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1 Interval Analysis

1.1 Real Interval Number (Interval)

A real interval number X = [a, b] or [x] = [a, b] is the set {x, x ∈ R| a ≤ x ≤ b} of all real numbers x between

and including the end points a (infimum) and b (supremum). Consequently a real number x is equivalent to an

interval [x, x]. Such an interval is said to be degenerate interval. Moreover, the infimum a of the interval X is

usually denoted as Xinf and the supremum of the interval X is usually denoted as Xsup. An interval X = [a, b]

is said to be positive (or non-negative) if a ≥ 0, strictly positive if a > 0, negative (or non-positive) if b ≤ 0, and

strictly negative if b < 0. Two intervals [a, b] and [c, d] are equal if and only if a = c and b = d. Intervals are

partially ordered. [a, b] < [c, d] ⇔ b < c.

1.2 Interval Arithmetic

Interval arithmetic is the set of all operation on interval numbers: addition, subtraction, multiplication and

division. Thus for a general operation ◦ ∈ {+,−, ·, /} the corresponding operation for intervals X and Y is

X ◦Y = {x ◦ y |x ∈ X, y ∈ Y} (1)

Therefore the interval resulting from the operation contains every possible result of X ◦Y for each x ∈ X and

y ∈ Y.

An interesting observation is that X◦Y can be represented by using only the bounds of X = [a, b] and Y = [c, d].

• Interval Sum

Let be X = [Xinf , Xsup] and Y = [Yinf , Ysup] two real intervals. The sum operation is defined as:

X+Y = [Xinf +Yinf , Xsup +Ysup] (2)

• Interval Subtraction

Let be X = [Xinf , Xsup] and Y = [Yinf , Ysup] two real intervals. The subtraction operation is defined

as:

X−Y = [Xinf −Yinf , Xsup −Ysup] (3)

• Interval Multiplication

Let be X = [Xinf , Xsup] and Y = [Yinf , Ysup] two real intervals. The multiplication operation is defined

as:

X ∗Y = [min (XinfYinf , XinfYsup, XsupYinf , XsupYsup) ,

max (XinfYinf , XinfYsup, XsupYinf , XsupYsup)]
(4)
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• Interval Inverse

Let beY = [Yinf , Ysup] a real interval. The inverse interval 1/Y is defined as:

1

Y
=

[

1

Xsup
,

1

Xinf

]

0 /∈ Y (5)

• Interval Division

Let be X = [Xinf , Xsup] and Y = [Yinf , Ysup] two real intervals. The interval division is defined by

means of interval inverse and interval multiplication as:

X

Y
= X ∗

(

1

Y

)

0 /∈ Y (6)

• Power of a Real Interval

Let be X = [Xinf , Xsup] a real interval. The power of X, Xn is a real interval computed as:

X
n =



































[1, 1] if n = 0
[

Xn
inf , X

n
sup

]

if Xinf ≥ 0 or if Xinf ≤ 0 ≤ Xsup andn is odd
[

Xn
sup, X

n
inf

]

if Xsup ≤ 0
[

0, max
(

Xn
inf , X

n
sup

)]

if Xinf ≤ 0 ≤ Xsup andn is even

(7)

The set I(R) of real compact intervals is closed with respect to these operations, this ensure that the result is

a guaranteed inclusion of the solution obtained by any two values x ∈ X and y ∈ Y.

Other useful intervals’ definitions are:

• Width of a Real Interval

Let be X = [Xinf , Xsup] a real interval. The width of the interval X, w (X) is a real number defined as:

w (X) = Xsup −Xinf (8)

• Center of a Real Interval - Middle point

Let be X = [Xinf , Xsup] a real interval. The middle point of the interval X, m (X) is defined as:

m (X) =
Xsup −Xinf

2
(9)

• Equivalent representation of Intervals

Let be X = [Xinf , Xsup] a real interval, it can be represent equivalently in the form:

X =

[

m (X)−
w (X)

2
; m (X) +

w (X)

2

]

(10)
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1.3 Complex Intervals

As for real numbers we can define intervals for the complex domain. The complex numbers are the field C of

numbers of the form x + i · y, where x, real component, and y, imaginary component, are real numbers and

i =
√
−1 is the imaginary unit. This way of representation is called Cartesian form, with which a complex

number can be represented as a point in the plane using the correspondence x+ i · y ↔ (x, y).

An equivalent way to represent a complex is the so called polar form: z = a · ei·ϕ, where polar coordinates

modulo a and the phase ϕ, are used instead of the Cartesian ones. Using appropriate trigonometric formulas

we can switch between the two representations obtaining the same point on the plane. This is not the case for

complex intervals.

• Complex Interval Cartesian Form (Rectangular Form)

A complex intervals X is an ordered pair of intervals X = [A, B] with A = [Ainf , Asup] and B = [Binf , Bsup]

real intervals. It consists in the set of complex numbers x = a+ i · b such that:

X = {x ∈ C |x = a+ i · b, Ainf ≤ a ≤ Asup Binf ≤ b ≤ Bsup} (11)

Graphically a complex interval in Cartesian form can be seen as a closed rectangular region in the complex

plane, that’s why it’s also called rectangular complex interval.

0 Re

Im

[X]

Ainf supA

supB

infB

Figure 2.3.1: Complex interval, rectangular form

• Complex Interval Polar Form (Sector)

A polar complex interval X is a pair of intervals X = {R; Θ} with R = [Rinf , Rsup] and Θ = [Θinf , Θsup]

real intervals. It consists in the set of complex numbers r · eiθ such that:

X = {x ∈ C |x = r · eiθ, r ∈ R, θ ∈ Θ} (12)

In this case the corresponding area in the complex plane is not a rectangle but a bounded sector of a disk. We

can see in Figure 2.3.2 that the two areas don’t coincide: some complex numbers contained by the disk sector

are not included into the rectangular area.
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a

c

br1 r2

α
β

Im{[z]}

Re{[z]}

Figure 2.3.2: Complex interval in cartesian and polar form, [z] = [a, b] + j · [c, d] or [z] = [r1, r2] · ej·[α, β].

1.4 Complex Interval Arithmetic

Arithmetic operations definition with complex intervals is not a straight and simple task as for real intervals.

Unfortunately both complex interval representations cited above are not closed with respect to the arithmetic

operations {+,−, ·, /}.

• Sum and Difference of Rectangular Complex Intervals

Handling complex intervals in cartesian form the addition and subtraction operations are exactly defined, the

real and imaginary parts are treated in a similar way as in the real domain case. Let be X = [A, A′] and

Y = [B, B′] two complex intervals. Using (2) the sum of the complex intervals is a complex interval defined as:

X+Y = [A+B, A′ +B
′] (13)

Similarly using (3) the subtraction between X and Y can be defined as:

X+Y = [A−B, A′ −B
′] (14)

• Product and Division of Rectangular Complex Intervals

Problems arise dealing with multiplications and divisions between complex intervals. The operations entails a

rotation, thus the result must be wrapped in a rectangle, which introduces a good deal of pessimism. Anyway

with rectangular intervals we can straightly compute the the final rounded result using equations (2), (3), (4),

(6).

Let be X = [A, A′] and Y = [B, B′] two complex intervals. The product of the complex intervals is a complex

interval defined as:

X ·Y = [A ·B−A
′ ·B′, A ·B′ +A

′ ·B] (15)
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The division of the complex intervals can defined using as:

X ·Y =

[

A ·B+A′ ·B′

B ·B+B′ ·B′
,

A′B−AB′

B ·B+B′ ·B′

]

(16)

We can notice that this expression is also affected by the so called dependency effect, further briefly explained,

having the same interval occurring more than once in the same computation.
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2 Variables Definition

Let me firstly introduce some definitions about antenna array theory:

• Array Factor

For a linear array the array factor is defined as:

AF (θ) =
N
∑

n=1

wne
jβdnu (17)

where β = 2π
λ , u = sin(θ) with θ ∈ [−π/2; π/2] , and dn; n = 1, . . . , N is the position of the n− th element on

the array axis. For a uniform linear array dn = (n− 1). wn is the n-element’s excitation coefficient.

• Excitation Coefficients

wn = ane
jϕn (18)

where an; n = 1, . . . , N are the amplitudes and ϕn; n = 1, . . . , N are the phases of the wn; n = 1, . . . , N

excitation coefficients.

• Dynamic Range Ratio

DRR =
max{an}
min{an}

n = 1, ..., N (19)

• Power Pattern

The power pattern radiated by a linear array is:

P (θ) = AF (θ) ·AF (θ)∗; θ ∈ [−π/2; π/2] (20)

where AF (θ)∗is the complex conjugate of the array factor. It can also be expressed in an equivalent way:

P (θ) = Re{AF (θ)}2 + Im{AF (θ)}2; θ ∈ [−π/2; π/2] (21)

Here some useful definitions for interval analysis:

• Interval Excitation Coefficients

[wn] = [an]e
j[ϕn] (22)

where

[an] = [an − δan, an + δan] with δan = K · an; 0 < K < 1 (23)

[ϕn] = [ϕn − δϕn, ϕn + δϕn] with δϕn = ξ; ξ ∈ R
+ (24)

It’s worth noting that the tolerance depends by the nominal value, in this case δan = K · anas shown in Figure:
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[a  ]n inf

[a  ]n sup

[a  ]n

an

an

an0

*

*

*

*

Figure 3.1. Amplitude interval versus nominal value

• Interval Dynamic Range Ratio

[DRR] = [DRRinf , DRRsup] (25)

where DRRinf and DRRsup are defined as:

DRRinf =
max{[an]inf}
min{[an]sup}

(26)

DRRsup =
max{[an]sup}
min{[an]inf}

(27)
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2.1 Interval Array Factor

Now considering purely real excitations, [AF (u)] is defined as:

[AF (u)] =
N
∑

n=1

[an]e
jβdnu (28)

Rewriting equation (28) we obtain:

[AF (u)] =
N
∑

n=1

[an] · cos(βdnu) + j · [an] · sin(βdnu) (29)

Now after some interval arithmetic we can define:

Re{[AF (u)]}sup =
N
∑

n=1

an · cos(βdnu) + δan · |cos(βdnu)| (30)

Re{[AF (u)]}inf =
N
∑

n=1

an · cos(βdnu)− δan · |cos(βdnu)| (31)

Im{[AF (u)]}sup =
N
∑

n=1

an · sin(βdnu) + δan · |sin(βdnu)| (32)

Im{[AF (u)]}inf =
N
∑

n=1

an · sin(βdnu)− δan · |sin(βdnu)| (33)

and remembering that δan = K · an, the respectively interval widths are:

w(Re{[AF (u)]}) = 2K ·
N
∑

n=1

an · |cos(βdnu)| (34)

w(Im{[AF (u)]}) = 2K ·
N
∑

n=1

an · |sin(βdnu)| (35)

Now using (10) the interval array factor can be expressed as:

[AF (u)] =
[

Re {AF (u)} − w(Re{[AF (u)]})
2 , Re {AF (u)}+ w(Re{[AF (u)]})

2

]

+

j ·
[

Im {AF (u)} − w(Im{[AF (u)]})
2 , Im {AF (u)}+ w(Im{[AF (u)]})

2

]
(36)

2.2 Interval Power Pattern

Now let us derive a suitable formulation for the Interval Power Pattern. From equation (21) we can straightly

define:

[P (θ)] = [Re{[AF (θ)]}2 + Im{[AF (θ)]}2]; θ ∈ [−π/2; π/2] (37)

using the redefined interval power operation with n = 2 (7), we can compute the Re{[AF (θ)]}2 and Im{[AF (θ)]}2.
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Below the derived final formulas for [P (u)]infand [P (u)]supare reported:

• Interval Power Pattern’s Supremum

As regards [P (u)]supthe derived formula is:

[P (u)]sup = Re {AF (θ)}2 +
w (Re {[AF (θ)]})2

4
+ Im {AF (θ)}2 +

w (Im {[AF (θ)]})2

4
+ (38)

+ |Re {AF (θ)}| · w (Re {[AF (θ)]}) + |Im {AF (θ)}| · w (Im {[AF (θ)]})

• Interval Power Pattern’s Infimum

Computing [P (u)]inf we need to discriminate four different cases:

• if
(

Re {[AF (θ)]inf} , Re
{

[AF (θ)]sup

})

≤ 0
(

Re {[AF (θ)]inf} , Re
{

[AF (θ)]sup

})

≥ 0 and
(

Im {[AF (θ)]inf} , Im
{

[AF (θ)]sup

})

≤ 0
(

Im {[AF (θ)]inf} , Im
{

[AF (θ)]sup

})

≥ 0

[P (u)]inf = Re {AF (θ)}2 +
w (Re {[AF (θ)]})2

4
+ Im {AF (θ)}2 +

w (Im {[AF (θ)]})2

4
+

− |Re {AF (θ)}| · w (Re {[AF (θ)]})− |Im {AF (θ)}| · w (Im {[AF (θ)]})

• if
(

Re {[AF (θ)]inf} , Re
{

[AF (θ)]sup

})

≤ 0
(

Re {[AF (θ)]inf} , Re
{

[AF (θ)]sup

})

≥ 0 and

Im {[AF (θ)]inf} ≤ 0 ≤ Im
{

[AF (θ)]sup

}

[P (u)]inf = Re {AF (θ)}2 +
w (Re {[AF (θ)]})2

4
− |Re {AF (θ)}| · w (Re {[AF (θ)]})

• if Re {[AF (θ)]inf} ≤ 0 ≤ Re
{

[AF (θ)]sup

}

and
(

Im {[AF (θ)]inf} , Im
{

[AF (θ)]sup

})

≤ 0
(

Im {[AF (θ)]inf} , Im
{

[AF (θ)]sup

})

≥ 0

[P (u)]inf = Im {AF (θ)}2 +
w (Im {[AF (θ)]})2

4
− |Im {AF (θ)}| · w (Im {[AF (θ)]})

• if Re {[AF (θ)]inf} ≤ 0 ≤ Re
{

[AF (θ)]sup

}

and Im {[AF (θ)]inf} ≤ 0 ≤ Im
{

[AF (θ)]sup

}

[P (u)]inf = 0

10



3 Interval Array Pattern Parameters

In this section interval version of the main array parameters are defined. Directivity, SLL, and HPBW are some

important parameters in the design of antenna arrays; in the following is explained how to compute them for

linear equi-spaced arrays.

3.1 Interval Directivity

The formula here presented is valid for linear array with N isotropic elements, spaced by λ
2 .

Suppose to dispose the N array elements along the z-axis starting from the origin:

The array factor is

AF (u) =
N−1
∑

n=0

[wn]e
jkdu (39)

with k = 2π
λ

, d = λ
2 , u = cos(θ). [wn] are the complex interval weights.

Directivity is defined as:

D(θ, φ) =
U(θ, φ)

1
4π

∫ π

0

∫ 2π
0 U(θ, φ)sin(θ)dθdφ

(40)

where U(θ, φ) is the radiation intensity:

U(θ, φ) =
r2

2η
|Etot(r, θ, φ)|2 = U0(θ, φ)|AF (θ, φ)|2 (41)

U0(θ, φ) is radiation intensity for the single element. In our case, considering ideal isotropic sources, U0(θ, φ) = 1.

Usually “peak directivity” is more used, that is the directivity calculated at its maximum: Dmax(θ0, φ0). For

our array, radiating at bore-sight, the direction of the maximum is at θ = π
2 ; thus equation (23) reduces to:

U(θ0, φ0) = |AF (θ0, φ0)|2 = |
N−1
∑

n=0

wne
jkdncos(θ0)|2 = |

N−1
∑

n=0

wn|2 (42)

Now, computing the denominator of (22), we obtain:

1

4π

∫ π

0

∫ 2π

0
U(θ, φ)sin(θ)dθdφ =

N−1
∑

n=0

N−1
∑

m=0

wnw
∗
m

∫ 1

−1
ejkd(n−m)udu (43)

which for d = λ
2 reduces to

∑N−1
n=0 |wn|2, obtaining the expression of peak directivity:

Dmax =
|
∑N−1

n=0 wn|2
∑N−1

n=0 |wn|2
(44)

valid for half-wavelength-spaced isotropic elements.

Now converting the expression above in an interval form:
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[Dmax] =
|
∑N−1

n=0 [wn]|2
∑N−1

n=0 |[wn]|2
(45)

3.2 Side Lobe Level for Interval Arrays

It’s important to define a proper interval version for the significant figure of merit SLL. In our case we can

derive from the interval radiation pattern, two different beam patterns:

|AF (u)|2inf = inf{|[AF (u)]|2} (46)

|AF (u)|2sup = sup{|[AF (u)]|2} (47)

Now I can define the interval SLL as [SLL] = [SLLinf , SLLsup] where:

SLLinf = −[maxu∈ML{|AF (u)|2sup} −maxu∈SL{|AF (u)|2inf}] (48)

SLLsup = −[maxu∈ML{|AF (u)|2inf} −maxu∈SL{|AF (u)|2sup}] (49)

where ML and SL are the sets of u corresponding to the Main Lobe and the Side Lobes regions.

1−0.5 0 0.5−1

0

−10

−20

−30

−40

−50

SLLSLL

Interval Power Pattern

inf sup

Figure 4.2.1: Worst and best SLL example.
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3.3 Half Power Beam Width

Also in this case I can define the interval HPBW, as [HPBW ] = [HPBWinf , HPBWbest] where HPBWinf

and HPBWsup are respectively described in Figure 4.3.1 and in Figure 4.3.2.

10.50−0.51
−50

−40

−30

−20

−10

0

Interval Power Pattern

−3 dB

HPBWinf

[P(u)]

[P(u)]
sup

inf

Figure 4.3.1: Infimum of [HPBW]

10.50−0.5−1

−40

−30

−50

−20

−10

0

Interval Power Pattern

−3 dB

HPBWsup

[P(u)]

[P(u)]
sup

inf

Figure 4.3.2 : Supremum of [HPBW]
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3.4 Pattern Tolerance

The Pattern Tolerance parameter ! measures the area between the |AF (u)|2sup and |AF (u)|2inf and is defined

as:

! =

∫ 1

−1
(|AF (u)|2sup − |AF (u)|2inf )du (50)

-50

-40

-30

-20

-10

 0

 10

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 v
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ue
 [d

B]

u

Pattern Matching
|E(u)|sup

2

|E(u)|inf
2

Figure 4.4.1: Pattern Tolerance

• Normalized Pattern Tolerance

The Normalized Pattern tolerance parameter ∆norm measures the area between the |AF (u)|2sup and |AF (u)|2inf

divided by the radiated power |AF (u)|2:

∆norm =

∫ 1
−1(|AF (u)|2sup − |AF (u)|2inf )du

∫ 1
−1 |AF (u)|2du

(51)

• Peak Interval

This parameter measure the gap between the infimum and the supremum radiation patterns at the peak of

them.

[|AF (umax)|2] = [|AF (umax)|2inf , |AF (umax)|2sup] (52)
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Figure 4.4.2: Peak Interval Parameter
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