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1 Numerical Results - Non-Iterative MCFC

1.1 Test case 5—Dolph-Chebyshev, N € {50,100, 150,200}, SLL=-25 [dB], 4%

faulty elements
1.1.1 Goal of the analysis

The goal of test case 5 is that of understanding the behavior of the MFC method developed for increasing array
sizes. To that end, four arrays of different size will be considered, each with 4% faulty elements in the same
positions.

1.1.2 Parameters

Array with 50 elements

The array considered has the following properties

Number of array elements: N = 50

e Tapering: Dolph-Chebyshev, SLL=—25 [dB]|

Damaged element indexes set: 2 = {4,10}

e Number of faulty elements: D = 4%x

Damaged element excitation: Weorr immut = [0,0,]
The parameters used to configure the software for the array with N = 50 elements are the following:

e Phase 1

— Desired SLL: SLL® = —25.5 [dB]
* Mask main lobe width: BW® = 5.5 [deg]

% Mask u samples count: K1) = 5000
e Phase 2

— Desired SLL: SLL® = —25 [dB]
— Mask main lobe width: BW(") = 5.5 [deg]

— Mask u samples count: K1) = 2000

e Use Hessian: Yes
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Figure 1 shows the original excitations and the damaged ones for array with N = 50 elements.
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Figure 1: Original and damaged excitations for the array with N =
amplitude (a) and phase (b).

Array with 100 elements

The arrays considered the following properties

Number of array elements: N = 100

e Tapering: Dolph-Chebyshev, SLL=—25 [dB]|

Damaged element indexes set: 2 = {8,9, 20,21}

Number of faulty elements: D = 4% x N

Damaged element excitation: Weorr immut = 0,0,0,0]

50 elements

considered in test case 5:

The parameters used to configure the software for the array with NV = 100 elements are the following:

e Phase 1

— Desired SLL: SLL(Y) = —25.5 [dB]

* Mask main lobe width: BW(") = 2.8 [deg]

% Mask u samples count: K1) = 1000
e Phase 2

— Desired SLL: SLL(Y) = —25.0 [dB]
— Mask main lobe width: BW(®) = 2.8 [deg]

— Mask u samples count: K1) = 1000

e Use Hessian: Yes
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Figure 2 shows the original excitations and the damaged ones for array with N = 100 elements.
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Figure 2: Original and damaged excitations for the array with N =
amplitude (a) and phase (b).

Array with 150 elements

The arrays considered the following properties

Number of array elements: N = 150

e Tapering: Dolph-Chebyshev, SLL=-—25 [dB]|

Damaged element indexes set: 0 = {12,13,14, 30, 31, 32}

Number of faulty elements: D = 4% x N

Damaged element excitation: Weorr immut = [0, 0,0,0,0,0]

100 elements

considered in test case 5:

The parameters used to configure the software for the array with NV = 150 elements are the following:

e Phase 1

— Desired SLL: SLL(Y) = —25.5 [dB]

* Mask main lobe width: BW(") = 1.8 [deg]

% Mask u samples count: K () = 1500
e Phase 2

— Desired SLL: SLL(Y) = —25.0 [dB]
— Mask main lobe width: BW®) = 1.8 [deg]

— Mask u samples count: K1) = 1500

e Use Hessian: Yes
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Figure 3 shows the original excitations and the damaged ones for array with N = 150 elements.

DC tapering with SLL = -25 [dB], N = 150
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Figure 3: Original and damaged excitations for the array with N =
amplitude (a) and phase (b).

Array with 200 elements

The arrays considered the following properties

Number of array elements: N = 200

e Tapering: Dolph-Chebyshev, SLL=-—25 [dB]|

Damaged element indexes set: Q = {16,17,18,19,40,41,42,43}

Number of faulty elements: D = 4% x N

Damaged element excitation: Weorr immut = [0,0,0,0,0,0,0,0]
The parameters used to configure the software for the array with N =

e Phase 1

— Desired SLL: SLL(Y) = —25.5 [dB]

* Mask main lobe width: BWW) = 1.4 [deg]

% Mask u samples count: K1) = 2000
e Phase 2

— Desired SLL: SLL(Y) = —25.0 [dB]
— Mask main lobe width: BW®) = 1.4 [deg]

— Mask u samples count: K1) = 2000

e Use Hessian: Yes

150 elements considered in test case 5:

200 elements are the following:
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Figure 4 shows the original excitations and the damaged ones for array with N = 200 elements.
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Figure 4: Original and damaged excitations for the array with N = 200 elements considered in test case 5:
amplitude (a) and phase (b).

1.1.3 Results

Array with 50 elements

Figure 5 compares the original excitations with the corrected excitations obtained with the proposed method

for the array with 50 elements.
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Figure 5: Original and corrected excitations for the array with 50 elements: amplitude (a) and phase (b).
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Figure 6 compares the original, faulty and corrected radiation patterns for the array with 50 elements.
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DC tapering with SLL =-25 [dB], N =50
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Figure 6: The radiation pattern for the original, faulty and corrected excitations for the array with 50 elements.

The smaller rectangle within the figure shows the peak side lobe of the faulty-state pattern being suppressed in
the corrected pattern.

i ‘ Al

Figure 7 shows the value of the L1-norm cost function for each iteration of the algorithm for the array with 50

elements.
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DC tapering with SLL =-25 [dB], N = 50, N/N = 4%
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Figure 7: The value of the L1-norm cost function for each iteration of the algorithm for the array with 50
elements.

Table I reports the SLL of the radiation patterns for the original, faulty and corrected excitations for the array

with 50 elements.

Pattern SLL [dB] | HPBW [deg] DRR I I weorr mut ~ Worig,mut || | Weorr mut ~ Worig mus ||
Original excitations -25.00 2.28 2.59 x 10~ 1
Faulty excitations -21.41 2.23 2.59 x 10~ 1
Corrected excitations (init.) -14.35 1.98 1.0 x 101 8.30 48
Corrected excitations (Phase 1) -25.47 2.34 3.94 x 1071 3.21 48
Corrected excitations (Phase 2) -25.22 2.29 3.23 x 10~ 1 2.03 12

Table I: Comparison of the original, faulty and corrected excitations.

Array with 100 elements

Figure 8 compares the original excitations with the corrected excitations obtained with the proposed method

for the array with 100 elements.
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Figure 8: Original and corrected excitations for the array with 100 elements: amplitude (a) and phase (b).

Figure 9 compares the original, faulty and corrected radiation patterns for the array with 100 elements.
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Figure 9: The radiation pattern for the original, faulty and corrected excitations for the array with 100 elements.
The smaller rectangle within the figure shows the peak side lobe of the faulty-state pattern being suppressed in

the corrected pattern.

Figure 10 shows the value of the L1-norm cost function for each iteration of the algorithm for the array with

100 elements.
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DC tapering with SLL =-25 [dB], N = 100, N/N = 4%
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Figure 10: The value of the L1-norm cost function for each iteration of the algorithm for the array with 100

elements.

Table IT reports the SLL of the radiation patterns for the original, faulty and corrected excitations for the array

with 100 elements.

Pattern SLL [dB] HPBW [deg] DRR Weorr,mut — Worig, mut Weorr,mut — Worig,mut 0
Original excitations -25.00 1.13 1.29 x 101
Faulty excitations -21.42 1.10 1.29 x 1[)71
Corrected excitations (init.) -14.38 0.99 1.0 9.66 96
Corrected excitations (Phase 1) -25.61 1.12 2.95 x 10~ 1 2.29 96
Corrected excitations (Phase 2) -25.86 1.11 2.71 x 10~ 1 1.58 18

Table II: Comparison of the original, faulty and corrected excitations.

Array with 150 elements

Figure 11 compares the original excitations with the corrected excitations obtained with the proposed method

for the array with 100 elements.
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DC tapering with SLL = -25 [dB], N = 100
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Figure 11: Original and corrected excitations for the array with 150 elements: amplitude (a) and phase (b).

Figure 12 compares the original, faulty and corrected radiation patterns for the array with 150 elements.
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Figure 12: The radiation pattern for the original, faulty and corrected excitations for the array with 150
elements. The smaller rectangle within the figure shows the peak side lobe of the faulty-state pattern being
suppressed in the corrected pattern.

Figure 13 shows the value of the L1-norm cost function for each iteration of the algorithm for the array with

150 elements.
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DC tapering with SLL = -25 [dB], N = 150, N/N = 4%
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Figure 13: The value of the L1-norm cost function for each iteration of the algorithm for the array with 150
elements.

Table III reports the SLL of the radiation patterns for the original, faulty and corrected excitations for the

array with 150 elements.

Pattern SLL [dB] HPBW [deg] DRR ‘ ‘

were s~ worgm ]|, | [[Feareimt — worgma ]

0
Original excitations -25.00 0.75 8.55 x 102
Faulty excitations -21.58 0.73 8.55 x 102
Corrected excitations (init.) -14.39 0.66 1.0 10.2 144
Corrected excitations (Phase 1) -25.48 0.77 1.76 x 10— 1 3.70 144
Corrected excitations (Phase 2) -24.99 0.75 1.44 x 101 2.00 20

Table III: Comparison of the original, faulty and corrected excitations.

Array with 200 elements

Figure 14 compares the original excitations with the corrected excitations obtained with the proposed method

for the array with 200 elements.
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DC tapering with SLL = -25 [dB], N = 200 DC tapering with SLL = -25 [dB], N = 200
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Figure 14: Original and corrected excitations for the array with 200 elements: amplitude (a) and phase (b).

Figure 15 compares the original, faulty and corrected radiation patterns for the array with 200 elements.
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Figure 15: The radiation pattern for the original, faulty and corrected excitations for the array with 200
elements. The smaller rectangle within the figure shows the peak side lobe of the faulty-state pattern being
suppressed in the corrected pattern.

Figure 16 shows the value of the L1-norm cost function for each iteration of the algorithm for the array with

200 elements.
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Figure 16: The value of the L1-norm cost function for each iteration of the algorithm for the array with 200
elements.

Table IV reports the SLL of the radiation patterns for the original, faulty and corrected excitations for the array

with 200 elements.

Pattern SLL [dB] | HPBW [deg] DRR ‘ ‘ Weorr,mut — wong,mutHl | Weorr, mut — wong,mutHO
Original excitations -25.00 0.56 6.41 x 10— 2
Faulty excitations -21.58 0.55 6.41 x 10~2
Corrected excitations (init.) -14.39 0.49 1.0 10.4 192
Corrected excitations (Phase 1) -25.62 0.59 2.35 x 1071 3.90 192
Corrected excitations (Phase 2) -25.33 0.55 1.97 x 101 1.94 19

Table IV: Comparison of the original, faulty and corrected excitations.

Summary

Table V the number of corrected excitations for the three array dimensions considered in Test case 5.

| Total array elements, N | [[Aw], | [Aw][, /N |

50 12 24%
100 18 18%
150 20 13.3%
200 19 9.5%

Table V: Number of corrected excitations for the three array dimensions considered.
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1.1.4 Observations

As seen in Table V, the relative number of elements changed by the algorithm reduces as the array size increases.
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More information on the topics of this document can be found in the following list of references.
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