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Abstract

In this work, an innovative Material-by-Design (MbD) methodology is proposed
to address the conformal transformation of linear antenna arrays. A two-step
quasi-conformal transformation optics (QCTO) is exploited in order to match the
antenna onto arbitrary curved surfaces. Some preliminary numerical results are
shown, obtained by means of full-wave simulations of the MbD-synthesized
conformal radiating systems, in order to assess the effectiveness of the
developed synthesis methodology.



1 Problem Formulation and Definitions

1.1 Transformation Description

1.1.1 Single Step TO

Each transformation involves two domains. In this report, the first domain is called “virtual domain” or “virtual

space” while the other one is referred to as “physical domain” or “physical space”.

In addition, the terms

“virtual” and “physical” are used to describe entities in virtual and physical spaces respectively. The rectangular

coordinate system in virtual space is labeled as (2’,y’, z’) whereas in the physical space the labels (z,y, z) are

used. If the transformation from (2/,y’, 2’) to (z,y, ) is defined as:

(z,9,2) =T (2',y/,2")
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y=y',y, 2

z=z('y, )

the Jacobian matrix of the transformation A will be:
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For the inverse transformation i.e. (x,y, z) to (2',y’, 2’),
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and the following relations can be established.

A =A"" (11)

det (&) = detl(A)

If ¢’ and ' represent permittivity and permeability tensors in virtual medium respectively,
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corresponding permittivity and permeability tensors in physical space can be computed as follows:
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If there is a source with current I’ and current density J' in virtual space its corresponding image in the physical

space can be computed as
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1.1.2 Two Step TO

For a cascade of transformations: T {(z',y',2") — (z*,y*, zx)} followed by r {(z*,y*, zx) = (x,y, 2)}, the overall
transformation I'{(2/,y’, z") = (z,y,2)} can be formulated as follows. In the following discussion, and in the
remaining of this report, when dealing with cascade of transformations, the space defined by the coordinates
(%, y*, z*) will be termed as the Intermediate space and objects defined in this space will be called intermediate

objects. Let § and é represent the Jacobian matrices of the transformations FandT respectively defined as:

Oxx Oz Odxx

=2
I

9 9 9
e (19)

Jz* Jz* Oz*




[

ox ox Oz
Ox* Oyx* Oz

9y 9y 9y
Oxx  OJy*x  Ozx

Jz Jz 0z
Oxx  OJy*x  Ozx

(20)

Further more, let {g’,ﬁ’}, {g, ;L_*} and {g, E} represent sets of relative permittivity and permeability tensors

in (2/,y,2"), (xx,y*,2%) and (x,y,z) spaces respectively, while the corresponding currents are represented

as J', Jx and J. Considering the transformation: I {(z*,yx,z%) — (z,y,2)}, the following relations can be

established:
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Substituting (23) and (24) in (21) and (22) respectively and rearranging terms gives the relationship between

material properties for the overall transformation

Following similar analysis, the current sources for the complete transformation can be related as:

(1)  (31)"

det (@)

110

(83)  (33)"

= et (1)

() «

7 e (32

I=Ix=1T.

(25)

(26)

(27)

(28)



1.2 Isotropic Approximation

An isotropic approximation can be made on the permittivity and permeability of the medium (Lens) in the

physical space under the following assumptions:

e TFE or TM mode of propagation.

e Grid lines in virtual space are “near” orthogonal which results in a near-isotropic medium in virtual space.
Under such assumptions, permittivity and permeability in physical space will be simplified as:

e For T'E mode of propagation:

— Approximate Isotropic permeability: p®PPro®- = @PPro= .

(L)

— Constant Approximate permittivity: gPm°*- =T,

e For T'M mode of propagation:

— Approximate Isotropic permittivity: gtPPmor = g@PProz-I,

— Constant Approximate permeability: p*PPro*. =1

where [ is a 3 x 3 identity matrix, ¢PP"°% and p®PP"°* are computed by ratio of areas of virtual and physical
transformation grid cells. More specifically, for a given unit cell in the physical space, if its area is approximated
by Arhvsical — AxAy, where Az and Ay are changes in x and y between its opposite corners, and similarly if the
area of the image of this unit cell in virtual space can be approximated by Av""*“el — Ax’Ay/, the approximate

e . e . . virtual ’ ’
permittivity or permeability of the unit cell is computed as: fphysml = Agzﬁz .

e For T'E mode of propagation:
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e For T'M mode of propagation:
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1.3 Transformation Grid Orthogonality (x)

Since the orthogonality of the transformation grid is the basis for isotropic approximation, it is quantified as

follows. Figure 1 shows a sample grid intersection in the complex plane v = x + jy.

Figure 1: Description of grid orthogonality measure: A sample unit cell of a grid in the complex plane

Referring to Figure 1, and using Euler’s notation, y; = |y1| e?[07901)] 4y = |y5| e7979072)] | where 4, and ~, are

vectors forming adjacent sides of the unit cell. The internal angle § can be computed as

d=arg (1) —arg(y2) = arg (ﬂ) :
Y2

The offset from orthogonality y can then be evaluated as

x =0 —90. (31)

1.4 Field Matching Error (&)

The error between a given field distribution £ and a reference field distribution E,..; sampled at U and V points

in the z and y directions respectively (i.e z,, € {1, -, 2u}, y» € {y1, -, yv }) is evaluated as:
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where O represents an area excluded from the evaluation. This expression is typically used to evaluate the
difference between fields radiated from a reference virtual array and an array enhanced by metamaterial lens,

where the comparison is made outside the lens region (i.e., © is the boundary of the synthesized lens).



1.5 Anisotropy Measures

e Maximum lens permittivity

max {g} = max{ep, (r); p,q € {1,2,3}}

e Minimum lens permittivity

min {g} = min{e, (r); p,q € {1,2,3}}

e Average fractional anisotropy

. / \/321 1[0 (1) = 0ue ()
area ( cn 221 1 UZ( )]2

e Average relative anisotropy

N Zz 1 — Oave (r)]2 r
R = area ( /EQ\/ 30’,“,6 (r) d

Where

e 0;(r), i=1,...,3 are the eigenvalues of the permittivity tensor g (r);

3 .
® Tape (r) = M is the average of the eigenvalues;

e (2 is the external perimeter of the lens.



2 Preliminary Assessment

2.1 Conf. #1 - Preliminary Transformation Test (No SI)

Input Parameters
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Figure 2: Transformation regions and geometric parameters of interest.

| Virtual || Physical |
w A RS ALV AL w A | RN s [A]] LI
16.0 4.5 4.0 0.0 16.0 4.5 4.0 | 0.5

Table I: Geometric descriptors for virtual and physical geometries.

e Virtual Array

— Number of elements, spacing, aperture: N’ = 20, d’ = %, L'=9.5[\];

Distance from PEC ground plane (placed at ¢y’ = 0.0): ¢’ =

NP

)

Operating frequency: f = 600 [M H z];
— Steering angle: ¢, = 90.0 [deg];

— Excitations: I, = 1.0, ¢, = =Zapsin (¢s +90);n=1,...,N';
e QCTO

— Discretization cell dimension: 0.15 [A] (0.01 [A] for source mapping);



2.1.1 Results of the Transformation

Transformation Grids
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Figure 3: Transformation grids for (a) virtual (b) intermediate and (¢) physical geometries.



Physical Lens Permittivity Tensor
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Figure 4: Components of the relative permittivity tensor of the lens.

Physical Lens Isotropic Approximation
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Figure 5: Isotropic approximate permittivity distribution of the lens.
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Grid Orthogonality
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2.1.2 Near-Field Distributions
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Figure 7: Electric field distributions.
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2.1.3 Far-Field Patterns

Normalized Power Pattern [dB]

120 150 180
¢[deg]

Virtual (N'=20, Free-Space)
Physical (N'=20, Free-Space) = =— =
Physical (N'=20, Aniso-Lens) = = =

Intermediate (N'=20, Aniso-Lens) =====-

Figure 8: Comparison between normalized power patterns.
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2.1.4 Summary

| Intermediate Lens |
Height 4.5 [A]
Width 17.0 [A]
Anisotropic Permittivity Range | [—0.02,1.09]
Isotropic Permittivity Range [0.75,1.09]

| Physical Lens |
Anisotropic Permittivity Range | [—0.03,1.29]
Isotropic Permittivity Range [0.77,1.13]

Table II: Transformation statistics.

Virtual Array | Intermediate Array Physical Array

Environment Free-Space Aniso-Lens | Iso-Lens || Free-Space || Aniso-Lens [ Iso-Lens
Number of elements 20 20 20

Aperture on z [\ 9.5 9.88 9.02

Aperture on y [\ 0.0 0.01 0.27

Aperture Ratio on z, p, = {LZ’,L} - 1.04 0.95

SLL[dD] 13.12 4.70 6.30 12.89

FNBW |[deg] 11.43 9.00 11.70 11.70

3dB Beamwidth [deg] 5.09 5.30 6.11 5.19

Table III: Summary.
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