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Abstract

In this work, an innovative approach is proposed to design planar thinned phased
arrays. The proposed methodology exploits the integration of analytical
strategies and a global optimization technique in order to solve the limitations of
current almost difference sets (ADSs)-based methods. Towards this end, a
customization of the optimization operators is performed in order to exploit the
a-priori information provided by ADS sequences and guide the optimization
performed by a Genetic Algorithm (GA). Some numerical results are shown in
order to validate the proposed ADSGA approach for the thinning of planar arrays.



1 Problem Definition

1.1 Problem I - PSL Minimization in Array Synthesis

In order to determine an optimal thinned configuration starting from the (usually) sub-optimal ADS arrangement with a given
aperture size N4pg and thinning factor v4pg, let us formulate the following constrained optimization problem
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subject to K = Kaps , Ny = Ny—aps and Ny = Ny_aps, to be solved through ADSGA.
In such a case, the GA fitness function is defined as the PSL of the array while the constraints force the array to kept its
descriptive parameters (i.e., original dimension, N, = N;_aps and N, = N,_apg, and thinning, v = vapg).

Min (F{p}) = (1)

1.2 Problem II - PSL Minimization in Array Synthesis

a)
In order to determine an optimal thinned configuration starting from the (usually) sub-optimal ADS arrangement with a given
aperture size Naps and thinning factor v4pg, let us formulate the following constrained optimization problem
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Min (F{p}) = S0P

subject to K = Kaps, Ny # Nz_aps and Ny # N,_aps to be solved through ADSGA.
In such a case, the GA fitness function is defined as the PSL of the array while the constraints force the array to kept its
descriptive parameters (i.e., original thinning factor vapgs).

b)

In order to determine an optimal thinned configuration starting from the (usually) sub-optimal ADS arrangement with a given
aperture size Naps and thinning factor v4pg, let us formulate the following constrained optimization problem
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Min (F{p}) =

subject to K # Kaps (K > KADS) and N, # N,_aps and Ny #+ Ny_apDs (N > N,_aps and Ny > Nyprs) to be solved
through ADSGA.

In such a case, the GA fitness function is defined as the PSL of the array while the constraints force the array to kept its
descriptive parameters.

1.3 Problem III - Definition of a General Purpose ADS Construction Technique for Array
Synthesis

With reference to the potential limitation outlined in the Introduction, the aim is now to and the explicit forms of ADS s
sequences (i.e., binary sequences with a three-level auto-correlation function) for arbitrary values of N . Towards this end, let us
denote with L{p} and R{p} the number of levels of the auto-correlation function &(7) of a trial solution p and the number of
7 values for which £(7) differ from . Then, the search for admissible (but not available in ADS repositories) ADS sequences is
recast as the solution of the following problem

Min (F{p}) = o [L{p} — 3] + BR{p}

subject to N, # Ny_aps and Ny # Ny_aps. The ADSGA within the auto-correlation space instead of in the pattern space,
while the constraints are still on the set of parameters defining the ADS as well as the corresponding array arrangement.



2 General Definitions and Settings

Optimization Algorithm

We used the following optimization algorithm:
e Binary Coded Genetic Algorithm (GA)

— Crossover Probability: CP = 0.9
— Mutation Probability: M P = 0.01
— Initialization:

* Random: P(bit = 0) = P(bit =1) = 0.5 (Random-GA Approach)
* with Planar ADS (Hybrid-GA Approach)

Main Parameters

e Element Spacing: d = A\/2

The 2D array configuration is loaded into a singlelD binary array (chromosome of the GA). The algorithm performs the
optimization in the same manner of linear arrays.



3 Problem I - PSL Minimization in Array Synthesis

In order to determine an optimal thinned configuration starting from the (usually) sub-optimal ADS arrangement with a given
aperture size Ngpg and thinning factor v4pg, let us formulate the following constrained optimization problem

ma(ugns, {150, 0)}

Min (F{p}) = S0P

subject to K = Kypg and N = Napg to be solved through ADSGA.
In such a case, the GA fitness function is defined as the PSL of the array while the constraints force the array to kept its
descriptive parameters (i.e., original dimension, N = N4pg, and thinning, v = vapgs).

« PSL: Kopilovich

— Initialization: Random vs Hybrid
- Fitness: PSL and Thinning

«

=~ pbaori.
PSLKopilom'ch

U (i) + Bv*

where ¢ is associated to the i-th trial solution.



RESULTS: P=7,Q =17, Kips = 25

Setting Parameters of Algorithms
GA Parameters

e Chromosome Dimension C' = 49 bits

e Population Dimension S = 20

e Max Iteration number K,,,, = 5000

FFT Parameters
o F'FT Theta =128

o FFT Phi =128

Array Parameters

e Number of total cells N = 49
e Dimension X: 7

e Dimension Y: 7
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Figure 1: ADSGA approach (¢), GA approach (d)
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Figure 2: ADSGA approach (a)-(c), GA approach (b)-(d)



RESULTS: P =11, Q = 11, Kapg = 61

Setting Parameters of Algorithms
GA Parameters

e Chromosome Dimension C' = 121 bits

e Population Dimension S = 30

e Max Iteration number K,,,, = 5000

FFT Parameters
o F'FT Theta =128

o FFT Phi =128

Array Parameters

e Number of total cells N = 121
e Dimension X: 11

e Dimension Y: 11
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Figure 3: ADSGA approach (¢), GA approach (d)
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Figure 4: ADSGA approach (a)-(c), GA approach (b)-(d)
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RESULTS: P =17, Q = 17, Kaps = 145

Setting Parameters of Algorithms
GA Parameters

e Chromosome Dimension C' = 289 bits

e Population Dimension S = 40

e Max Iteration number K,,,, = 5000

FFT Parameters
o F'FT Theta = 256

o FFT Phi =256

Array Parameters

e Number of total cells N = 289
e Dimension X: 17

e Dimension Y: 17
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Figure 6: ADSGA approach (a)-(c), GA approach (b)-(d)
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3.1 Summary

| | | ADSGA | GA | ADSGA | GA | ADSGA | GA |
| P=qQ | | v|%] | v[%] | PSL[dB] | PSL[dB] | BW (U, = V) | BW (U, = V) |
7 0.428 0.489 —16.13 —14.40 0.2857 0.2857
11 0.496 0.487 —16.50 —16.03 0.1818 0.1818
17 0.480 0.494 | —17.74 —17.50 0.1176 0.1176
Table I
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