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Abstract

This work presents an innovative GPR microwave imaging technique aimed at
retrieving the electromagnetic properties of inaccessible domains buried below a
planar interface. The arising two-dimensional (2-D) inverse scattering problem is
solved taking into account for the wide-band nature of GPR data by exploiting a
multi frequency (MF) solution approach. Moreover, a customized multi-
resolution particle swarm optimizer (IMSA-PSO) is exploited in order to minimize
the MF cost function by adaptively refining the image resolution only in the
identified regions of interest (Rols). A set of numerical experiments is shown in
order to verify the effectiveness of the developed MF-IMSA-PSO technique when
the background permittivity is not exactly known. A comparative assessment
with respect to a deterministic local search-based microwave imaging technique
is given, as well, to highlight the superior performances yielded by the
exploitation of the PSO solver.



1.1

Definitions

Glossary
SF: Single-Frequencys;
FH: Frequency-Hopping;
M F': Multi-Frequency;
P: Swarm dimension;
U: Total number of unknowns;
S: Maximum number of IMSA zooming steps;
sbest: Last performed IMSA zooming step (s**t < 9);
Nen: IMSA zooming threshold;
Dy Investigation domain;
D,ps: Observation domain;
L: Side of the investigation domain;
N: Number of discretization cells in D;,q4;
V: Number of views;
M: Number of measurement points;
F: Number of frequencies considered for the inversion;
r®) = (z(), y(): Coordinates of the v-th source (v=1,...,V).
Iy = (xsfi),yfﬁ)): Coordinates of the m-th measurement point for the v-th view v, (m=1,..., M);
Era = Z—g: Relative electric permittivity for the upper half-space (y > 0);
04: Conductivity for the upper half-space (y > 0);
Erb = z—g: Background relative electric permittivity;
op: Background conductivity;

E(U)

inc

(rn; f): Measured internal incident field inside the n-th cell, for the v-th view at frequency f;

EW (rp; f): Computed internal incident field inside the n-th cell, for the v-th view at frequency f;

mc

E(U)

Iy, . (r%}); ): Measured external scattered by the m-th measurement point, for the v-th view at fre-

quency f;

Eig}ltt (r%); ): Measured external scattered by the m-th measurement point, for the v-th view at fre-

quency f.



1.2 Contrast function

The contrast function at frequency f is defined as
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where

e r = (x,y): position vector;

o R{7(r; f)} =[er (r) — &) ;

o S {r ()} =[],

o oq (v) = coer (v) — 558 ;

® ECeqb = E0ETL — jgzr_bf;
e ¢, (r): relative electric permittivity at position r;

e o (r): conductivity at position r;

NOTE: we assume that ¢, (r) and o (r) are not frequency dependent (non-dispersive mediums).

1.2.1 Contrast function and reference frequency f..; (MF approaches)

The contrast function at a generic frequency f can be expressed by means of the contrast function computed

for a selected reference frequency

f:fref (1)

as follows

,fref

T(r;f):%{T(r;fref)}+]T${T(r;fref)}- (2)

This allows to reduce the number of unknowns when dealing with multi-frequency techniques, since we can just

consider the contrast function at the reference frequency.



1.3 Cost function & unknowns

1.3.1 Multi-Frequency (M F) approaches

These approaches jointly consider data at F' frequencies. The functional minimized by the inversion algorithm

is defined as

¢ (X) = Dypate (X) + Puata (X)

where Pgqi (x) and Pgar, (X) are respectively the data and state terms of the cost function, defined as
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The unknowns of the inversion problem are

X = { (r; fref); E tot (rn,f])} n=1.,N;o=1,..,V;j=1,.., F.

The total number of unknowns for M F-based approaches is then given by

UMFZQN(lJrVF).

1.4 Reconstruction errors

The following integral error is defined

NTEQ
act rec
— 1 n —Tn |

Sreg = Nyeg |T,‘;Ct + 1|

n=1
where reg indicates if the error computation covers

e the overall investigation domain (reg = tot),

e the actual scatterer support (reg = int),

e or the background region (reg = ext).



2 Wrong guess of the background permittivity

2.1 Goal of this section

This analysis is devoted at verifying what are the achievable performances by the M F — IMSA — PSO when

a wrong guess of the background permittivity is used for the inversion

guess actual
E7"B 7& &rB

The following values of €7%*® will be considered in the following:

guess __ _actual
L ely™ =g ™ £ 5%

guess __ _actual
2. IUess — gactual 4 109,

guess __ _actual
3. eI = gadtual 4 20%



2.2 ”Z-Shaped” object (&,0; = 5.5, 0op; = 107° [S/m])
2.2.1 Parameters

Background

Inhomogeneous and nonmagnetic background composed by two half spaces
e Upper half space (y > 0 - air): €., = 1.0, 6, = 0.0;
e Lower half space (y < 0 - soil): &, = 4.0, 0, = 1073[S/m];
Investigation domain (D;,,)

e Side: Lp,,, = 0.8 [m];

e Barycenter: (z,%’:”,y,f;”“) = (0.00,—0.4) [m];
Time-Domain forward solver (FDTD - GPRMax2D)

e Side of the simulated domain: L =6 [m];

e Number of cells: NFPTP =750 x 750 = 5.625 x 10°;

e Side of the FDTD cells [F"PTP = 0.008 [m];

e Simulation time window: TFPTP = 20 x 107 [sec];

e Time step: AtF'PTP =1.89 x 107! [sec];

e Number of time samples: N/ PTP = 1060;

e Boundary conditions: perfectly matched layer (PML);

e Source type: Gaussian mono-cycle (first Gaussian pulse derivative, called “Ricker” in GPRM ax2D)

— Central frequency: fo = 300 [MHz];

— Source amplitude: A = 1.0 [A];
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Figure 1: GPRMax2D excitation signal. (a) Time pulse, (b) normalized frequency spectrum.



Frequency parameters

e Frequency range: f € [fmin, fmaz] = [200.0,600.0] [MHz] [?] (=3 [dB] bandwidth of the Gaussian Mono-

cycle excitation centered at fo = 300 [MHz));

e Frequency step: Af =100 [MHz] (F =5 frequency steps in [fmin, fmaz]);

[ IMHZ | a ] [ X ] [ [MHA |
200.0 1.50 0.75 200.5
300.0 1.00 0.50 297.6
400.0 0.75 0.37 401.1
500.0 0.60 0.30 498.1
600.0 0.50 0.25 601.6

Table 1: Considered frequencies and corresponding wavelength in the upper medium (), free space) and in the
lower medium (A, soil). f* is the nearest frequency sample available from transformed time-domain data, and
represents the real frequency considered by the inversion algorithm.

Scatterer

e Electromagnetic properties: &, opj = 5.5, 0op; = 1073 [S/m] (00p; = 0);
e Contrast function: 7 = 1.5+ j0.0
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Figure 2: Actual object.

Measurement setup

e Considered frequency: fiin = 200 [MHz], A\, = 0.75 [m]. !
e #DoF's =2ka = QA—’;L\/i = 27 ().8+y/2 ~ 9.5;

0.75

e Number of views (sources): V = 10;

— min {z, } = —0.5 [m], max{z,} = 0.5 [m];

— height: y, =0.1 [m], Vo =1,...,V;

e Number of measurement points: M = 9;

INOTE: This choice is done in order to keep the number of unknowns lower than 5000.



— min {x,,} = —0.5 [m], max {z,,} = 0.5 [m];

— height: y,,, = 0.1 [m], Vm =1,..., M;
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Figure 3: Location of the measurement points (M = 9) and of the sources (V = 10). Only one source is active
for each view.

Inverse solver parameters

e Shared parameters

— Number of unknowns: U = 2N (14 VF) = 4998;
— Weight of the state term of the functional: 1.0;
— Weight of the data term of the functional: 1.0;
— Weight of the penalty term of the functional: 0.0;
— Convergence threshold: 10710;
— Variable ranges:
* o€ [8.0x107*1.2x 1073 [S/ml;
« R{EG} € [-8,8], S{E} € [-8,8);
— Degrees of freedom:
* Considered frequency: fpin, = 200 [MHz], A\, = 0.75 [m];

g 2m o LV/3 )2
® (2k2a) _ (2><>\b>2<L2 ) — 42 (%)2 — 472 (%)2 ~ 44.87;

— Number of cells: N =49=7x 7,
— Maximum number of IMSA steps: S = 4;

— Side ratio threshold: n, = 0.2;

e MF—IMSA — PSO parameters

— Maximum number of iterations: I = 20000;



— Swarm dimension: P = o5 x U = 250 (5%U - as in [?]);

- C1=Cy=2.0 (asin [?]);
— Inertial weight: w = 0.4 (constant, as in [?]);

— Velocity clamping: enabled;
e MF—IMSA — CG parameters

— Maximum number of iterations: I = 200;

Signal to noise ratio (on Fi. (1))

e SNR = {50,40,30,20} [dB] + Noiseless data.



2.2.2 &y =32-MF—-IMSA—PSO vs. MF —IMSA — CG: Final reconstructions
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Figure 4: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence

step (s"*?).
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2.2.3 &)y =36- MF—-IMSA—PSO vs. MF —IMSA — CG: Final reconstructions
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Figure 5: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence

step (s"*?).
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2.2.4 &)y =38-MF—-IMSA—PSO vs. MF —IMSA — CG: Final reconstructions

y[ml
Reft(xy)}

02 o
x[m]

(a) Actual
MF-IMSA-PSO MF-IMSA-CG

y[m]
Re{t(xy)}
y[m]
Re{t(xy)}

Noiseless

y[m
Re{t(xy)}
y[m
Re{t(xy)}

SNR = 50 |dB]

40 [dB]

y[m]
Re{t(xy)}
y[m]
Re{t(xy)}

SNR

y[m]
Re{t(xy)}
ym]
Re{t(xy)}

SNR = 30 |dB|

y[m]
Re{t(xy)}
y[m]
Re{t(xy)}

SNR = 20 |dB|

Figure 6: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence

step (s"*?).
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2.2,5 &)y =40- MF—IMSA—PSO vs. MF —IMSA — CG: Final reconstructions
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Figure 7: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence

step (s"*?).
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2.2.6 &)y =42- MF—-IMSA—PSO vs. MF —IMSA — CG: Final reconstructions
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Figure 8: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence

step (s"*?).
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2.2.7 &)y =44- MF —-IMSA—PSO vs. MF —IMSA — CG: Final reconstructions
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Figure 9: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence

step (s"*?).
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2.2.8 &Iy =48- MF—-IMSA—PSO vs. MF —IMSA — CG: Final reconstructions
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Figure 10: MF—IMSA—PSO vs. MF—I1MSA—CG: Retrieved dielectric profiles at the IM S A convergence

step (s"*?).
15



2.2.9 MF-—-IMSA—-PSO vs. MF —IMSA — CG: Errors vs.
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Figure 11: MF—IMSA—PSO vs. MF —IMSA—CG: Reconstruction errors vs. the guess of the background

relative permittivity (7% ).
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2.2.10 MF —-IMSA—-PSO vs. MF —IMSA — CG: Errors vs. SNR
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Figure 12: MF — IMSA — PSO vs. MF — IMSA — CG: Reconstruction errors vs. SNR
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3 Conclusions

The reported numerical validation has shown that the proposed MF — IMSA — PSO is able to retrieve
an acceptable image of the investigation domain even when considering a wrong guess of the soil relative
permittivity (i.e., by letting €755 different from the actual/nominal relative permittivity of the background

rB

medium, e75°° # e2¢tual) However, better reconstructions are obtained when the background permittivity is

over-estimated (75 > g2¢tual) with respect to an under-estimation (7% < £2¢“a!). Finally, on average a

significant improvement is obtained by the M F — IMSA — PSO with respect to the MF — IMSA — CG [5],

thanks to the superior capabilities of the PSO in minimizing the highly non-linear M F' cost function.
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