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Abstract

In this report, an innovative method for the localization of multiple sparse
metallic targets is proposed. Starting from the local shape function formulation
of the inverse scattering problem and exploiting the multitask Bayesian
compressive sensing paradigm, a two-step approach is applied where, after a
first estimation of the LSF scattering amplitudes, the reconstruction of the
metallic objects is yielded through a thresholding and voting step. The calibration
of the BCS parameters together with some preliminary results dealing with small
scatterers reported.



1 Mathematical Formulation

1.1 MT-BCS-based PEC retrieval technique

Let us consider an investigation domain of extension D illuminated by a set of V' known incident transverse-
magnetic waves. Inside the investigation domain are placed one or more PEC objects, identified by a local
shape function:
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where N is the number of cells in the investigation domain and ©, is the domain of the cylindrical
conducting scatterer. Given the field scattered E:°"(z,y) from a a PEC cylinder, the data equation is
defined
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where E5°*'(z,y) is the scattered field, G5 (z,y/2’,y') is the two-dimensional free-space Green’s func-
tion, and J,(2,y’) is the contrast source.
In matricial form we have
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with size M x 1, m=1,...M and v =1, ..., V, where M is the number of measurement points and V" is
the number of views;
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Using Compressive Sampling techniques it is possible to solve linear problems such as: given y = A - T
find Z such that 7 € C™ and 7 is sparse. We apply the multi-task bayesian compressive sampling technique
(MT-BCS) to exploit the correlation between V' problems defined through the data equation:
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By expressing the formulation in matricial form, we have
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For each view v =1, ...,V we estimate now the local shape function associated with the v-th view v, by
using:
Loif Jo(Tn,yn) 2 nMaxy {Jy (T, yn) } (n=1,..,N) (11)

v

Tn = { 0, if Jo(zn,yn) <nMazn{Jy (Tn,yn)}

where 7 is suitably defined threshold (determined through calibration).
Finally, the local shape function is estimated as
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2 Calibration
2.1 Multiple Cylinders [ = 0.16A

GoAL: calibrate the MT — BC'S when dealing with a sparse scatterers
e Number of Views: V
e Number of Measurements: M
o Number of Cells for the Inversion: N

Number of Cells for the Direct solver: D

Side of the investigation domain: L

Test Case Description
Direct solver:

e Square domain divided in \/5 X \/5 cells

e Domain side: L = 3\

e D = 1296 (discretization for the direct solver: < \/10)
Investigation domain:

e Square domain divided in \/N X \/N cells

o [ =3\

o 2ka=2x 2 x L2 — 67v/2 = 26.65

27
e #DOF = (216211)2 _ (exX = 472 (%)2 =472 x 9 =~ 355.3

x
2
e N scelto in modo da essere vicino a #DOF: N = 324 (18 x 18)
Measurement domain:
e Measurement points taken on a circle of radius p = 3\
e Full-aspect measurements
o M ~2ka — M =27
Sources:
e Plane waves
o V~2ka—V =27
e Amplitude: A =1
e Frequency: 300 MHz (A = 1)
PEC Object:
e S = 10 sparse square cylinders of side % = 0.1667
MT-BCS parameters:
e Gamma prior on noise variance parameter: a € {1 x 10°, 2 x 10°, 5 x 10%, 1 x 107!, 2 x 10", 5 x 10™*,1 x
1072,2x 1072, 5 x 1021 x 1072, 2 x 1072, 5 x 10%%, 1 x 10**}
e Gamma prior on noise variance parameter: b € {1 x 1070, 5% 1071, 2%x 1071, 1 x 1074, 5x 1072, 2x 10721 x

107%,5x107°%,2x107°%, 1x107%,5 x 1074, 2 x 107*, 1 x 10*}

e Convergenze parameter: 7 = 1.0 x 1078



Error Figures: Calibration
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Figure 1. Behaviour of error figures as a function of the MT-BCS parameters a and b: (a) total error &1,
(b) internal error &,¢, (¢) external error &qpy.

Obervations:

Fig.1 shows the behavior of the error figured obtained avaraging the errors associated to different configura-
tions with S = 100 sparse multiple scatterers and for different signal to noise ratio (SN R = 50dB, 30dB, 20dB, 10dB).



3 Preliminary Assessment

3.1 L-shaped Cylinders

GoAL: show the performances of BC'S when dealing with a sparse scatterer
e Number of Views: V
e Number of Measurements: M
o Number of Cells for the Inversion: N

Number of Cells for the Direct solver: D

Side of the investigation domain: L

Test Case Description
Direct solver:

e Square domain divided in VD x /D cells

e Domain side: L = 3\

e D = 1296 (discretization for the direct solver: < \/10)
Investigation domain:

e Square domain divided in \/N X \/N cells

o L =3\

o 2ka=2x 2 x LY2 = 67v/2 = 26.65

2r o LV2y2
2XSEXTS)

o #DOF = 2k _ —4r (£)? = 4n* x 9~ 355.3

e N scelto in modo da essere vicino a #DOF: N = 324 (18 x 18)
Measurement domain:
e Measurement points taken on a circle of radius p = 3\
e Full-aspect measurements
o M ~2ka — M =27
Sources:
e Plane waves
o V~2ka—V =27
e Amplitude: A =1
e Frequency: 300 MHz (A = 1)
PEC Object:
e [-shaped cylinder
MT-BCS-based technique parameters:
e Gamma prior on noise variance parameter: ¢ = 5 x 1072
e Gamma prior on noise variance parameter: b =15 x 1072
e Convergenze parameter: 7 = 1.0 x 1078

e Threshold: n = 0.27



Reconstruction profiles: 1 L-shaped Cylinder
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Figure 2. Actual object (a) and MT-BCS reconstructed object for SNR = 50 [dB] (b), SNR = 40 [dB]
(¢), SNR =30 [dB] (), SNR = 20 [dB] (¢), SNR = 10 [dB] (f), and SNR = 5 [dB] (g).



Reconstruction profiles: 2 L-shaped Cylinders
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Figure 3. Actual object (a) and MT-BCS reconstructed object for SNR = 50 [dB] (b), SNR = 40 [dB]
(¢), SNR =30 [dB] (), SNR = 20 [dB] (¢), SNR = 10 [dB] (f), and SNR = 5 [dB] (g).



Reconstruction profiles: 3 L-shaped Cylinders
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Figure 4. Actual object (a) and MT-BCS reconstructed object for SNR = 50 [dB] (b), SNR = 40 [dB]
(¢), SNR =30 [dB] (), SNR = 20 [dB] (¢), SNR = 10 [dB] (f), and SNR = 5 [dB] (g).



Reconstruction profiles: 4 L-shaped Cylinders
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Figure 5. Actual object (a) and MT-BCS reconstructed object for SNR = 50 [dB] (b), SNR = 40 [dB]
(¢), SNR =30 [dB] (), SNR = 20 [dB] (¢), SNR = 10 [dB] (f), and SNR = 5 [dB] (g).
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1 L — shaped Cylinders

| SNR=50dB [| SNR=40dB || SNR=30dB || SNR=20dB [| SNR=10dB || SNR=5dB |

ot 0.0 0.0 0.0 0.0 0.0 0.0
Eint 0.0 0.0 0.0 0.0 0.0 0.0
[ 0.0 0.0 0.0 0.0 0.0 0.0
| 2 L — shaped Cylinders |
| || SNR =50dB || SNR =40dB || SNR =30dB || SNR =20dB || SNR =10dB || SNR=5dB |
Stot 0.0 0.0 0.0 0.0 0.0 1.54 x 1072
Eint 0.0 0.0 0.0 0.0 0.0 0.25
Eent 0.0 0.0 0.0 0.0 0.0 6.41 x 1073
| 3 L — shaped Cylinders |
| | SNR=50dB || SNR=40dB || SNR=30dB || SNR=20dB || SNR=10dB [| SNR=5dB |
Erot 0.0 0.0 0.0 0.0 154 x 103 154 x 102
Eint 0.0 0.0 0.0 0.0 5.56 x 102 5.56 x 102
[ 0.0 0.0 0.0 0.0 0.0 0.0
| 4 L — shaped Cylinders |
| | SNR=50dB [| SNR=40dB || SNR=30dB || SNR=20dB [| SNR=10dB || SNR=5dB |
ot 0.0 0.0 0.0 3.09 x 103 9.26 x 103 1.54 x 102
Eint 0.0 0.0 0.0 0.0 0.17 0.25
Eent 0.0 0.0 0.0 3.21 x 1073 3.21 x 1073 6.41 x 1073
Tab. I - Resume: &o, Eint and Ee,py for different values of SN R [dB].
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