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Abstract 
 

This work deals with  the analysis of  the effects of  tolerances of  the amplitude 
and phase weights on the radiation pattern of  linear antenna arrays. A method 
based  on  the  Minkowski  Interval  Analysis  (M‐IA)  is  exploited  to  analytically 
determine upper and  lower bounds of  the power pattern as  a  function of  the 
maximum deviations of the control point values from the nominal values. In this 
document,  after  providing  a  mathematical  description  of  the  developed 
approach, some numerical results are reported to assess the effectiveness of the 
M‐IA  tool,  as  well  as  to  compare  it  to  a  standard  Cartesian  IA‐based  (C‐IA) 
approach, this latter being expected to provide larger (i.e., less reliable) bounds. 



1 Variable Definition

This section is devoted at defining all the quantities will be find in the report.

1.1 Interval Analysis

• Real Interval Numbers (Intervals)

A closed real interval X = [a, b], namely interval number X, consists of the set of real numbers x such

that {x : a ≤ x ≤ b}, i.e. it is the set of real numbers between and including the endpoints a and b.

Consequently a real number x is equivalent to an interval [x, x]. Such an interval is said to be degenerate

interval. A superscript L (or R) denotes the left (or right) endpoint of an interval. Thus if X = [a, b]

then inf {X} = a and sup {X} = b. Consequently, the right endpoint of the interval X is usually denoted

as sup {X} and the left endpoint of the interval is usually denoted as inf {X}.

An interval X = [a, b] is said to be positive (or non-negative) if a ≥ 0, strictly positive if a > 0, negative

(or non-positive) if b ≤ 0, and strictly negative if b < 0. Two intervals [a, b] and [c, d] are equal if and only

if a = c and b = d. Intervals are partially ordered. [a, b] < [c, d] ⇔ b < c.

• Interval Arithmetic

Let us denote +, −, ∗ and / the operation of addition, subtraction, multiplication and division, respectively.

Let be op any one of these operations for the arithmetic of real numbers x and y, then the corresponding

operation for the arithmetic of interval numbers X and Y is:

X opY = {x op y : x ∈ X, y ∈ Y } . (1)

From definition (1) follows that the interval X opY contains every possible number which can be formed

as x op y for each x ∈ X and y ∈ Y. Moreover, following such a definition it is possible to produce the

rules for generating the endpoints of X opY from the two interval operands X and Y.

• Interval Sum

Let be X = [inf {X} , sup {X}] and Y = [inf {Y} , sup {Y}] two real intervals. The sum operation is

defined as:

X+Y = [inf {X}+ inf {Y} , sup {X}+ sup {Y}] (2)

• Interval Subtraction

Let be X = [inf {X} , sup {X}] and Y = [inf {Y} , sup {Y}] two real intervals. The subtraction operation

is defined as:

X−Y = [inf {X} − inf {Y} , sup {X} − sup {Y}] (3)
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• Interval Multiplication

Let be X = [inf {X} , sup {X}] and Y = [inf {Y} , sup {Y}] two real intervals. The multiplication opera-

tion is defined as:

X ∗Y = [min (inf {X} inf {Y} , inf {X} inf {Y} , Xsup inf {Y} , sup {X} sup {Y}) ,

max (inf {X} inf {Y} , inf {X} sup {Y} , Xsup inf {Y} , sup {X} sup {Y})]
(4)

• Interval Inverse

Let beY = [inf {Y} , sup {Y}] a real interval. The inverse interval 1/Y is defined as:

1

Y
=

[

1

sup {Y} ,
1

inf {Y}

]

0 /∈ Y (5)

• Interval Division

Let be X = [inf {X} , sup {X}] and Y = [inf {Y} , sup {Y}] two real intervals. The interval division is

defined by means of interval inverse and interval multiplication as:

X

Y
= X ∗

(

1

Y

)

0 /∈ Y (6)

• Power of a Real Interval

Let be X = [inf {X} , sup {X}] a real interval. The power of X, Xn is a real interval computed as:

Xn =



































[1, 1] if n = 0

[inf {Xn} , sup {Xn}] if inf {X} ≥ 0 or if inf {X} ≤ 0 ≤ sup {X} andn is odd

[sup {Xn} , inf {Xn}] if sup {X} ≤ 0

[0, max (inf {Xn} , sup {Xn})] if inf {X} ≤ 0 ≤ sup {X} andn is even

(7)

• Square of a Real Interval

Let be X = [inf {X} , sup {X}] a real interval. Accordingly to equation (7) the square of the interval X,

X2 is an interval computed as:

X2 =























[

inf
{

X2
}

, sup
{

X2
}]

if inf {X} ≥ 0
[

sup
{

X2
}

, inf
{

X2
}]

if sup {X} ≤ 0

[0, max (inf {Xn} , sup {Xn})] if inf {X} ≤ 0 ≤ sup {X}

(8)

• Width of a Real Interval

Let be X = [inf {X} , sup {X}] a real interval. The width of the interval X, w (X) is a real number defined

as:
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w (X) = sup {X} − inf {X} (9)

• Center of a Real Interval - Middle point

Let be X = [inf {X} , sup {X}] a real interval. The middle point of the interval X, m (X) is defined as:

m (X) =
sup {X}+ inf {X}

2
(10)

• Equivalent representation of Intervals

Let be X = [inf {X} , sup {X}] a real interval, it can be represent equivalently in the form:

X =

[

m (X)− w (X)

2
; m (X) +

w (X)

2

]

(11)

• Absolute value of a Real Interval

Let be X = [inf {X} , sup {X}] a real interval, the absolute value of an interval is:

|X| = max (|inf {X}| , |sup {X}|) (12)

• Complex Interval Numbers (Intervals)

A complex intervals C is an ordered pair of intervals C = [X, Y] with X = [inf {X} , sup {X}] and

X = [inf {Y} , sup {Y}]real intervals. It consists in the set of complex numbers x+ iy such that:

X = {x+ iy inf {X} ≤ x ≤ sup {X} inf {Y} ≤ y ≤ sup {Y}} (13)

• Negative of a Complex Interval

Let be C = [X, Y] with X = [inf {X} , sup {X}] and Y = [inf {Y} , sup {Y}]real intervals. The negative

of C, −C is defined as:

−C = [−X, −Y] (14)

where in equation (14), −X is the real interval −X = [− sup {X} , − inf {X}] and −Y is the real interval

−Y = [− sup {Y} , − inf {Y}].

• Complex Conjugate Complex Interval

Let be C = [X, Y] with X = [inf {X} , sup {X}] and X = [inf {Y} , sup {Y}]real intervals. The complex

conjugate of the complex interval C, C∗ is defined as:

C∗ = [X, −Y] (15)
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• Sum of Complex Intervals (Cartesian Sum)

Let be C = [X, Y] and C′ = [X′, Y′] two complex intervals. The sum of the complex intervals is a

complex interval defined as:

C+C′ = [X+X′, Y +Y′] (16)

• Product of Complex Intervals

Let be C = [X, Y] and C′ = [X′, Y′] two complex intervals. The product of the complex intervals is a

complex interval defined as:

C ·C′ = [XX′ −YY′, XY′ +YX′] (17)

• Sum of a complex interval and its complex conjugate

Let be C = [X, Y] a complex interval and C∗ = [X, −Y] its complex conjugate. The sum C and C∗ is

the real interval defined as:

X+X∗ = [2X] (18)

• Product of a complex interval and its complex conjugate

Let be C = [X, Y] a complex interval and C∗ = [X, −Y] its complex conjugate. The product of C and

its complex conjugate C∗ is the real interval:

X ·X∗ =
[

X2 +Y2
]

(19)

• Absolute value of a Complex Interval

Let be C = [X, Y] a complex interval, the absolute value of the interval C is:

|C| = sup
{

X2 +Y2
}

(20)
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1.2 Complex Interval in Polar form (Interval Phasors)

• Polar complex Interval

Let be [ρ] ⊂ R+ and [θ] ⊂ R+. The set defined by Z =
{

z ∈ C : z = ρ expjθ; ρ ∈ [ρ] , θ ∈ [θ]
}

is called

polar complex interval. A polar interval can be uniquely characterized by two real intervals: [ρ] =

[inf {[ρ]} , sup {[ρ]}] and [θ] = [inf {[θ]} , sup {[θ]}].

• Sum of polar complex intervals

Let be [Z1] = [ρ1] exp
j[θ1] and [Z2] = [ρ2] exp

j[θ2] two complex intervals expressed in polar notation. The

interval magnitude and the interval phase of the interval sum [Zs] = [ρs] exp
j[θs] are computed solving the

following minimization /maximization problems. The magnitude of every element of [Zs] can be computed

using:

|zs| =
∣

∣ρ1 exp
jθ1 +ρ2 exp

jθ2
∣

∣ =
√

ρ21 + ρ22 + 2ρ1ρ2 cos (θ1 − θ2) (21)

being ρ1 ∈ [ρ1], ρ2 ∈ [ρ2], θ1 ∈ [θ1] and θ2 ∈ [θ2]. Then, the bounds of [ρs] = [inf ([ρs]) , sup ([ρs])] must

verify:

inf ([ρs]) = minρs∈Z1⊕Z2
|zs|

sup ([ρs]) = maxρs∈Z1⊕Z2
|zs|

(22)

with Z1 ⊕ Z2 = {z1 + z2 | z1 ∈ [Z1] , z2 ∈ [Z2]} call as Minkowski Sum. On the other hand, the phase of

every elements of [Zs] can be computed as:

θs = arctan
ρ1 sin θ1 + ρ2 sin θ2
ρ1 cos θ1 + ρ2 cos θ2

(23)

with ρ1 ∈ [ρ1], ρ2 ∈ [ρ2], θ1 ∈ [θ1] and θ2 ∈ [θ2]. The bounds for the interval phase [θs] = [inf (θs) , sup (θs)]

are solutions of:

inf ([θs]) = minρs∈Z1⊕Z2
θs

sup ([θs]) = maxρs∈Z1⊕Z2
θs

(24)

Properties and Observations:

1. Commutative. [Z1] + [Z2] = [Z2] + [Z1]

2. Not associative. [Z1] + [Z2] + [Z3] = ([Z1] + [Z2]) + [Z3] 6= [Z1] + ([Z2] + [Z3])

3. The sum of two polar intervals can produce wide interval bounds .
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1.3 Convex Sets and Minkowski sum

• Convex set and Convex Hull:

A subset S of the plane is called convex if and only if for any pair of points p and q ∈ S, the line segment

p q is completely contained in S. The convex hull CH (S) of the set S is the smallest convex set that

contains S.

• Minkowski sum:

Let be S1 ⊂ R2 and S2 ⊂ R2 two sets of vectors in R2. The Minkowski sum of S1 and S2, denoted as

S1 ⊕ S2 is defined as:

S1 ⊕ S2 = {s1 + s2 : s1 ∈ S1 s2 ∈ S2} (25)

where, s1 + s2 denotes the vectorial sum of the vector s1 and s2, that is , if s1 = (s1x, s1y) and s2 =

(s2x, s2y), s1 + s2 = (s1x + s1y, s2x + s2y). Let us observe that the definition of the Minkowski sum is

equivalent to the definition of Interval Sum for complex intervals (2) and (16).

Properties:

1. Associative. S1 ⊕ S2 ⊕ S3 = (S1 ⊕ S2)⊕ S3 = S1 ⊕ (S2 ⊕ S3)

2. Distributive. S1 ⊕ S2 = S1 ⊕ (S2,1 ⊕ S2,2) with S2,1 ⊕ S2,2 = S2

3. Commutative: S1 ⊕ S2 = S2 ⊕ S1.

4. The Minkowski sum of two convex sets is a convex set.

Computational Costs

Let be P and R two polygons with N andM vertices, respectively. The complexity of the Minkowski sum

P ⊕R is bounded as follows:

– O (N +M) if both the polygons are convex;

– O (NM) if one polygon is convex and one is non-convex;

– O
(

N2M2
)

if both the polygons are non-convex;
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1.4 Array Analysis

• Array Factor - Linear Array:

The array factor of an uniform linear array is defined as:

AF (θ) =

N
∑

n=1

wne
j(n−1)k·d sin(θ) θ ∈

[

−π
2
;
π

2

]

(26)

where wn ∈ C; n = 1, . . . , N are the control points of the N elements of the array, is the element spacing,

θ is the angle measured from the array axis.

• Array Factor - Planar Array:

The array factor of a uniform planar array is defined as:

AF (θ, φ) =

N
∑

n=1

• Array Excitations:

wn = αn · ejβn (27)

where αn; n = 1, . . . , N are the amplitudes and βn; n = 1, . . . , N are the phases of the wn; n = 1, . . . , N

excitation coefficients.

• Variable u:

u = sin θ θ ∈
[

−π
2
;
π

2

]

(28)

• Normalized Array Factor:

AF (θ)n =
AF (θ)

maxθ {|AF (θ)|} θ ∈
[

−π
2
;
π

2

]

(29)

where in (29) maxθ {|AF (θ)|} is the maximal value of |AF (θ)| θ ∈
[

−π
2 ;

π
2

]

.

• Position of the maximum of AF:

umax = u ∈ [−1; 1] AF (umax) = max {AF (u)} u ∈ [−1; 1] (30)

• Power Pattern:

The power pattern radiated by an antenna array is computed as follows:

P (θ) = AF (θ)AF (θ)∗ = |AF (θ)|2 = Re2 {AF (θ)}+ Im2 {AF (θ)} (31)

7



where in equation (31) AF (θ)∗ is the complex-conjugate of the AF (θ).

• 3 [dB] Beam Width HPBW :

HPBW = θA − θB (32)

where θAand θB are the angular positions where |AF (θ)|2n = −3 [dB]

• Normalized Power Level PRL:

PRL (θ) = 20 · log10 |AF (θ)|n (33)

• First Null Position ψ1:

Position of the first null of |AF (θ)|n

• Maximal SLL max {SLL}:

It is the maximal level of the grating lobes of |AF (θ)|n.

• Maximal Directivity - Dmax:

The directivity is defined as:

D(θ, φ) =
U (θ, φ)

1
4π

∫ π

0

∫ 2π

0 U (θ, φ) sin (θ) dθdφ
(34)

where U(θ, φ) is the radiation intensity:

U (θ, φ) =
r2

2η
|Etot (r, θ, φ)|

2
= U0 (θ, φ) |AF (θ, φ)|2 (35)

U0(θ, φ) is radiation intensity for the single element. In our case, considering ideal isotropic sources,

U0(θ, φ) = 1. Usually “peak directivity” is more used, that is the directivity calculated at its maximum:

Dmax(θ0, φ0). For our array, the direction of the maximum is at θ = 0; thus :

U(θ0, φ0) = |AF (θ0, φ0)|2 =

∣

∣

∣

∣

∣

N
∑

n=1

wne
j(n−1)k·d·sin(θ0)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

N
∑

n=1

an

∣

∣

∣

∣

∣

2

(36)

Now, computing the denominator of (34), we obtain:

1

4π

∫ π

0

∫ 2π

0

U(θ, φ)sin(θ)dθdφ =
N
∑

n=1

N
∑

m=1

wnw
∗

m

∫ 1

−1

ejkd(n−m)udu (37)

which for d = λ
2 reduces to

∣

∣

∣

∑N−1
n=0 wn

∣

∣

∣

2

, obtaining the expression of peak directivity:
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Dmax =

∣

∣

∣

∑N
n=1 wn

∣

∣

∣

2

∑N−1
n=0 |wn|2

(38)

valid for half-wavelength-spaced isotropic elements.

1.5 Interval Array Analysis

• Interval Control Point - Wn; n = 1, . . . , N

The interval control points of a linear array of N elements are defined as:

Wn = An expjBn ; n = 1, . . . , N (39)

where in equation (39) An = [inf {An} ; sup {An}] , n = 1, . . . , N are the interval control point amplitudes

being:

inf {An} = αn − ε(inf)n ; n = 1, . . . , N (40)

sup {An} = αn + ε(sup)n ; n = 1, . . . , N (41)

with αn; n = 1, . . . , N the reference value of the n− th control point amplitude, and ε
(inf)
n ; n = 1, . . . , N ,

ε
(sup)
n ; n = 1, . . . , N the lower and upper amplitude tolerance on the n-th control point, respectively. On

the other hand, Bn = [inf {Bn} ; sup {Bn}] , n = 1, . . . , N are the interval control point phases being:

inf {Bn} = βn − δ(inf)n ; n = 1, . . . , N (42)

sup {Bn} = βn + δ(sup)n ; n = 1, . . . , N (43)

with βn; n = 1, . . . , N the reference value of the n−th control point phase, δ
(inf)
n ; n = 1, . . . , N , δ

(sup)
n ; n =

1, . . . , N the lower and upper phase tolerance for the n-th control point, respectively.

• Interval Array Factor AF

Let us define the Interval Array Factor AF of an uniformly spaced linear array as follows:

AF (θ) =
N
∑

n=1

Wne
jΘn (44)

where j =
√
−1 is the complex variable and Θn = (kd (n− 1) sin θ) ; n = 1, . . . , N , being k = 2π

λ
the

free-space wavenumber and λ the wavelength, d the inter-element spacing and θ ∈
[

−π
2 ;

π
2

]

the angular

direction measured from boresight. Substituting (39) in (44) we obtain:
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AF (θ) =

N
∑

n=1

Ane
j(Θn+Bn) (45)

• Interval Power Pattern P

The interval power pattern P is a real interval computed by means of the following equation:

P (θ) = ℜ2 {AF (θ)}+ ℑ2 {AF (θ)} (46)

being ℜ{AF (θ)} , ℑ{AF (θ)} two real intervals bounding the real and the imaginary part of the array

factor, respectively. Alternatively, the interval power pattern can be compute as:

P (θ) = |AF (θ)|2 (47)

being |AF (θ)| a real interval bounding the magnitude of the vectors included in the complex interval

AF (θ).

• Interval Directivity D

Using expression (38), we can compute the interval directivity D as follows:

Dmax =

∣

∣

∣

∑N
n=1 Wn

∣

∣

∣

2

∑N
n=1 W

2
n

(48)

• Side Lobe Level for Interval Arrays

It’s important to define a proper interval version for the significant figure of merit SLL. In our case we

can derive from the interval radiation pattern, two different beam patterns:

inf {P (u)} = inf
{

|AF (u)|2
}

(49)

sup {P (u)} = sup
{

|AF (u)|2
}

(50)

Now let us define the interval SLL as SLL = [inf {SLL} , sup {SLL}] where:

inf {SLL} = −
[

max
u∈ML

{inf {P (u)}} − max
u∈SL

{inf {P (u)}}
]

(51)

sup {SLL} = −
[

max
u∈ML

{inf {P (u)}} − max
u∈SL

{sup {P (u)}}
]

(52)

where ML and SL are the sets of u corresponding to the Main Lobe and the Side Lobes regions.
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Figure: SLL

• Half Power Beam Width - 3dB

Let us the interval HPBW, as BW = [inf {BW} , sup {BW}] where inf {BW} and sup {BW} are

described by in the following figure:
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• Pattern Tolerance

The Pattern Tolerance parameter △ measures the area between the sup {P (u)} and inf {P (u)} and it is

defined as:

△ =

∫ 1

−1

(sup {P (u)} − inf {P (u)}) du (53)

A graphical representation of the pattern matching is shown in the following figure.

Pattern Tolerance, ∆
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Figure: Pattern Tolerance

• Normalized Pattern Tolerance

The Normalized Pattern Tolerance parameter △n measures the area between the the sup {P (u)} and

inf {P (u)} divided by the radiated power P (u).

∆n =

∫ 1

−1
(sup {P (u)} − inf {P (u)}) du

∫ 1

−1 P (u) du
(54)

• Peak Interval

This parameter measure the gap between the infimum and the supremum radiation patterns at the peak

of them.

Pmax = [inf {Pmax} , sup {Pmax}] (55)
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Figure: Peak Interval Parameter
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1.6 Computation of the Interval Array Factor

Let us consider the computation of the interval array factor AF as described by equation (45) here reported

for sake of clearness:

AF (θ) =

N
∑

n=1

Ane
j(Θn+Bn) (56)

It turns out that the AF is the sum of N polar intervals (interval phasors). In order to compute (56) we can

use using different strategies, using different interval representations for the interval control points Wn; n =

1, . . . , N . In the following we consider three possible choice: the Cartesian sum, the polar sum and the Minkowski

sum of convex set with particular emphasis on the latter.

1.6.1 Cartesian sum

The computation of the interval far-field pattern can be performed using the Cartesian representation. More in

detail, let us express the interval control points Wn = An expjBn ; n = 1, . . . , N in Cartesian notation as:

Wn = An exp
jBn = [An cosBn, An sinBn] ; n = 1, . . . , N (57)

where An cosBn = ℜ{Wn} and An sinBn = ℑ{Wn}; n = 1, . . . , N are the real and the imaginary part of

the interval control point. Unfortunately, using this representation the interval phasor is bounded by a complex

rectangular set that overestimates the dimensions of the interval phasor as clearly shown in Figure 1. This

redundancy in bounding the interval phasor produces not precise bounds when considering the interval sum

operation.

(0, 0)

Im

Re

Bn

Wn = Anexp
jBn

Interval Cartesian Representation

An cos(Bn)

A
n
si
n
(B

n
)

An

Figure 1

On the other hand the AF can be easily and quickly computed as:

ℜ{AF} =

N
∑

n=1

An cos (Bn +Θn) (58)
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ℑ{AF} =

N
∑

n=1

An sin (Bn +Θn) (59)

and the interval power pattern P (θ) is:

P (θ) = ℜ2 {AF (θ)}+ ℑ2 {AF (θ)} = |AF (θ)|2

1.6.2 Polar Sum

The AF can be computed representing the interval phasors using the interval polar form, following the algorithm

reported in 1.2. Even if it could seem that the use of the polar sum leads to sharpest bounds with respect to

the Cartesian representation this is not generally true. The main reason seems to be related with the fact that

the sum of two interval is not a polar interval. As a consequence, the polar sum leads to sharpest bounds with

respect to the interval sum just when adding two phasors. As a consequence, the polar sum cannot be used

when dealing with AF computation, since it consider the sum of N > 2 terms.

1.6.3 Minkowski sum

Following the observations reported in the previous sections now we are looking for a strategy able to perform

the sum of interval complex phasors quickly and with minimal bounds. A possible solution considers the use

of the Minkowski sum of convex sets. The use of convex sets with respect to non-convex sets is justified by the

fact that the algorithm for computing the Minkowski sum of convex sets is faster with respect to the sum of

non-convex sets. The algorithm for computing the AF can be summarized by the following steps:

1. Determine the smaller convex set Sn including the interval phasor terms of the array factor Ane
j(Θn+Bn),

n = 1, . . . , N (Convex Hull);

2. Add the convex sets using the Minkowski sum;

3. Compute the Infimum and the Supremum value of the magnitude of the Minkowski sum, inf {|AF (θ)|}

and sup {|AF (θ)|};

4. Compute the interval power pattern P (θ) =
[

inf {|AF|}2 , sup {|AF|}2
]

.

Minimal Convex Sets - Convex Hull of Interval Phasors

Let us consider an interval phasors, [Z] = [ρ] expj[θ] identified by the interval magnitude [ρ] = [inf {[ρ]} , sup {[ρ]}]

and interval phase [θ] = [inf {[θ]} , sup {[θ]}]. From the definition of convex set follows that the convex hull of

the interval phasor, SZ ⊂ C is the set defined by:

• The segment between the points:

– A = (inf {[ρ]} cos (inf {[θ]}) , inf {[ρ]} sin (inf {[θ]})) and

14



– B = (sup {[ρ]} cos (inf {[θ]}) , sup {[ρ]} sin (inf {[θ]}));

• The arc between the points:

– B = (sup {[ρ]} cos (inf {[θ]}) , sup {[ρ]} sin (inf {[θ]})) and

– C = (sup {[ρ]} cos (sup {[θ]}) , sup {[ρ]} sin (sup {[θ]}));

• The segment between the points:

– C = (sup {[ρ]} cos (inf {[θ]}) , sup {[ρ]} sin (inf {[θ]})) and

– D = (inf {[ρ]} cos (sup {[θ]}) , inf {[ρ]} sin (sup {[θ]}));

• The segment between the points:

– D = (inf {[ρ]} cos (sup {[θ]}) , inf {[ρ]} sin (sup {[θ]})) and

– A = (inf {[ρ]} cos (inf {[θ]}) , inf {[ρ]} sin (inf {[θ]})).

A pictorial representation of the convex hull of an interval phasor is shown in Figure 2.
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Since the arc between the points A and B contains infinite points, the computation cost for the Minkowski

sum will be infinite. In order to overcome such a drawback let us approximate the circular arc with a regular

polygon P of L sides that inscribes the circle of radius sup {[ρ]}. From geometrical considerations the vertices

of the regular polygon will lie on the circumference of radius R:

R =
sup {[ρ]}
cos

(

π
L

) (60)
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If we choose L sufficiently big (e.g., if L = 360 R = 1.0004 sup{[ρ]}) a good approximation of the arc can be ob-

tained. The vertices of the regular polygon P will have the following coordinates: P =
{

(xp, yp) ; xp = R cos
(

2π
L
p
)

; yp = R sin

Accordingly the “approximated” convex set including the interval phasor [Z] will be defined by the following

points:

• The segment between the points:

– A = (inf {[ρ]} cos (inf {[θ]}) , inf {[ρ]} sin (inf {[θ]})) and

– B = (sup {[ρ]} cos (inf {[θ]}) , sup {[ρ]} sin (inf {[θ]}));

• The broken line defined by the vertices of the polygon P with phase included in the interval [θ]:

– P∗ =
{

(xp, yp) ; xp = R cos
(

2π
L
p
)

; yp = R sin
(

2π
L
p
)

; p = 0, . . . , L− 1
}

with inf {[θ]} < 2π
L
p < sup {[θ]};

• The segment between the points:

– C = (sup {[ρ]} cos (inf {[θ]}) , sup {[ρ]} sin (inf {[θ]})) and

– D = (inf {[ρ]} cos (sup {[θ]}) , inf {[ρ]} sin (sup {[θ]}));

• The segment between the points:

– D = (inf {[ρ]} cos (sup {[θ]}) , inf {[ρ]} sin (sup {[θ]})) and

– A = (inf {[ρ]} cos (inf {[θ]}) , inf {[ρ]} sin (inf {[θ]})).

In defining the convex set, we have considered the duality between R2 and the complex plane C. Accordingly,

the point z = (x, y) in R2 means the complex value z = x+ iy in C. For sake of comparison between the bounds

obtained by means of convex set and with complex Cartesian intervals are shown in Figure 3.
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The convex set perform a better inclusion with respect to the complex Cartesian interval. As a matter of fact

there is just a small overestimation of the polar interval in the convex set due by the segment between the points

(sup {[ρ]} cos (inf {[θ]}) , sup {[ρ]} sin (inf {[θ]})) and (inf {[ρ]} cos (sup {[θ]}) , inf {[ρ]} sin (sup {[θ]})).

Minkowski Sum Algorithm

Once the complex interval phasors have been bounded by properly defined convex sets, the sum of all the convex

sets can be computed efficiently observing that any vertex of the Minkowski sum is the the sum of two original

vertices that are extreme in a common direction. Accordingly, the Minkowski sum of two convex sets can be

computed using the algorithm described by the following pseudo-code:

Algorithm MINKOWSKI SUM (S,T)

Input:

Convex set S with N vertices s1, . . . , sN

Convex set T with M vertices t1, . . . , tM.

The list of the vertices are assumed to be in counter-clockwise order,

with s1 and t1 the vertices with smallest y-coordinate.

Output:

Minkowski sum, S ⊕ T.

1. Initialization

n← 1, m← 1

s
N+1 ← s1, s

N+2 ← s2, t
M+1 ← t1, t

M+2 ← t2

2. Minkowski sum computation

repeat

Add s
n
+ t

m
as vertex of S ⊕ T

if angle(s
n
s
n+1) < angle(t

m
t
m+1) then

n← n+ 1

else if angle(s
n
s
n+1) > angle(t

m
t
m+1) then

m← m+ 1

else

n← n+ 1

m← m+ 1

until n = N + 1 and m = M + 1

where in the algorithm the notation angle
(

snsn+1

)

indicate the angle that the vector tntn+1 makes with the

positive x-axis. Applying iteratively the algorithm it is possible to compute the values of AF (θ), that it turns

out to be a convex set, defined by H vertices AF (θ) = {(xh, yh) ; h = 1, . . . , H}.

Infimum and Supremum of |AF (θ)|

The infimum and the supremum value of the magnitude of the elements belonging to the interval AF (θ) can

be computed as the minimal (maximal) value of a radius of a circumference centered in the origin, ρ such that

one point of the circumference belongs to AF (θ). Mathematically, this can be expressed as:

inf {|AF (θ)|} = min
{

ρ : ρ2 ∈ AF (θ)
}

(61)
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sup {|AF (θ)|} = max
{

ρ : ρ2 ∈ AF (θ)
}

(62)

For sake of clearness a pictorial representation of the infimum and supremum of a convex set is shown in Figure

4.
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2 Numerical Assessment - Method Validation - Linear Array

GOAL: This section has two main objectives: prove that the bounds obtained using the Minkowski sum are

smaller with respect to one obtained using the Cartesian sum, but they remain still inclusive. Moreover, the

results will give some indications about the dimensions and the shape of the AF intervals.

Array geometry:

• Uniform linear array: N = 10.

• Inter-element spacing: d = 0.5 [λ].

Nominal control points:

• Taylor pattern - SLL = 20 [dB] - n = 2.

Tolerances on the control points:

• Amplitude tolerance: δαn = 0%, ±1%.

• Phase tolerance: δβn = ±1, ±5 [deg].

Minkowski sum parameters:

• Number of sides including polygon: L = 720

Number of Random Patterns: 104 trials
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2.1 Amplitude Tolerance: δαn = 0% - Phase Tolerance: δβn = ±1, ±5 [deg]
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Interval Patterns - u ∈ [−1, 1]

-40

-30

-20

-10

0

5

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
 [d

B
]

u

[P(u)]

P(u)

P(u)

-40

-30

-20

-10

0

5

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
 [d

B
]

u

[P(u)]

P(u)

P(u)

(a) (b)

Figure 6

Interval Patterns - Main Lobe Region
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Figure 7

Interval Array Factor samples
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Figure 8

Interval Array Factor Samples - δαn = 0% - δβn = ±1 [deg]

u0 = 0.0 u0 = 0.007 u0 = 0.307 u0 = 1.0

[|AF (u0)|] [0.9998, 1.00015] [0.995, 1.002] [0.0857, 0.114] [0.0, 0.0175]

|AF (u0)| [0.9998, 1.00000] [0.997, 0.999] [0.0883, 0.111] [0.0, 0.0174]

Table I

Interval Array Factor Samples - δαn = 0% - δβn = ±5 [deg]

u0 = 0.0 u0 = 0.025 u0 = 0.304 u0 = 1.0

[|AF (u0)|] [0.996, 1.004] [0.922, 1.033] [0.0356, 0.1742] [0.0, 0.0872]

|AF (u0)| [0.996, 1.000] [0.961, 0.991] [0.0422, 0.1558] [0.0, 0.0871]

Table II

Interval Pattern Features

Feature Nominal CartesianSum Minkowski Sum

δβn = ±1 [deg] δβn = ±5 [deg] δβn = ±1 [deg] δβn = ±5 [deg]

BW [u] 0.200 [0.196, 0.204] [0.186, 0.228] [0.196, 0.204] [0.180, 0.220]

SLL [dB] −20.0 [−21.30, −18.84] [−28.38, −15.14] [−21.07, −19.06] [−27.48, −16.03]

Pmax [dB] 0.0 [−0.00132, 0.0157] [−0.033, 0.286] [−0.00132, 0.0] [−0.033, 0.0]

∆ − 0.0180 0.0929 0.0116 0.0589

∆norm − 0.0513 0.2654 0.0331 0.1682

Table III

Comments and Observations:

The Minkowski interval are always included in the Cartesian interval. Accordingly, the related interval pa-

rameters are included in the Cartesian intervals, and the values of the pattern matching and the normalized

pattern matching ∆ and ∆norm are smaller in the first case. As expected, the Cartesian interval has always

a rectangular shape, whereas the Minkowski interval can assume different shapes, however it always remains

convex. Moreover, the Cartesian interval perfectly includes the Minkowski set, and the maximal/minimal val-

ues for the Real/Imaginary part of the array factor are the same in both cases. What it is different is the

magnitude of the array factor that is always smaller for the Minkowski set. The main difference between the

Cartesian and the Minkowski bounds occurs in the side-lobe level region, but it is in the main beam that we can
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clearly understand the redundancy problem, since the supremum of the power pattern using Cartesian intervals

assumes not physical values since a phase error cannot lead to a power amplification.
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Interval Patterns vs Random Pattern u ∈ [−1, 1]

-40

-30

-20

-10

0

5

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
 [d

B
]

u

[P(u)]

P(u)

Trial

-40

-30

-20

-10

0

5

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
 [d

B
]

u

[P(u)]

P(u)

Trial

(a) (b)

Figure 9

Interval Patterns vs Random Pattern - Main Lobe Region
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Interval Array Factor samples vs Random samples
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Interval Pattern Features vs Random Pattern Features
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2.1.1 Comments and Observations:

Considering 10000 random patterns, the inclusivity for both Cartesian and Minkowski interval seems assured

for small ±1 [deg] and big ±5 [deg] phase error. It is worth of noting that even if some redundancy occurs in

both the intervals (Fig. 11), it seems very small for the Minkowski intervals. Moreover, the distance between

the Supremum and Infimum of the interval Minkowski and Cartesian interval is not constant. Such a result can

be explained considering that the redundancy phenomena is not constant with respect to the angular variable

u.
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