we don’t the minimum number of elements that need corrections, ]VC, nor which

elements to corrected. There are

S () -0-()6)()- .

possible combinations of corrections that need to be tested. However, if we verify that the set of corrections

~—

{1,2,3} does not work, than we can exclude that all corrections sets that are a subset of {1,2,3} will
not work either (i.e. {1},{2},{3},{1,2},{1,3},{2,3}). This means that a whole “branch” of solutions
can be excluded or “cut”, reducing the solution space. Careful choice of which combinations to test might
substantially reduce the number of candidate solutions that require testing. Furthermore, assuming the
algorithm satisfying the constraints is optimal, then also the branch-and-cut algorithm for the choice of

the corrections becomes optimal.

e At the present, the MCFC method allows different metric for the constraints, but only a combination of
SLL/BW was tested. Future work might consider the Directivity as or the Link Capacity as an alternative

metric.

e At the present, the MCFC method considers isotropic radiators. Future work might extend the method

to consider real elements.
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3 Appendix

3.1 1st and 2nd order derivatives of the L1 cost function
3.1.1 L1 cost function as a function of real variables

The cost function for the MFC problem is defined as

-D
flw )& ||lw — Wi = w — Wy (2)
corr,mut/) — corr,mut orig,mut 1 corr,mut,n orig,mut,n
n=1

Since the Matlab function fmincon() only works on real variables, the cost function will be rewritten as a

function of the real and imaginary components of Weorr mut:
N N-D A N-D
a= Re{wcorr,mut} eR and b= Im{wcorr,mut} eR (3)

The cost function will thus be

N—-D

>

n=1

N-D 2 2
= Z \/Re {an + jbn — worig,mut,n} + Im {an + jbn — worig,mut,n}
N-D 2 2
5o e Lm0 (g )
n=1

3.1.2 Gradient of the L1 cost function

g(ala'"aaNfD;bla"'vbeD) :g(avb) =

an + jbn — Worig, mut,n

The gradient of g(a, b) is given by

8a1 E aaN_D’ 81)1 L abN_D

Vg(a,b) = Vg(ar,...,an—p,br,....bx_p) 2 (ag(a’b) 99(a,b) Jg(a b) ag(a’b)) (4)

The partial derivative of g(a, b) with respect to the i-th element of a is

dg(a.b 5 [N=D |
gg; ! ~ 9 [Z a"”L]b”worig,mut,n]
i i —
=~ da; ai + jbi — Worig mut,i
0 2 2
- 2 (= Be forigmue )+ (b= 1 {srig . })
1/2 d

2
= {(ai —Re {worig,mut,i}) + (bi —Im {worig,l

\/(ai —Re {worig,mut,i})Q + (bi —Im {worig,mut,z}) o

a; — Re {worig,mut,i}

ai + jbi — Worig mut,

The partial derivative of g(a,b) with respect to the i-th element of b is
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dg(a,b)

5 [N=D
ab, [ Z an + jbp — Worig, mut,n ]

n=1

0b;

ai + jbi — Worig mut,

1/2

Do e {werigumee})”+ (b {worigunue )
0

\/(ai — Re {worig,mut,i})Q + (bi —Im {worig,mut,z}) o

b; —Im {worig,mut,i}

a; + jb; — Worig, mut,i

3.1.3 Hessian of the L1 cost function

The Hessian of g(a, b) is a symmetric matrix given by

2
(o e g 1)+ 5 1 (v

[ 9%(ab) 9%g(a,b)  9%g(ab) 9%g(a,b)

02a, e dai10aN_p Oa10bq 0a10bn _p
9%g(a,b) 9%g(a,b) 9%g(a,b)

_ azapr aaprabl aaprabN,D
H = 7. 2 (5)

g(a,b) 9%g(a,b)

92b; Ob10bn_ D
9%g(a,b)
L 0%bN—D

The second derivative of g(a, b) with respect to any one element of a is

9?g(a,b) 0 i Re {worig,mut,i}
82ai 80@

a; + jb; — Worig, mut,i

5 F)
Do [ai — Re {worig,mut,iH - (ai —Re {worig,mut,i}) da;
2

ai + Jbi — Worig mut,i @i+ Jbi ~ Worig mut.

ai + jbi — Worig,mut,i

- (ai —Re {worig,mut,i}) ‘“’Re{

2

“Yorig, mut,: }

a; + jb; — Worig,mut, b
a; TJ0i —w

orig,mut,:

a; + jb; — Worig, mut,i

2 2
- (ai —Re {worig,mut,z})
3

ai + jbi — Worig, mut,i

ai + jbi — Worig mut,

2 2 2
Re {az‘ +jb; — worig,mut,i} +Im {ai +jbi — worig,mut,i} - (ai —Re {worig,mut,i})
3

ai + jbi — Worig,mut,

(ai —Re {worig,mu‘u,i})2 + (bi —Im {worig,mut,z}) . (ai —Re {worig,mut,i}) i
3

a; + jbi — Worig, mut,
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(bi —Im {worigﬁmut,z})Q

3

ai + jbi — Worig mut,:
The second derivative of g(a,b) with respect to any one element of b is

d*’g(a,b) 0 bi*Im{worig,mut,i}
0%b; —Ob;

ai + jbi — Worig,mut,

aiai [bi —Im {worig,mu‘u,iH - (bi —Im {worig,mut,z}) 6%1»
2

@i + jbi — Worig mut,s @i + 3bi — Worig mut.i

ai + jbi — Worig, mut,i

(5=t g, }) 2

2

“Yorig mut, }

ai + Jbi — Worig mut,i s
@i tIbi~Worig mut,;

ai + jbi — Worig,mut,i

2
- (bi —Im {worig,mut,i})
3

ai + jbi — Worig,mut,i

ai + jbi — Worig,mut,i

2 2 2
Re {ai + jbi — worig,mut,i} +Im {ai + jbi — worig,mut,i} - (bi —Im {worig,mut,z})
3

ai + Jbi — Worig mut,i

2 2 2
(0 = Re {worig mut, }) + (5 = 1 {worigumut, }) = (b = 1 {iorig s })
3

ai + jbi — Worig,mut,

2
(ai —Re {worig,mut,i})
3

a; + jb; — Worig,mut,

The mixed derivatives of g(a, b) with respect to any two elements of a are

2 a; — Rew, . i
for k # 1, 9°9(a,b) 9(a,b) = 9 { orlg.mut, } =0 (6)
8ak8ai 8ak ‘ai +jbi

— Worig mut,:

The mixed derivatives of g(a, b) with respect to any two elements of b are

2 b b; — Im < wgp ) t,i
LO0; k ‘ai + 7b; — worig,nlut,i

The mixed derivatives of g(a, b) with respect to any two one element of a and one of b with the same index is

dgla,b) 0 % Re {worig,mu‘u,i}

abiaai N abl

ai + jbi — Worig,mut,i

= (ai — Re {worig,mut=i}) a% 1

ai + Jbi — Worig mut,i

ELEDIA@QUniTN - DICAM, University of Trento - Student Report page 14/23



-1

0 )
= (a; —Re Worig,mut,i 72 | +7bi — Worig, mut,i
0b;

ai + Jbi — Worig mut,i

1 bi —Im {worig,mut,i}

— (ai —Re {worig,mut,i})

a; + jbi — Worig,mut,i

ai + Jbi — Worig mut,i

B (ai —Re {worig,mu‘u,i}) (bi —Im {worig,mu‘u,i})

3
a; + jb; — Worig,mut,i
and similarly
Fgab) _ 0 b= {worigmuf
db;da; 9a; |q; + jb; — Worig,mut,i
9 1
= (bi —Im {worig,mut,i}) a_ai b
a; + J0i — Worig mut,i
-1 0 ,
= (bi —Im {worig,mu‘u,i}) _ 5 8_(11- a; + jb; — Worig,mut,s
a; + jb; — worig,mut,i
1 a; — Re {worig,mut,i}
= (bi —Im {worig,mut.,i})

2 .
a; + jb; — worig,mut,i‘ a; + jbi — Worig mut,

B (ai —Re {worig,mu‘u,i}) (bi —Im {worig,mut,i})

3

ai + jbi — Worig, mut,
The mixed derivatives of g(a, b) with respect to any two one element of a and one of b with different indexes is

2 a; — Re §wg, . t
for k # i, Pg(ab) 9 { Orlg’mu’} —0 (8)
(’)bkﬁai abk ‘ai +jbi _

Worig,mut,:

Pg(a,b) 9 b; — Im {worig,mut,z}
8ak8bi o 8ak ’ai +jbi

for k # i, =0 (9)

— Worig,mut,:
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3.2 1st and 2nd order derivatives of the constraint

In this section, an expression for the 1st order and 2nd order derivatives of the constraints defined is derived.

3.2.1 Inequality constraint for fmincon

Consider the inequality constraint that is verified when the corrected radiated field has a SLL lower than an

arbitrary threshold for a given angular direction wug.
|ECOIT(Uk)|2 < SLLgesired |Ecorr(UML)|2 (10)
The Matlab function fmincon () requires that, for each constraint k € {1,..., K}, the quantity ¢y, is provided
e 2 |Ecorr(uy)]® — SLLgesired |Ecorr (uarr)|? (11)

Since the Matlab function fmincon() only works on real variables, the cost function will be derived with respect

to the real and imaginary components of Weory mut, @ and b, defined.

3.2.2 Gradient of the constraint

Let us separate the field radiated by the mutable and immutable elements. We denote with ¢y, and

Yimmut.., are the embedded element factors for the n-th mutable and immutable element respectively

Q/Jmut,n(u) = ej]”mut,n“ and wimmut,n(“) = ejk””immut,n“, (12)

and zpyyt , and x are the positions of the n-th mutable and immutable elements respectively.

immut,n
The radiated field can then be seen as a sum of the field radiated by the mutable elements and immutable

elements

Ecorr(u) = weorr,n®n (w)

>

i

D

D
= wcorr,mut,nq/’mut,n(w + Z wcorr,immut,nwimmut,n(u)
1 n=1

u)

3
Il

= corr,mut (u) + Ecorr,immut(

where Ecory mut 18 the field radiated by the mutable elements with the corrected excitations

N-D
Ecorr,mut(u) = Z wcorr,mut,n¢mut,n(uk> (13)

n=1

and E

corrimmut (@) is the field radiated by the immutable elements with the corrected excitations (that are
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equal to the faulty ones).
D
Ecorr,immut(u) = Z wcorr,immut,nwimmut,n(uk’) (14)
n=1

The constraint function can then be rewritten as

2

2
Ck = ECOrr,mut (ur) + Ecorr,immut (uk)‘

- SLLdesired ‘Ecorr,mut(uMm + Ecorr,immut (umr)

The gradient of the k-th constraint ¢; with respect to the elements of a and b is defined as

a [ Ock Oc,,  Ocg ocy,
== .../ =, = ] . 15
VCk (8(11, ’ aapr, abl, ’ 8bN,D ( )

As an intermediate step, the partial derivatives of Ecopy mut(u) with respect to the i-th element of a and b will

be derived
OF oy st (1) 5 [N=D R .
Corr,—m-u =~ 34 Z anPmut,n (w) + Z Fbn bt n ()
da; oa; — n=1
= 7/’mut,i(u)
OF £ () I e T e
w =~ 34 Z an¥mut,n (w) + Z Fbn bt n ()
8b1 80’1 n=1 n=1
= jwmut,i(“)

Moreover, the partial derivatives of Ecorr(u) with respect to the i-th element of a and b will be derived

Beorrmut®) 0 [F
% = Oa; lz anPmut,, (U Z Tbn ¥t (1)

n=1 n=1

= wmut,z'(u)

OB gorrmut (%)
ol _ 2 IS o+ X )|

n=1

= *meu‘u,i(u)

Let us also compute the partial derivative of the squared magnitude of Ecorr(u) with respect to the i-th element

of a and b will be derived

0 0

9 -
6_% |Ecorr,mut(uk)| = a_ai [Ecorr,mut(Uk)Ecorr,mut(uk)}

Ecorr mut (Uk) 75— O, Ecorr mut (W) + Ecorr mut (Wk) 53— O Ecorr mut (k)
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= Ecorr,mut (uk)T/fmut,i(uk) + Ecorr,mut (ukaut,i(uk)

= Ecorr,mut (Uk)l/’mut,z'(uk) + Ecorr,mut (Uk)l/’mut,z'(uk)

= 2Re {m¢mut,i(uk)}

0 2 0 S
3_l7i |Ecorr,mut (“k)| = 8_171 [Ecorr,mut (uk)Ecorr,mut (“k)}
0 0

= Ecorr,mut (uk)%Ecorr,mut (uk) + Ecorr,mut(uk)%Ecorr,mut(uk)

= jEcorr,mut(uk)wmut,i(Uk) - jEcorr,mut (Uk)wmut,i(uk)

= J (m¢mut,i(uk) - m¢mut,z‘(uk))

Ecorr,mut (uk)¢mut,i(uk) - Ecorr,mut (uk)¢mut,i(uk)
J
= *QIm{Ecorr,mut(ukﬁ/}mut,i(uk)}

The following results will also be used in the derivation

o 2 o 2 - 2
— [[Beorr mut () + Beorr immut ([°] = == [|Peors,mut (w)[* + 2Re {Beors mut () Feorr smmut 0} + | Eeors immut ()|
o p
2} 2 - 9
= — |Bcorr,mut |?] + 2Re { Beorr immut (@) =— [Ecorr,mut (w)]
Baj da;

= 2Re {Ecorr,mut(u)tbmuc,i(u) + Ecorr,immut(u)wimmut,i(”)}

9 2 9 2 _ 2
— [|Bcors,mut ) + Ecorr,immut@)|*] = == [[Beorr mut (w)]? + 2Re {Bcorr, mut (1) Foorr tmmar(® } + [ Eeors immut ()]
i (2
8 A _ 5
- |Beorr,mut (7] + 2Re { Boomr mmmmar @~ [Beors,mut (w)]
ab; ab;
= —2Im Ecorr,muc(uwmut,i(uk)} + 2Re {J'Ecorr,immut(u)wimmut,i(”)}

{
= —2Im {Ecorr,muc(u)wmut,i(uk)} + 2Re {J'Re {Ecorr,immut(u)wimmut,i(u)} —Im {Ecorr,immut(u)’l’immut,i(u)}}
{

Ecorr,mut (”)’Pmut,i (”k) + Ecorr,immut (u)’/r’immut,i (”)}

The 1st order partial derivative of ¢; with respect to the i-th element of a is given by

dcy, o 2 2
— = - [‘Ecorr’mut(uk) + Eco”’immut(uk)‘ — SLLgesired ‘Ecorr,mut(“]WL) + Ecorr,immut(ul\lL)‘ }
a; a;
= 2Re {Ecorr,muc(uk)#’mut,i(uk) + Ecorr,immut(“k)’l’mut,i(uk)} — 28LLgesired 2Re {Ecorr,mut(”ML)“f’mut,i(”ML) + Ecorr,immut(uML)wmuc,i(uML)}
= 2Re {Ecorr,muc(uk)wmut,i(uk) + Bcorr,immut (k) ¥mut,i (W) — 2SLLdesired (Ecorr,mut(“MLWmut,i(“ML) + ECOrr,imrﬂut(”]ML)"Pmut,i(uz‘/fL)>}

= 2Re {Boorr (ug)¥mut,i (ug) — SLLdesired Boorr (A1 L) ¥mut,i (WarL) |

The 1st order partial derivative of ¢; with respect to the i-th element of a is given by

dc )

k 2 2

o0, oo [‘Ecorr,mut(”k) i Ecorr,immut(uk)‘ — SLL{esired ‘Ecorr,mut(“Z\/IL) + Ecorr,immut(”]VIL)‘ }
i i

—2Im {Ecorr,mut(“k)wmut,i(uk) + Ecorr,immuc(uk)wmut,i(Uk)} — SLLgegired (—2Im {Ecorr,mut(uML)wmuc,i(UML) + Ecorr,immut(uML)wmut,i(uML)})

b {Ecorr,muc(Uk)wmut,i(“k) + Ecorr,immut (Yk)¥mut,i (k) — SLLdesired (Ecorr,mut(UML)wmuc,i(uML) + Ecorr,immuc(UMLWmut,i(uML))}

—2Im {Ecorr(uk)wmut,i(uk) — SLLdesired Ecorr(uML)wmuc,i(uML)}
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3.2.3 Hessian of the constraint

The Hessian H,, of ¢, with respect to (a,b) is a symmetric matrix given by

62ck 82% BQC;C 626k

02a1 e dar0aN_p daq0by e 0a10bn _p
&3¢y 93¢y 8%ck

02an—_p dan_pOb e dan_pObn_D
H, - o 2 (16)

d“cy O%cy

92b; te 0b10by — D
8%cy

L 92bny_p i

To compute the Hessian, a few identities are used

e { 22 [Feommumuta(0)] | =

= Re wmutl wmutz( )}

8
{
= Re{eﬂ”mutz Tkrmut “}
et
(

d’mut l Corr mut( )}

Tmut, ~*mut, ) }

= cos k(l’mutz — Tmut, ) )

O [+~ 0 ——
Im { a_bz |:ECOI‘I',Inut (U)ﬂ)mut,l (U):| } = Im {wnlut,l (’U,) a_biECOrr,Inut (u) }

= Im{*jwmut,l(u)M}
- —Re{¢lnut,l(u)M}

= —cos (k (xmut,l - JCmut,z') U)

The 2nd order mixed partial derivative of ¢, with respect to the i-th element of a and the [-th element of a is

given by

d?cy, 0 [———
da;0a, X {5_% [Ecorr,mut(uk)"/)mutyl(uk) - SLLdeSiredECOI"I‘,mut(UML)wmutJ(UML)} }

0 [——m— 0
= 2Re {% [Ecorr,mut(Uk)wmut,l(uk)} } - SLLdesiredRe {% {Ecorr,mut (UML)d’mut,l(uML)} }

= 2cos (k (zmut, — xmut,i) uk) — 2SLLegired cos (K (xmut,l - xmut,i) unmL)
Similarly, 2nd order mixed partial derivative of ¢ with respect to the i-th and [-th element of b is given by

0%cy, 0 [—mM——
ob;ob, _QIm{ab { Corr,mut(“k)%nut,z(“k)_SLLdesiredEcorr,mut(UML)lﬁmut,l(UML)}}

o —
= _QIm{ab [ Ecorr mut (k) ¥mut,i (k) | — SLLgegired Ecorr,mut(“ML)wmut,l(“ML)}}
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= 2cos (k (¥mut, — Tmut.:) 4k) — 2SLLgesired €08 (K (¥mut, — Tmut.i) urrr)

To compute the 2nd order mixed partial derivatives, the following identities are used

N o —— o —
Re {(’)_bl {Ecorr,mut (u)1/)mut,i(u)} } = Re {wmut,i (u) a_blECOITJHUt (u)}

= Re {*j"/’mut,i(uy‘/)mutyl(u)}
= Im {wmut,i(“)wmu‘c,l(“)}

= Im {ejkxmu‘c,i“e*jkxmu‘cﬂ}
= Im {ejk(wmut,i_wmut,z)“}

= sin (k (xmut,i - xmut,l) u)

I — o —
Im {8_az {Ecorr,mut (w)¥mut (u)} } = Im {wmut,l (u)a_aiECOYRmUt (u)}
= I {¥nut () Prmue () }

= sin (k (xmut,i - xmut,l) u)

= —sin (k (ifmut,l - xmut,i) u)

The 2nd order mixed partial derivative of cywith respect to the [-th element of b and the i-th element of a is

given by

9%cy, 0 ————+—
T, = 2Re { 8_171 {Ecorr,mut (“k)l/’mut,i(“k) - SLLdesiredEcorr,mut (“ML)wmut,i(“ML)} }

= 2sin (k (‘Tmut,i — xmut,l) uk) — QSLLdesired sin (k (‘Tmut,i — zmut,l) UIL[L)

The 2nd order mixed partial derivative of cywith respect to the i-th element of a and the [-th element of b is

given by
9%cy, 0 [———— 0
Ha;0b; = —2Im {% [Ecorr.,mut (uk)wmut,l(uk)} - SLLdeSired% [Ecorrymut (UML)"/)mut_,l(UML)} }

= 2sin(k (xnlut,z' - xmut,l) ur) = 2SLLegired sin (k (xnlut,z' - xmut,l) unL)
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More information on the topics of this document can be found in the following list of references.
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