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Abstract

In this work, an innovative GPR microwave imaging technique is proposed for
solving the subsurface inverse scattering problem in a multi-frequency (MF)
framework. The proposed technique exploits a stochastic optimizer based on
particle swarm optimization (PSO) in order to effectively deal with the
minimization of the MF cost function without being trapped into false solutions.
Moreover, the iterative multi-scaling approach (IMSA) is exploited in order to
achieve higher resolutions within the identified regions of interest. Some
numerical results are shown, carefully selected from an extensive validation of
the method, in order to assess its performance when dealing with the retrieval of
buried objects under several noise levels. More precisely, a variation of the
number of measurement points placed above the interface to collect the
scattered radargram is considered, in order to investigate the robustness of the
developed method, as well as to compare it to a deterministic implementation
within the same solution framework.



1.1

Definitions

Glossary
SF: Single-Frequencys;
FH: Frequency-Hopping;
M F': Multi-Frequency;
P: Swarm dimension;
U: Total number of unknowns;
S: Maximum number of IMSA zooming steps;
sbest: Last performed IMSA zooming step (s**t < 9);
Nen: IMSA zooming threshold;
Dy Investigation domain;
D,ps: Observation domain;
L: Side of the investigation domain;
N: Number of discretization cells in D;,q4;
V: Number of views;
M: Number of measurement points;
F: Number of frequencies considered for the inversion;
r®) = (z(), y(): Coordinates of the v-th source (v=1,...,V).
Iy = (xsfi),yfﬁ)): Coordinates of the m-th measurement point for the v-th view v, (m=1,..., M);
Era = Z—g: Relative electric permittivity for the upper half-space (y > 0);
04: Conductivity for the upper half-space (y > 0);
Erb = z—g: Background relative electric permittivity;
op: Background conductivity;

E(U)

inc

(rn; f): Measured internal incident field inside the n-th cell, for the v-th view at frequency f;

EW (rp; f): Computed internal incident field inside the n-th cell, for the v-th view at frequency f;

mc

E(U)

Iy, . (r%}); ): Measured external scattered by the m-th measurement point, for the v-th view at fre-

quency f;

Eig}ltt (r%); ): Measured external scattered by the m-th measurement point, for the v-th view at fre-

quency f.



1.2 Contrast function

The contrast function at frequency f is defined as
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where

e r = (x,y): position vector;

o R{7(r; f)} =[er (r) — &) ;

o S {r ()} =[],

o oq (v) = coer (v) — 558 ;

® ECeqb = E0ETL — jgzr_bf;
e ¢, (r): relative electric permittivity at position r;

e o (r): conductivity at position r;

NOTE: we assume that ¢, (r) and o (r) are not frequency dependent (non-dispersive mediums).

1.2.1 Contrast function and reference frequency f..; (MF approaches)

The contrast function at a generic frequency f can be expressed by means of the contrast function computed

for a selected reference frequency

f:fref (1)

as follows

,fref

T(r;f):%{T(r;fref)}+]T${T(r;fref)}- (2)

This allows to reduce the number of unknowns when dealing with multi-frequency techniques, since we can just

consider the contrast function at the reference frequency.



1.3 Cost function & unknowns

1.3.1 Multi-Frequency (M F) approaches

These approaches jointly consider data at F' frequencies. The functional minimized by the inversion algorithm

is defined as

¢ (X) = Dypate (X) + Puata (X)

where Pgqi (x) and Pgar, (X) are respectively the data and state terms of the cost function, defined as
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The unknowns of the inversion problem are

X = { (r; fref); E tot (rn,f])} n=1.,N;o=1,..,V;j=1,.., F.

The total number of unknowns for M F-based approaches is then given by

UMFZQN(lJrVF).

1.4 Reconstruction errors

The following integral error is defined

NTEQ
act rec
— 1 n —Tn |

Sreg = Nyeg |T,‘;Ct + 1|

n=1
where reg indicates if the error computation covers

e the overall investigation domain (reg = tot),

e the actual scatterer support (reg = int),

e or the background region (reg = ext).



2 Increasing the number of measurement points (M)

2.1 Circular empty object (¢, 0 = 4.5, ooy = 1072 [S/m])
2.1.1 Parameters

Background
Inhomogeneous and nonmagnetic background composed by two half spaces
e Upper half space (y > 0 - air): €., = 1.0, 6, = 0.0;

e Lower half space (y < 0 - soil): &, = 4.0, 0, = 1073|S/m];
Investigation domain (D;,,)

e Side: Lp,,, = 0.8 [m];

inv

e Barycenter: (zﬁjj”,yﬁ#“) = (0.00,-0.4) [m];
Time-Domain forward solver (FDTD - GPRMax2D)

e Side of the simulated domain: L = 6 [m];

e Number of cells: NFPTP = 750 x 750 = 5.625 x 10°;
e Side of the FDTD cells [¥PTP = (.008 [m];

e Simulation time window: TFPTP = 20 x 10~ [sec];

e Time step: AtF'PTP =1.89 x 107! [sec];

e Number of time samples: N/ PTP = 1060;

e Boundary conditions: perfectly matched layer (PML);

e Source type: Gaussian mono-cycle (first Gaussian pulse derivative, called “Ricker” in GPRM ax2D)

— Central frequency: fyo = 300 [MHz];

— Source amplitude: A = 1.0 [A];
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Figure 1: GPRMax2D excitation signal. (a) Time pulse, (b) normalized frequency spectrum.

Frequency parameters

e Frequency range: f € [fmin, fmaz] = [200.0,600.0] [MHz] (—3 [dB] bandwidth of the Gaussian Monocycle

excitation centered at fo = 300 [MHz]);

e Frequency step: Af =100 [MHz] (F =5 frequency steps in [fmin, fmaz]);

| f/IMHz] | Ay [m] [ A [m] [ f* [MHz] ]

200.0 1.50 0.75 200.5
300.0 1.00 0.50 297.6
400.0 0.75 0.37 401.1
500.0 0.60 0.30 498.1
600.0 0.50 0.25 601.6

Table 1: Considered frequencies and corresponding wavelength in the upper medium (), free space) and in the
lower medium (A, soil). f* is the nearest frequency sample available from transformed time-domain data, and
represents the real frequency considered by the inversion algorithm.

Scatterer

Type: Circular;

e Barycenter: (Topj, Yob;) = (0.0, —0.4) [ml];

Contrast function: 7 = 0.5 4 j0.0

Radius: 757" = 0.08 [m], r&7f = 0.12 [m];

Electromagnetic properties: &, op; = 4.5, 0op; = 1073 [S/m] (0ob5 = 0p);
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Figure 2: Actual object.

Measurement setup

Considered frequency: fpin, = 200 [MHz], Ay = 0.75 [m]. !

#DoF's = 2ka = i—’;Lﬁ = %0.8\/5 ~ 0.5;

Number of views (sources): V = 10;

— min {z, } = —0.5 [m], max{z,} = 0.5 [m];

— height: y, = 0.1 [m], Vo =1,...,V;

Number of measurement points: M = {9;18;36;72};

— min {2, } = —0.5 [m], max {z;,} = 0.5 [m];

— height: y,, = 0.1 [m], Vm =1,..., M;
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Figure 3: Location of the measurement points and of the sources (V' = 10). Only one source is active for each
view.

INOTE: This choice is done in order to keep the number of unknowns lower than 5000.



Inverse solver parameters

e Shared parameters

— Number of unknowns: U = 2N (1 4+ VF) = 4998;
— Weight of the state term of the functional: 1.0;
— Weight of the data term of the functional: 1.0;
— Weight of the penalty term of the functional: 0.0;
— Convergence threshold: 10719;
— Variable ranges:
* 0 € [8.0x107*,1.2 x 1073] [S/ml];
« R{EG} € [-8,8], S{E} € [-8,8);
— Degrees of freedom:

* Considered frequency: fpin, = 200 [MHz], A, = 0.75 [m];

LV3)?
ra)? _ (2x35x57)
2 2

2
* = 47? ()\%) = 472 (%)2 ~ 44 .87;
— Number of cells: N =49 =7 x 7,

— Maximum number of IMSA steps: S = 4;

— Side ratio threshold: n, = 0.2;
e MF—IMSA — PSO parameters

— Maximum number of iterations: I = 20000;

— Swarm dimension: P = W‘r’o x U = 250;

- Cl = Cg = 2.0;
— Inertial weight: w = 0.4;

— Velocity clamping: enabled;
e MF—IMSA — CG parameters

— Maximum number of iterations: I = 200;
Signal to noise ratio (on E}. (1))

e SNR = {50,40, 30,20} [dB] 4 Noiseless data.



21.2 M=9-MF-—-IMSA—-PSO vs. MF —IMSA — CG: Final reconstructions
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Figure 4: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence
step (sP¢?).
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213 M=18- MF —IMSA—PSO vs. MF — IMSA — CG: Final reconstructions
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Figure 5: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence
step (sP¢?).
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214 M=36- MF—-IMSA—PSO vs. MF —IMSA — CG: Final reconstructions
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Figure 6: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence
step (sP¢?).
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215 M=72-MF—-IMSA—PSO vs. MF —IMSA — CG: Final reconstructions
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Figure 7: MF —IMSA—PSO vs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence
step (sP¢?).
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2.1.6 MF—-IMSA—-PSO vs. MF —IMSA — CG: Errors vs. M

Noiseless Data
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Figure 8: MF —IMSA—PSO vs. MF —IMSA— CG: Reconstruction errors vs. the number of measurement
points (M).
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Errors vs.

M=9 M=18
10° T T T T 10° — T T T T
T | mmm e F | -
=} =}
: z
= S i =1 -1 4
10 £ 10
< <
s s
] I
c c
£ g
B 3
2 2
Q Q
3 3
j7) Q
o ['4
10-3 i i i i 1 10-3 i i i i I
20 30 40 50 ® 20 30 40 50 @
SNR [dB] SNR [dB]

Ziot - MF-IMSA-PSO ——
Ziot - MF-IMSA-CG = = =

Zint - MF-IMSA-PSO ———
Zint - MF-IMSA-CG — — -

Zeyt - MF-IMSA-PSO ——
Zext - MF-IMSA-CG = — =

(a) M =9
M=36

10° T T T T
E | e Y __SAEEe .
=)
g
= -1 4
£ 10
<
s
I
c
2
S 102} 7
5
2
Q
]
j7)
@

103 Lo . . . .

Ziot - MF-IMSA-PSO ——
Ziot - MF-IMSA-CG — = =

40
SNR [dB]
Zint - MF-IMSA-PSO
Zint - MF-IMSA-CG — — -

(¢) M =36

50 ©

Zeyt - MF-IMSA-PSO ——
Zext - MF-IMSA-CG = = =

Zior - MF-IMSA-PSO ——
Zior - MF-IMSA-CG — = =

Zint - MF-IMSA-PSO ———
Zing- MF-IMSA-CG — — ~

Zeqt - MF-IMSA-PSO ——
Zeq - MF-IMSA-CG = = =

M=72
10° — T T T T

:'g

=]

g

= -1 4
£10

<

s

]

c

2

S 102} 7
3

2

o

g

[

['4

10-3 n n n n n

Zior - MF-IMSA-PSO ——
Ziot - MF-IMSA-CG — = =

40
SNR [dB]
Zint - MF-IMSA-PSO ———
Zing- MF-IMSA-CG — — ~

(d) M =172

50 ©

Zeqt - MF-IMSA-PSO ——
Zex - MF-IMSA-CG = = =
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3 Conclusions

The reported results in this document verify that

e The MF — IMSA — PSO is able to provide accurate reconstructions even when considering a limited

number of measurement points (e.g., when M = 9);

e Moreover, especially when noisy data has to be inverted, increasing the number of measurement points

leads to a slight improvement of the reconstruction quality of the M F — IMSA — PSO,;

e On average, significanlty better reconstructions are yieled by the proposed M F — IMSA — PSO with
respect to the M F — IMSA — CG. As a matter of fact, the improved performance of the MF — IMSA —
PSO is given by the exploitation of a stochastic global optimization algorithm, that allows a better

exploration of the M F' cost function with respect to local search-based approaches.
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