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Abstract

This document presents a new learning-by-example (LBE) technique for the
computationally-efficient inversion of eddy current testing (ECT) data in non-
destructive testing and evaluation (NDT-NDE) scenarios. More precisely, the
developed approach exploits a uniform sampling strategy to build a training set
of input/output (//0) pairs and exploits such information to train a Support
Vector Regressor (SVR). During the on-line testing phase, previously-unseen ECT
data are given as input to the trained model in order to predict the position of a
single narrow crack within a planar conductive structure. Some representative
numerical results are shown, in order to preliminarily assess the capabilities of
the developed approach when dealing with the presence of a non-negligible
amount of noise on test data.



1 Definitions

1.1 Notation

e a: a scalar value;

e a: an L-dimensional row vector (a= | a; ... ar_1 ap |);
ail aiu

e A: a Q x U matrix (A = e );
aQ1 aQu

1.2 List of Symbols

e [: number of crack parameters to estimate;

p: vector of crack parameters (p = {p1, D2, .-, Diy s PI});

e p: vector of estimated crack parameters (p = {p1, D2, s Dis -, PI})

® {.}: forward operator;

®~1{.}: inverse operator;

K: number of measurement points considered for the inversion;

O {p} ={Ts(p); k=1,..., K}: set of complex-valued measurements associated to a given crack configu-

ration p;
o U, (p)=R{TV%(p)} +73{¥% (p)}: complex-valued measurement at point k;
e N: Number of training samples;

e F' = 2x K: Total number of features for the inversion if both real and imaginary parts of each measurement

point is considered;



1.3 Prediction Errors

In order to give a quantitative measure of the reconstruction accuracy obtained by the proposed inversion

method, the following error metrics have been defined and will used for the successive numerical validation:

1. mean absolute error (M AE) over a set of M test samples
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2. normalized mean error (NME) over a set of M test samples
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3. relative error (RE) for the m-th prediction
oy =57

RE (pi ) = x 100 (3)

where

e p; is the i-th estimated parameter (i.e., p1 = xo, p2 = yo and ps = 2);
° pz(.m) is the actual value of the i-th parameter associated to the m-th test sample;

° ﬁﬁm) is the predicted value of the i-th parameter associated to the m-th test sample.

1.4 Signal-to-Noise Ratio

In order to test the performances of the inversion procedure against noisy data, a complex additive white
Gaussian noise (AWGN) has been superimposed on both training and test FCT measurements. More in

details, the signal-to-noise ratio (SN R) of a given set of K measurements is defined as

S [0l S [R(TOP + [S ()
SNR = 10logio § S=E=—7 ¢ = 10log10 5 4
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where 1, = R (ng) + j (nk) is the complex noise added to the k-th measure.



2 LBE Inversion Approaches

2.1 Standard LBE Approach (GRID — SV R)
1. Build a training set of N samples.

(a) Build a set Py of N configurations of the crack (dim. [V x I]) (e.g., positions within the plate)

(D) OB ORI )
PN: = =
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using a uniform grid sampling in the /-dimensional space of crack parameters;

b) Use the forward solver ® {.} to compute the ECT signal in K measurement points associated to the
g

N configurations of the crack. Build the following matrix of measurements where real and imaginary

parts of each measurement point are treated as separate real-valued features (dim. [N x 2K]| =

[N x F)
e T TR0} S0} - R B) 5k p0))
¥ || R ) aln )} R pIY)) 9w (6))
(c) The training set of N samples is then composed by the input-output pair
{¥n;Pn}.

2. Build a test set of M samples (different from the N training samples).

(a) Build a new set Py of M configurations of the crack (dim. [M x I]) (e.g., positions within the plate)

p») pM ORI O
PM = = =
p() ng) pS]M) ng) y(()M) Z(()M)

by sampling the /-dimensional space of crack parameters;

(b) Use the forward solver ®{.} to compute the ECT signal in K measurement points associated to
the M test configurations of the crack. Build the following matrix of measurements where real
and imaginary parts of each measurement point are treated as separate real-valued features (dim.

[M x 2K] = [M x F))
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3. Support Vector Regression (SVR).

Since traditional SV Rs are able to manage only single-dimensional outputs, a separate SV R is considered
for each parameter of the defect to estimate. For a given training dimension N and for each i-th parameter

of the crack to estimate (i = 1,...,I):

(a) Train a SV R using a training set composed as

R{w: (M)} S{w: ()} . R{¥k (W)} S{¥x (")} py
{(TN; P} = : : ; :
R{v: (pM)} S{w: (™)} .. ®{¥x (™M)} S{¥x(P™)} »}

where Py ; is the i-th column of Py;

(b) Test the SV R giving it as input the matrix of new test measurements ¥,,;. As output, the SV R will

produce a vector of M estimated values for the i-th parameter

N)



3 Problem 1: Crack Location Estimation Inside a Plate Structure

3.1 Description

Let be given an homogeneous plate of thickness T and conductivity o affected by a narrow crack and inspected
by a single coil working in absolute mode at frequency f with lift-off § (Fig. 1). The location of the crack is

completely described by the vector p of I = 3 parameters

P = {0, %0, 20} (5)

which correspond to the coordinates of its barycentre (Fig. 1). Moreover, we assume that the dimensions of
the crack are fixed, known and completely described by the values of its depth (dp), width (wg) and length (Ip),

respectively (Fig. 1).
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Figure 1: Geometry of the problem.

A metamodel is used as forward solver to compute in a fast but accurate way the measured ECT signal
associated to a particular position of the defect. More in details, for a given vector p of crack coordinates, the
metamodel computes the complex ECT signal over a set of K measurement points uniformly distributed on

the (z,y) plane

C=0{p}={Uk=1,.,K} (6)

where

o Uy =R{Uy} + S {¥} is the complex-valued ECT signal collected by the k-th measurement point (i.e.,

the impedance variation on the coil);



e & {.} is the forward operator, linking the defect barycentre (p) to the collected ECT signal ().

The goal of the inverse problem is to retrieve an estimation of the (unknown) position of the flaw p = {Zo, Jo, 20 }
(i-e., the output space) by exploiting the information embedded inside ¥ (i.e., the input space). Such a problem

can be formulated as follows

p=20""{¥} (7)

where ®~! {.} denotes the (unknown) inverse operator, that has to be estimated.

3.2 Parameters of the forward solver (fixed)
e Forward solver

— total number of measurement points along = (i.e., across the crack): H, = 41;
— measurement step along z: A, = 0.5 [mm];

— total extension of the measurement region along x: L, = 20.0 [mm];

— total number of measurement points along y (i.e., along the crack): H, = 57;
— measurement step along y: A, = 0.5 [mm];

— total extension of the measurement region along y: L, = 28.0 [mm];

— total number of measurement point computed by the forward solver: H = H, x H, = 2337,

| Plate |
Thickness T 1.55 [mm]
Conductivity o 1.02 [MS/m]
| Coil |
Inner radius r; 1.0 [mm]
Outer radius 72 1.75 [mm]
Length 1. 2.0 [mm]
Number of turns n; 328
Lift-off § 0.303 [mm]
Frequency f 100.0 [KHz]
| Crack |
Depth dj 0.62 [mm] (40% of T')
Length I, 10.0 [mm]
Width wo 0.3 [mm]

Table 1: Fixed parameters.

| Parameter | Min [mm] | Max [mm] |
Crack z-coordinate xg 5.0 25.0
Crack y-coordinate yg 1.0 29.0
Crack z-coordinate zg 0.93 1.24

Table 2: Validity ranges of the forward meta-model.



3.3 Standard LBE Approach (GRID — SV R): Performances
3.3.1 Parameters

e Measurement set-up for the inversion

considered measurement step: A, = A, = 1.0 [mm];
— number of considered measurement points K = K, x K, = 21 x 29 = 609;

— measured quantity for each k-th point: {f (¥;),S(Tx)};

total number of measured features: F =2 x K = 1218;

X0=5.0 [mm], y4=15.0 [mm], z,=1.085 [mm], K=609 Measurement Points
. . . . .
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Figure 2: Location of the measurement points selected for the inversion (K = 609).

e Standard LBE Approach

— Training set generation
* sampling: uniform grid sampling in (zg, Yo, 20);
* number of quantization levels: Qg = Qy, = @, = {5;6;...;10};
* number of training samples: N = Qg, X Qy, X @4, = {125;216;...;1000};
* SNR on training data: Noiseless;
— Test set generation
*x Sampling: Latin Hypercube Sampling (LHS);
x Number of test samples: M = 1000;

* SNR on test data: Noiseless + SNR = {40; 30;20;10} [dB].



3.3.2 True vs. Predicted (SNR = 20 [dB])
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Figure 3: Standard Approach - True vs. predicted crack coordinates for different dimensions of the training
set (N). SNR = 20 [dB] on test ECT data.



3.3.3

Prediction Normalized Mean Error, NME [Arbitrary Unit]

Prediction Normalized Mean Error, NME [Arbitrary Unit]

Figure 5: Standard Approach - Normalized Mean Error (NME) vs. SNR on the test ECT measurements.
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Figure 4: Standard Approach - Normalized Mean Error (NME) vs. training size (V)
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More information on the topics of this document can be found in the following list of references.
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