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Abstract

The reduction of the power losses in the sideband radiation of directive time-
modulated linear arrays is addressed in this report. The approach is based on the
optimization of the pulse sequence modulating the static excitations of the array
elements to exploit pattern multiplication effects such that the sideband level of
the harmonic pattern term related to the array factor is balanced by the element
pattern distribution. A preliminary assessment is proposed in this report in order
to show the effectiveness of the approach to suppress both the sideband level or
the amount of sideband radiation.



Definitions

Array Factor

Let us consider a linear array of N isotropic elements aligned along the z-axis. The array factor with the e/“°?

term explicitly indicated is:

N
AF (0,1) = 70" >~ e (" DEdeos8 g ¢ [0; 7] (1)

n=1
where «,, is the complex excitation of the n-th element of the array, d is the element spacing, and w, = 27 fj is

the RF angular frequency of the carrier signal.

Time-Modulation technique applied in the array synthesis can be realized using in the feed network a set of RF
switches connected to the elements of the array, to turn-on/off the state of the elements in specific intervals of

time: the array factor becomes

N
AF (95 t) - eijt Z anUn (t) ej(nfl)kd cos 0 (2)
n=1

where U, (t) is the time switching periodic function of period T, related to the n-th element, usually of rectan-

gular impulsive kind:

Uny={ b TmSEShh 3)
A 0, elsewhere

where 0 <] <t/ <T,.

Expanding the switching function U, (¢) in the Fourier serier:
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where 7, = (¢t —t),)/Tp, 7}, =1, /Tp and 7] =t /T,

n

The array factor expressed in (2) becomes

+oo
F(0,t)= > AF,(0,t) (6)
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where

N
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where ap, = anUnn.

The electric field radiated by the array is:

—+oo

E(0.t)= > En(0,t) (8)

h=—00

where the harmonic components of the electric field are



N
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n=1
where e (0) is the element factor.

The element factor of a short dipole aligned along the z-axis is defined [1]:

eo(6) = sin(h) (10)

where [ is the length of the dipole (for hypothesis I < 0.01)).

—3[dB] Main Beamwidth BW
BW(t) =04(t) — 05(t) (11)

where 04 (t) and 0p(t) are the angular positions such that |AF (0,t)| = —3 [dB].

Sidelobe Level (SLL)

The maximum level of the grating lobes.

Sideband Level (SBL)

The maximum level of the sideband radiations.

Total Power and Sideband Radiation

The total power radiated by a TMLA is defined as:

Prot — z_: {|an|2 3 ufm}w 3 {Re{ama;}smc[m(mn)] > uhnuhm} (12)

n=0 h=—c0 mon € Qo h=—00
where up,, is the h-th expansion coefficient of the Fourier series of the modulating function related to the n-th
element, and 2,,,,, represents the set of the indexes that correspond to all nonrepeated (m,n) pairs with m # n.
The (12) can be written as a summation of infinite terms representing the power of all the frequencies, central
and harmonics:
00
Por= > P (13)
h=—o0

The Sideband Radiation represents the amount of power radieted at the harmonic frequencies (usually expressed
in percentage with respect to the total radiated power). A closed-form equation to calculate this power is

exploited:

N
Psp = Z {|an|2 Tn(l - Tn)} + Z {Re {ama:;} sinc [k(zm - Z")] (T{m7n}1vfinVal B Tan)} (14)
n=1 m,nEQLmn
wherer,, is the duration normalized with respect to the modulation period T}, of the pulse exciting the n-th

element.
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Preliminary Results

TEST CASE 1

Goal
Sideband radiation minimization of a TMLA composed by real radiating elements (short dipoles considered in
this test case) adopting the pulse shifting technique.
Test Case Description
e Number of Elements: N = 16
e Elements Spacing: d = 0.5\

e Static Array Configuration: a,, =1, n=0,...., N — 1

Pattern at Central Frequency: Dolph — Chebyshev, SLL = —30dB

e Max Gain Pattern Direction : 8™%* = 90°

1.a) Optimization Approach: PS-PSO, SBL Min.

The optimization process though the PSO algorithm acts just on the temporal shift of the pulses;

e Number of Variables: X = 16

Number of Particles: S = 30

e Number of Iterations: I = 200

e Inertial Weight: Linearly varying: 0.9t00.4

Cost Function: (H = 2)

5750 [ )] = 3 SBL (16)
h=1
1.b) Optimization Approach: PS-PSO, SR Min.
The optimization process though the PSO algorithm acts just on the temporal shift of the pulses;
e Number of Variables: X = 16
e Number of Particles: S = 30

Number of Iterations: I = 1000

Inertial Weight: Linearly varying: 0.9t00.4

Cost Function:

WPSO [ (3))] = Pa () (17)



Dolph-Chebyshev Pattern, SLL=-30 dB - End-Fire Harmonic Pattern h=1

The pulse sequence configuration proposed in the following to generate the End-Fire radiation pattern at the
harmonic h = 1 presents a very high amount of Sideband Radiation, due to the value of many pulses close to

the half duration of the modulation period.
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The normalization of the pulse duration with respect to the modulation period, allows to reduce the SR from
62.07% to 24.16%.

It is possible to demonstrate such a normalization is always required to minimize the percentage of sideband
radiation with respect to the total radiated power (Appendix A).



Dolph-Chebyshev Pattern, SLL=-30 dB - End-Fire Harmonic Pattern h=1 - Normalized Pulse
Sequence
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Dolph-Chebyshev Pattern, SLL=-30 dB - End-Fire Harmonic Pattern h=1 - Short Dipole Ele-
ments Array

Let us consider an array of short dipole elements positioned and aligned along the z-axis.

The pulse sequence configuration showed in Fig.4, applied to an array composed by short dipole, allows to

translate in end-fire the radiated pattern at the first harmonic A = 1 (see Appendix B for demonstration):
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It is possible to see in Fig. 7-8 that part of the radiated power is suppressed thanks to the element factor of
the dipole. The SBL at the first harmonic h = 1 is reduced from —12.39dB to —20.12dB but the SBL at the
second harmonic remain —18.30 dB. The sideband radiation is also reduced from 22.50% to 12.18%.

Dolph-Chebyshev Pattern, SLL=-30 dB - PS-PSO, SBL Min. - Short Dipole Elements Array

The PSO can be used to optimize the pulse sequence configuration minimizing the SBL.
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The SBL is reduced with respect to the previous configuration from —18.30dB to —22.36 dB.



Dolph-Chebyshev Pattern, SLL=-30 dB - PS-PSO, SR Min. - Short Dipole Elements Array

The PSO can be used also to optimize the pulse sequence configuration minimizing SR rather than SBL.

Normalized Power Pattern [dB]

The SR

SBL® [dB]

-30

0O 15 30 45 60 75 90 105 120 135 150 165

Normalized Switch-On Time

6
Element Number, n

9

12 15

Fig.12 - Pulse Sequence

A

0 [deg]
Fig.13 - Pattern(6)

180

Normalized Power Pattern [dB]

-1 -08

-0.4

-0.2 0 02 04 06 08 1
u

Fig.14 - Pattern(u)

-0.6

is reduced with respect to the configuration proposed in Fig.4 from 12.18% to 11.45%.
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| SLL[dB)] | SBL[dB] | SBL,[dB] | SBL2[dB] | BW [deg] | SR|%] |

Dolph — Chebyshev —30.08 —12.39 —12.39 —18.30 15.85 22.50
End Fireh = 1 Pattern —30.08 —18.30 —20.12 —18.30 15.85 12.18
PS — PSO, SBL Min. —30.08 —22.36 —22.36 —22.36 15.85 14.58

PS — PSO, SR Min. —30.08 —19.44 —19.44 —19.47 15.85 11.45

Tab.1 - Sidelobe Lebel (SLL), Sideband Level (SBL), -3 dB Beamwidth (BW), Sideband Radiation (SR).



Appendix A

Normalization of the Pulse Durations wrt. the Modulation Period

The proof reported below shows the convenience in applying the normalization of the pulse duration with respect

to the modulation period to reduce the amount of sideband radiation with respect to the total radiated power.

Considering a TMLA of N elements, we assume (this hyphotesis is not relevant to the result of the demonstra-

tion) that the element associated at the pulse with the longest duration is the first element of the array:

xr=m (18)

We want to demonstrate that the amount of the sideband radiation with respect to the total radiated power is
minimum when x = 1, that is when the longest pulse duration in the pulses sequence is equal to the modulation

period.

We can write all the others pulse durations as functions of x:

Th = XYn N = 2’...,N (19)

where v, = 7, /7.

The sideband radiation is defined:

N
Psp = Z {|Oln|2 Tn(l - Tn)} +2 Z {Re {Oémoz:;} sinc [kd(m - n)] (T{m7n}1\4inVal B Tan)} (20)

n=1 m,NEQLmn

The total radiated power is calculated as:

N
Pror = {|an|2 (1= Tn)} +2 Y {Refama}sine [kd(m — )] (Timn},,,00 — Tmn) }+
n=1 m,NEQLmn

N
> {loml ) +2 > {Re{amaj}sine[kd(m — n)] mn7a} (21)
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The ratio between the sideband radiation and the total radiated power can be written as:

Psp Z,]Ll {|an|2 Tn (1 — Tn)} +2) 0 neqn, {Re {amay} sinc [kd(m — n) (Trman} ainvar = TmTn) }

"o s el ) v2T

{Re {ama; } sinc [kd(m — n)] Tlmn} simvar }

n € Qmn
(22)
Considering (19), the ratio (22) becomes:
o1 e {100l 1)%} +25 e, (Re famar) sine [kd(m —n)] yna) _
N 2 W
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[Clan, ) + D(an, 1n)]
where £ is a constant coefficient, beacuse ay,,v, n =1,..., N are constant values.
Since Pspr is a power, it cannot be a negative quantity, then:
C(an,¥n) — A(an, Y) + D(an, ¥n) — Blan,1n) = 0 (24)
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where

N

Al ) Z (Jtn| 7n)?

Blan,yn) =2 Y {Re{amaj}sinc[kd(m —n)] ymyn}

m,nEQmn
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D(ap,vn) =2 Z {Re {ama;,} sinc [kd(m — n)] 7{m7"}vauz}
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Rewriting the (24), we get

C(O‘na'}/n) - A(O‘na'}/n) > *D(O‘na’)/n) + B(O‘naﬁ)/n)

and hence

C(on,vn) + D(on,vn) = Alan, Yn) + Blom, )

(29)

(30)

Since [A(tn,Yn) + B(am, n)] > 0 because it is the ratio between the power radiated at the central frequency
and the term 22, then [C(c,, Vn) + D(ain, vn)] > 0 as well. Consequently, considering (23), it results 0 < £ < 1,

and the value of x that minimize the equation (23) in the domain (0,1] is z = 1.

11



Appendix B

The array factor

N N N
AF; (0) = Z ahnej(n—l)w _ Zahnej(n—l)(kdcosé-i-ﬂ) _ Z ahnej(n—l)ﬂej(n—l)(kdcos9) 0 € [0;7] (31)

n=1 n=1 n=1

The maximum of the array factor occurs when

Y ="kdcosf+53=0 (32)

If it is desired to have the maximum directed toward 6 = 0 then

Blo—o = —kd (33)
From equations (5) and (31) it is possible to see that the parameter 7, can be used to change the phase of the
coefficients ay,, with n = 1, ..., N (the parameter 7,, remains inaltered: in such a way the pattern at the central
frequency doesn’t result modified)
ed(n=1)Blo—g — g—i(n—1)kd _ —gm(27})

(n—1)kd = m(27),)

7, =Mm—-1)dy n=1,.,N
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