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Legenda

EM: Excitation Matching

BEM: Border Element Method
CPM: Contiguous Partition Method
SLL: Sidelobe Level

HPBW:: Half-Power Beamwidth



1 Mathematical Background

Let us consider a linear array of N elements equally-spaced (d being the inter-element distance) along the z-axis.
The array elements are assumed to be grouped into into @ (Q < N) non-overlapping clusters as depicted in

Fig. 1, each ¢-th (¢ = 1,...,Q) one composed by N, elements (non necessarily physically contiguous) so that

Q
ZN‘? = N. Moreover, each ¢-th (¢ = 1,...,Q) subarray is equipped with an amplifier and a phase shifter
qg=1
providing an amplitude weight and a phase delay equal to oy and ¢, respectively. The array factor term

corresponding to such an array is given by

N
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q=1 n=1

in which I, = aze/?1 is the complex excitation, of the g-th subarray, ¢, € ¢ = {c, € No|1 < ¢, <Qn=1,..,N},
is an integer number identifying the membership of the n-th (n = 1, ..., N) array element to the ¢-th (¢ =1, ..., Q)
cluster, d., 4 is the Kronecker delta function equal to d.,4 = 1 if ¢, = ¢ and 6., = 0 otherwise, and k = 27“ is

the wavenumber, being )\ the wavelength.

Figure 1: Sketch of the array architecture.



2 Excitation Matching Strategies

Sub-Array Synthesis Problem - Determine the optimal clustering of the array elements into Q
sub-arrays, c°Pt, exploiting an excitation matching strategy, so that the following metric turns out

to be minimized

Q)= 53 lon — xa () )

in which v,, is the reference complex excitation of the n-th element and

o (6) = St Ot
n - N
ZqQ:1 Zn:l 5qu

n=1,..N. (3)

)

Two different approaches will be proposed in the following to identify the best sub-array configuration c°?t: (i)
the K-means clustering method and (i) a customized version of the Border Element Method (BEM) proposed

that suitably adapted for amplitude and phase clustering.

2.1 K-means Method

For the standard K-means implementation the centroid, therefore is legitimate to refer to the centroid as the

cluster mean.

e Step 0 - Initialization: Definition of the initial clustering configuration. In the proposed implementation,
the initial barycenters (or centroids) of the ) clusters are randomly initialized: I, = ae?® (g =1,..,Q
and ¢ = 0, ¢ being the iteration index) where o and g are randomly chosen within the ranges « € [0: 1]

and S € [0, 27], respectively;

e Step 1 - Assignment Step: In this step each element excitation is assigned to a cluster, the one whose
barycenter (or centroid) has the minimum Euclidean distance from the reference excitation value. More
in detail, two sub-steps can be identified:

- Step 1.a - Distance Computation: The Euclidean distance is computed between excitation values and

the cluster barycenters:

dpg=lvn =Ll n=1,..N;¢=1,..,Q (4)

- Step 1.b - Assignment: The element excitations are assigned to the cluster whose barycenter has the
least Euclidean distance computed in (4). The entries ¢, (n = 1,...,N) of the sub-array configuration

vector, c’, at i-th iteration are thus defined as follows:

en = ¢ lon = Ioll <llon = Ljll, Vj,1<5<@Q (5)



e Step 2 - Update Step: In this step the cluster means, which correspond to the clusters barycenters, are

updated considering the elements belonging to each cluster:

N
Z(Scnqvn
o (6)

- N
> Oe.g
n=1

1,

q

e Step 3 - Stopping Criteria: Once initialized the algorithm will iterate trough the assignment step
and the update step until it reaches convergence or exceeded the maximum number of iterations. The
convergence is reached when the cluster members no longer changes, i.e. the case in which the assignment

step does not provide any movement of the data points from one cluster to another.

2.2 Border Element Method

while the optimal values of the sub-array coefficients I°P* = {I g’ﬂ q=1,..., Q} are computed analytically. More

in detail,

The algorithm works as follows:

e Step 1 - Initialization - Define the list L = {/,,; n = 1,..., N} of the N complex-valued entries ¢,, = &,e/7"
ordered in increasing order considering the magnitude (namely, £&; = min, {§,} and {y = max, {,})-
Moreover, for elements having the same magnitude, the entries are ordered considering an increasing order
also in terms of phase (namely, y1 = min,, ¢,,—¢, {arg ({m)} and y1 = max,, ¢,,—cn {arg (¢m)}). Set the
initial (i = 0, i being the iteration index) sub-array configuration, c?, by randomly selecting @ — 1 cut

points of the list L among the NV — 1 admissible ones (Q —1 < N — 1) and go to Step 2;

e Step 2 - Sub-Array Coefficients Synthesis - For the i-th trial sub-array configuration, c?, compute

the optimal sub-array excitations (¢ = 1, ..., Q)

N
Z5quvn
- )

- N
> e
n=1

1,

q

which represent the arithmetic mean of the complex excitations of the array elements belonging to the

same ¢-th cluster;

e Step 3 - Complex Excitation-Matching Evaluation - Compute the excitation-matching value (2)
in correspondence with ¢! and I‘: W' = ¥ (ci, Ii). Compare W' with the best value found so far,
gl = minp—1,.. i—1 {\I/h} If ¥ < U1 then set U, = U' and update the current (i.e., i-th) best

opt opt

sub-array configuration and phase vector: cop; ¢t and I I i



e Step 4 - Convergence Check - Stop the Ezternal Iterative loop if the maximum number of iterations

Tnae has been reached (i > T),4,) or the stationary condition

i—1 Tstat+1 gi—h
TSth\I]opt - h=2 \I]opt
T <n (8)
opt

holds true, Ts;q; and i being a user-defined number of iterations and a numerical threshold, respectively;

e Step 5 - Sub-Array Configuration Update - Update the iteration index (i < ¢ + 1) and define a new
sub-array aggregation c¢; by changing the position of - at least - one of the @ — 1 cut points of the list L
that define the previous clustering configuration, c;_1, according to the BEM algorithm, then go to Step
2.



3 Figure of Merit

Starting from the definition of the power pattern expressed as a function of the direction cosine angular variable

u = sinf,

2

PP (u) = (9)

Q N
I 5o, geiE(n=1)u]
> )

n=1

the following figure of merit have been selected to suitably evaluate the performance of the array synthesis

method:

e Sidelobe Level, SLL: expressed in [dB], the difference between the main beam peak value and the

maximum sidelobe peak value [(maxug;sz(u)), being ) the angular region of the main beam and

ug = sin By the direction of maximum radiation];

e Maximum directivity: defined as the following ratio

At | PP (ug)|?

Dmax = D ;

(10)

being P the total power radiated by the array P = OQW foﬂ |AF (9)|2 dfd¢p. Such parameter is usually

expressed in [dB] as Dpax| ;5 = 101089 Diax-

e Half Power Beamwidth, H PBW: expressed in degrees [deg]|, angle between the two directions in which
the radiation intensity is one-half of the main beam, measured in a plane containing the direction of the

main.
e Excitation Matching, expressed as

N

in which v, is the reference complex excitation of the n-th element and x, (c) is defined in (3) and c is

the vector of the subarray aggregations;

e Pattern Matching Error, expressed as

_ S {PP () = PPy (w)}
Sy {PPres (ur)}

where PP,y (u) is the reference power pattern, k =1, ..., K being K the number of samples.

A (12)




More information on the topics of this document can be found in the following list of references.
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