1 PLS — OSF — SVR Approach

GOAL: The main goal is to jointly minimize

e the number N of training samples (i.e., the number of simulations / the computational time required to

generate the training set);

e the prediction error made by the LBE technique in estimating the crack parameters.

1.1 Algorithm #1
1. Partial Least Squares (PLS)

(a) Build an initial set Py, of N; configurations of the crack (dim. [Ny x I]) (e.g., positions within the

plate)
p(» pgl) p(Il) x(()l) y(()l) zél)
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using a uniform grid sampling in the /-dimensional space of crack parameters;

(b) Use the forward solver ® {.} to compute the ECT signal in K measurement points associated to the
N; configurations of the crack. Build the following matrix of measurements where real and imaginary
parts of each measurement point are treated as separate real-valued features (dim. [N; x 2K| =

[N1 x FI)
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(c) Use PLS to extract from matrix Wy, J << F features to be used during the inversion. In this
version of the algorithm, each i-th parameter to estimate is treated in a separate way. For each

parameter (i = 1,...,I) the PLS algorithm receives as input the pair
{¥n; PN, i}, i=1,..,1

where Py, ; is the i-th column of Py, (i.e., the value of the i-th parameter of the crack for the Nj

configurations)



and retrieves a matrix Ty, ; of extracted J-dimensional features (dim. [Ny x J]) that are the most

informative ones for predicting Py, ;
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as well as the matrix W of weights (dim. [F' x J]) used to perform a linear projection of ¥y, into

Tn, i (i.e., compress the original F' = 2K features to the new extracted J features)

Tn,i=(Tn, —¥n,) X W,

where Wy, is a matrix containing the average values of the columns of Wy,

R{®:} S{¥:} ... R{¥k} S{¥x}

R{T:} S{T} ... R{Ix} S{Tx}

and
R{V.} = SR (™)}

k=1,..K
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(d) The initial training sets of N; samples are then composed by the input-output pairs

{TNM;PNl,i}: : : ; : i=1,..,1.

2. Output Space Filling (OSF).

Set N = N;. To generate a new training sample perform the following steps

(a) Generate C “candidate” configurations of the crack, by sampling with LHS the I-dimensional space

of crack parameters

p() OB NOREMCIINC
Po = = -
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(b) Use the forward solver to compute the ECT signal associated to the C' candidates. Build the following

matrix of measurements (dim. [C' x 2K| = [C' x F1)
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(¢) For each i-th parameter of the crack:

i. project the matrix of measurements ¥ onto the reduced J-dimensional space using the i-th

transformation matrix W;
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ii. Compute the Euclidean distance between each c-th vector tz(-c)(c = 1,...,C) and the vectors

. yn=1,..., N previously collected (i.e., the rows of Ty ;)

dist {tf’,tg’”} — XJ: (tgf; - tgj;))Q, ¢c=1,..C, n=1,.,N
j=1

iii. Select the vector of extracted features tg*) having the maximum minimum distance with respect

t n=1,..,N)

2
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this vector corresponds to the candidate sample p(*) that is the farthest one in the space of

to the previously collected N vectors (

extracted features for the i-th parameter;

()

iv. Append tg*) and the associated crack parameter p;’ to the training set, that will be composed

as

Tw Py, ,
{TN+1,i§PN+1,i}: ; , o 1=1,...,1.
(d) Set N =N +1 and go to (2a); Stop when N = Nyqz-
3. Support Vector Regression (SVR).
(a) Generate M (previously-unseen) test configurations of the crack
p pgl) pgl) x((Jl) y((Jl) Z((Jl)
Py = = =
p(M) ng) p(I]M) z(()M) y(()M) Z(()]M)



(b) Use the forward solver to compute the ECT signal associated to the M test samples. Build the

following matrix of measurements (dim. [M x 2K] = [M x F])
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(c¢) For each i-th parameter of the crack:

i. Use matrix W;to project ¥y, onto the reduced J-dimensional space

£ 6y Y
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ii. Train a SV R using the generated training set of IV training input-output pairs composed as

W ]
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N N N
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iii. Test the SV R giving it as input the transformed features associated to the M test samples Ty ;.

As output, the SV R will produce a vector of M estimated values for the i-th parameter

1.2 Critical aspects of algorithm #1

1. Problem 1: evaluation of the C candidates with the forward solver during the generation of

the training sets.

e In order to add a new training sample to the I training sets, the forward solver is used to compute the
ECT signal associated to each candidate sample (¢ = 1,...,C) in order to determine the projected

features in the reduced space and select the best candidate.

e This is a huge waste of computational resources if the forward solver is a full-wave em solver (e.g.,
CIV A);

e In order to generate N training samples for a given parameter of the crack, we need to call the
forward solver N x C times!;

e This problem is much less significant if the forward solver is not a full-wave solver but a forward

meta-model (much faster, but needs its own training phase...);



2. Problem 2: treating each parameter to estimate separately during the generation of the

training sets.

e We apply the PLS algorithm for each parameter to estimate (i = 1,...,I);

e This leads to the generation of I different reduced spaces, that are filled using the OSF strategy

independently;

e The training samples generated for each parameter are thus different (one candidate sample can be

good for one parameter but not for the others...).

Given the above considerations, two evolutions of this original algorithm are presented in the following, trying

to solve the two critical aspects.

1.3 Algorithm #2: Solution to problem 1

Goal: avoid to use the forward solver to compute the ECT signal associated to the C' candidate samples during

the generation of the training sets.

Solution: instead of calling the forward solver to compute the FCT signal associated to the C' candidates, the

following steps are performed

1. For each parameter to estimate (¢ = 1,...,1) use a linear interpolator (fast!) to predict the matrix of

J-dimensional features associated to the C' candidates

(1 1 1
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the interpolation uses the information from the previously collected samples;

2. Select the candidate that maximizes the minimum distance w.r.t. the previously collected samples in the

reduced space of features. Use the predicted values at the previous step.

3. Once the best candidate fg*) has been selected, compute the real tl(.*) by calling the forward solver and

projecting the vector of measurements onto the reduced space and append it to the previous training set.
Observations

e By using a linear interpolator for estimating the J-dimensional features associated to the C' candidates

allows to call the forward solver only for computing the measurements associated to the selected candidate.

e In order to generate N training samples for a given parameter of the crack, we need to call the forward

solver only N times;



1.4 Algorithm #3: Solution to problems 1 and 2

Goal: avoid to treat each parameter to estimate separately. Generate a unique set of features that are “good”
training samples for all the parameters.

Solution: apply the PLS algorithm jointly considering the I parameters of the crack.
1. Partial Least Squares (PLS)

(a) Build an initial set Py, of N; configurations of the crack (dim. [Ny x I]) (e.g., positions within the

plate)

) PO OISO
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using a uniform grid sampling in the /-dimensional space of crack parameters;

(b) Use the forward solver ® {.} to compute the ECT signal in K measurement points associated to the
N; configurations of the crack. Build the following matrix of measurements where real and imaginary
parts of each measurement point are treated as separate real-valued features (dim. [N; x 2K]| =

[Ny x F)
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(c) Use PLS to extract from matrix ¥y, J << F features to be used during the inversion. The PLS

algorithm receives as input the pair of matrices

{‘IJN1;PN1}

and retrieves a matrix Ty, of extracted J-dimensional features (dim. [N; x J]) that are the most

informative ones for predicting Py,

£ P
Ty, = =
(V) R

as well as the matrix W of weights (dim. [F' x J]) used to perform a linear projection of ¥y, into

Tn,

r]:‘N1 = (‘I’N1 7‘1’—]\]1) x W



where Wy, is a [N7 X F] matrix with rows containing the average values of the columns of ¥y,

R{T:} S{T} ... R{Ix} S{Tx}

R{W:} S{¥:} ... R{¥k} S{¥x}

and
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(d) The initial training set of Ny samples is then composed by the input-output pair
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2. Output Space Filling (OSF). The goal is to select new samples in the input space of crack parameters
such that the reduced space of extracted features is uniformly sampled. Set N = N;. To generate a new

training sample perform the following steps

(a) Generate a set of C “candidate” configurations of the crack, by sampling with LH S the I-dimensional

space of crack parameters

p() e e SEESORENC
Po = - -
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(b) Apply a linear interpolator on the previously-collected pair {Px;Tx} to estimate the matrix of

J-dimensional features T associated to P¢
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we use linear interpolation because we cannot call the forward operator to compute the ECT mea-

surements associated to each candidate sample (too expensive!);

(c) Compute the Euclidean distance between each c-th estimated vector of extracted features t© (c =

1,...,C) and the vectors t(™),n = 1,..., N previously collected (i.e., the rows of T )

dist{FC),t(")}: (%?45”’)2, c=1,.,C, n=1,..N

1

J
j=



(d) Select the vector of estimated extracted features t*) having the maximum minimum distance with

respect to the previously collected N vectors (t(™) n=1,...,N).

E(*)arg{ max [ min (dist {E(C),t(”)})}}
c=1,..., C |n=1,..., N

This vector corresponds to the candidate sample p*) that is the farthest one in the space of extracted

features.

(e) Use the forward solver to compute the ECT signal associated to the selected candidate sample p*).

Then build the following vector of measurements (dim. [1 x 2K] = [1 x F1)

VO = | R{w )} S {0 ()} e R{Wk ()} S {0 (b))

(f) Use the transformation matrix W computed at the initial step to project ¥ () onto the reduced

J-dimensional space of extracted features
()_(111 ‘I’Nl)x [tg) t-(]) ]

(g) Append the new vector of extracted features t™*) and the associated vector of crack parameters p*)

to the training set, that will be composed as
{Tn+1; PN} = ;

(h) Set N =N +1 and go to (2a). Stop when N = N,,q..
3. Support Vector Regression (SVR).

(a) Generate M (previously-unseen) test configurations of the crack

p™) pH LW MO O )
Py = = -
p(M) pM0 M0 0000

(b) Use the forward solver to compute the FCT signal associated to the M test samples. Build the

following matrix of measurements (dim. [M x 2K] = [M x FJ])

o R{w: (pW)}  S{@: (W)} . ®R{Zc (W)} S{vx (")}
Wy = : = : :

w00 || R0 GO} S )] Rk ()} S (T (p0))



(c) Use the transformation matrix W to project the matrix of measurements Wjs onto the reduced

J-dimensional space

t e
TM:(‘I’Mf‘IlNl)XW: =
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(d) For a given training dimension N and for each i-th parameter of the crack to estimate:

i. Train a SV R using a training set composed as

W] e
{Tn; Py} = R ; : ;oi=1,..,1
||

where Py ; is the i-th column of matrix Py;

ii. Test the SV R giving it as input the transformed features associated to the M test samples T'y;.

As output, the SV R will produce a vector of M estimated values for the i-th parameter

1.4.1 Parameters of interest

1. The dimension of the initial training set: Ni;
2. The number of extracted PLS components: J;
3. The number of measurement points: K;

4. The max dimension of the training set: N,,qz;



2 Problem 1: Crack Location Estimation Inside a Plate Structure

2.1 Parameters of the forward solver (fixed)
e Forward solver

— type: OSF — Kriging metamodel provided by CEA — LIST;

— total number of measurement points along = (i.e., across the crack): H, = 41;
— measurement step along z: A, = 0.5 [mm];

— total extension of the measurement region along x: L, = 20.0 [mm];

— total number of measurement points along y (i.e., along the crack): H, = 57;
— measurement step along y: A, = 0.5 [mm];

— total extension of the measurement region along y: L, = 28.0 [mm];

— total number of measurement point computed by the forward solver: H = H, x H, = 2337,

| Plate |
Thickness T’ 1.55 [mm]
Conductivity o 1.02 [MS/m]
| Coil |
Inner radius 1.0 [mm]
Outer radius ro 1.75 [mm)]
Length . 2.0 [mm)]
Number of turns n; 328
Lift-off ¢ 0.303 [mm]
Frequency f 100.0 [KHz]
| Crack |
Depth dj 0.62 [mm] (40% of T')
Length o 10.0 [mm]
Width wq 0.3 [mm]

Table 1: Fixed parameters.

| Parameter | Min [mm] | Max [mm] |
Crack z-coordinate xq 5.0 25.0
Crack y-coordinate yq 1.0 29.0
Crack z-coordinate z 0.93 1.24

Table 2: Validity ranges of the forward meta-model.
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2.2 PLS— OSF — SVR (Algorithm #3): Analysis for J = 10 - Performances

2.2.1 Parameters

e Measurement set-up for the inversion

considered measurement step: A, = A, = 1.0 [mm];
— number of considered measurement points K = K, x K, = 21 x 29 = 609;

— measured quantity for each k-th point: {f (¥;),S(Tx)};

total number of measured features: F =2 x K = 1218;

X0=5.0 [mm], y4=15.0 [mm], z,=1.085 [mm], K=609 Measurement Points
. . . . .
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Selected Points

Figure 1: Location of the measurement points selected for the inversion (K = 609).

e PLS— OSF — SVR (algorithm #3)

— Initial training set (uniform grid)

* Number of quantization levels: Q,, = Qy, = @, = 5;

* Number of initial training samples: N1 = Qz, X Qyy X @z, = 125;
— Number of extracted PLS components: J = 10;

— SNR on training measurements: noiseless data;

Number of candidate samples: C'= 150 (50 x I) (generated via LH.S sampling);

SN R on training data: Noiseless;

Test set generation

*x Sampling: Latin Hypercube Sampling (LHS);
* Number of test samples: M = 1000;

* SNR on test data: Noiseless + SNR = {40;30;20;10} [dB].
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2.2.2 Calibration of the SV R parameters via cross-validation

The best (C,~) pair of parameters is selected for training the three SV R regressors.

Parameters

number of subsets: V = 5;

variation range for parameter C: C € {10°;10%;...;10%};
e variation range for parameter v: v € {107%;107%;...;10'};

e dimension of the training set: N = 1000;

Results
| Parameter | Best C (Cx) | Best vy (y%) | CV MSE (1) |
Crack z-coordinate zg 10° 101 1.31 x 1072
Crack y-coordinate yq 102 1 2.65 x 102
Crack z-coordinate z 10° 10~2 4.25 x 1073

Table 3: Optimal (C,~) pairs and CV M SEFE found by applying a 5-fold cross-validation for the estimation of
the crack coordinates.
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2.2.3 Estimation of z3: PLS-OSF-SVR vs. Standard Approach

SNR =20 [dB] on ECT Measurements

N =125

N =512

1000

N =

Figure 2: PLS-OSF-SVR vs Standard Approach - Actual vs. predicted x-coordinate of the
different values of N. SNR = 20 [dB] on test ECT data.
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2.2.4 Estimation of yy: PLS-OSF-SVR vs. Standard Approach

SNR =20 [dB] on ECT Measurements
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Figure 3: PLS-OSF-SVR vs Standard Approach - Actual vs. predicted y-coordinate of the crack for
different values of N. SNR = 20 [dB] test ECT data.
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2.2.5 Estimation of zy: PLS-OSF-SVR vs. Standard Approach

wn
\ .\”. R R, %
N %
| N R () ]
NI AL .v.w 3 1
N % \h‘ooood A3 —_ —_
= M GOy m m
M r NS = =
5 5
] ) g
= g g
=7 K] =]
= 8 3
(6] (6]
X ~~ g ~~
< | AN S
o g : =
[ o o
c T S S
e 2 2
<] < <
a L
~—
w0
. . . . . . 2 . . . . . . 2 . . . . . . 2
w0 ~ 0 “ 0 - w0 o w0 ~ 0 “ 0 - w0 B w0 ~ 0 “ 0 - w0 o
g % o8 4 8 g 3 g % o8 4 3 g 3 g % o8 4 8 g 3
[ww] °z ‘ayeuip100D-z Yo pajoIpaid [ww] °z ‘ayeuip100D-z Yo pajoIpaid [ww] °z ‘ayeuip100D-z Yo pajoIpaid
wn
— 8
L.
: {9
o T T 3
~—
<] E E oL 149
S o . 3
3) K K ,
g & g g s
s = P LRI E
- Q_u g g n-.. I
= o o
n W Loz oot g
S
g 5 = 5 =
s g : :
w < F —
n E E
&~ = < <
wn
o M ‘ 2
o
o . . . . . . o . . . . . . o . . o
o o o
0 [Tel o~ n — [Te} — n (=] [Tel o~ n — [Te} — n (=] [Tel o~ n
S - = S S e S S - = S S ] S 2 - -
- - - o - - - o - -
p—
.m'm [ww] °z ‘ayeuipi00d-z Yoe1D palIpaid [ww] °z ‘ayeuipio0-z Yoe1D pajIpaid [ww] °z ‘ayeuipio0-z Yoe1D parIpald
—
e}
[a\]

Actual Crack z-Coordinate, z; [mm]

predicted z-coordinate of the crack for

15

Actual Crack z-Coordinate, z, [mm]

Figure 4: PLS-OSF-SVR vs Standard Approach - Actual vs.

different values of N. SNR = 20 [dB] on test ECT data.



2.2.6

Prediction Normalized Mean Error, NME [Arbitrary Unit]

Prediction Erfor, NME [Arbitrary Unit]

Figure 6: PLS-OSF-SVR - Normalized Mean Error (NMFE) vs. SNR
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PLS-OSF-SVR, y-Coordinate, J=10, C=10% y=1, M=1000

Prediction Normalized Mean Error, NME [Arbitrary Unit]

Noiseless Data ——
SNR=40 [dB]
SNR=30 [dB] = = =
SNR=20 [dB] -+
SNR=10 [dB]

200 400 600 800 1000

Training Size, N

(b)

y-Coordinate (yp)
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2.2.7 Conclusions

The results in this section show that
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- Normalized Mean Error (NME) vs. training size (V)
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the test £ECT measurements.

e the performances of the PLS — OSF — SV R are significantly higher, in terms of prediction error, w.r.t.

the standard approach, for a given dimension N of the training set and SN R on test data.

e This is particularly evident for the estimation of the x and y coordinates;

e the prediction performances are not only enhanced thanks to the compression of the ECT measurements

sample the reduced space of extracted features.
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in a much lower number of informative features, but also by the ability of the OSF technique to uniformly



More information on the topics of this document can be found in the following list of references.
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