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Abstract

In this paper, an approach based on a multi-scaling strdtagijne reconstruction of
the non-measurable components of equivalent currenthiisons is tested against exper-
imental data. An extensive set of simulations is carriedconssidering single and multiple
scatterers with homogeneous as well as inhomogeneousrpespeSelected results are

reported and discussed to show potentialities and liroitatof the method.
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1 Introduction

The retrieval of unknown targets embedded in inaccessdgi®ns is a problem still actual and
of interest [1] that need the development of efficient anidbé® procedures for their application
to real world problems [2][3]. Many strategies in microwameaging reformulate the arising
inverse scattering problem as the solution of an equivaheetse source problem to determine
either the profiles [4] or the dielectric properties [5][H]bf unknown objects embedded in an
inaccessible region. Despite the linearity of the invem&se problem with respect to the un-
known equivalent current density within the investigatdmmain [8][9][10], the problem still
remains ill-posed in the sense of Hadamard [11]. As a maftéaad, the presence of non-
radiating, or non-measurable contributions, causes theuncqueness of the equivalent source
[12][13]. As regards the null space in source type integyakions, several theoretical studies
have been reported in the scientific literature [14][15][ However, only a few techniques have
been proposed [6][7] to recover the contribute of the nomsneable currents from measured
field data. The lack of information on these components tesultoo inaccurate reconstruc-
tions that generally suffer from a strong low-pass effedftl[f]. Since the achievable spatial
resolution is strictly related to the number of basis fumt$imodeling the unknowns, the higher
Is the spatial resolution the greater is the number of basistions required to obtain accurate
reconstructions. Consequently, the dimension of the malts turns out to be very large [14]
due to the band-limited nature of the scattered field [18]rddwer, the number of local minima
grows, severely affecting the potentialities of the in@ngprocedures.

In order to avoid these drawbacks, an iterative multi-nesoh method for the reconstruction of
the non-measurable components of the equivalent curresitgéhas been recently presented
in [19]. The key features of the approach, called IterativeltMScaling Approach for Non-
Radiating currents/(M SA — N R), are the ability to reduce the dimension of the kernel space
of the scattering operator and to improve the accuracy ofébenstruction. In this work, the
IMSA — NR is further assessed by considering experimental data rectjii a laboratory
controlled environment.

The outline of the paper is as follows. The inverse scafgepiroblem is mathematically for-

mulated in Sect. 2 where the multi-resolution procedurerisfly summarized, as well. A



representative set of results is shown in Sect. 3 to assessfdttiveness of theM/SA — NR
when dealing with experimental data. Eventually, some kmmens are drawn and possible

developments are discussed (Sect. 4).

2 Mathematical Formulation

Let us consider 2D microwave imaging system where a seboknown probing source gener-

y) = Bl (x,y)z,v=1,...,V,
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ating 7'M -polarized fields (calledncident field}, £}, (z,
iluminates an investigation domair;,,,. The scattered fieldsg?., (z,y), v = 1,...,V,
are collected on a set df/ (") electromagnetic sensors located in an external obsenvdte
main[',,,. TheIMSA presented in [20] considers a succession 6f 1, ..., S steps aimed
at enhancing the reconstruction accuracy within a Regfeinterest (Ro/) belonging tol';,,,
where the scatterer is supposed to be located. With referenthes-th step of the multi-
scaling procedure, the unknown contrast functioefiz, y), and equivalent current densities,

Jg, (v, y), v =1,..,V, are represented through a linear combination of rectangaisis func-

tions (2.¢;) (z,y) andY,,;) (x,y), respectively) having different resolution such that
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where the index represents the spatial resolution levek= 1,...,1, I = s being the finer
resolution andV(7) is the number of partition sub-domains at thl resolution level.

To solve the inverse problem at hand, ata and Stateequations are evaluated at each step
of the multi-resolution approach within theo/ where a synthetic zoom takes place [21] and
the dielectric properties of the remaining partigf, are set to those of the background. More

specifically, the Lippmann- Schwmger integral equatid2®y are expressed as
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where the unknown contrast function is defined as

7(w,y) = @8 1, (5)
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g(x,y) = &g {83 (x,y) — y"ffy } being the complex permittivity. Moreoveri ando are
the relative permittivity and conductivity, respectiveande is the permittivity of the free-
space. In (3) and (4)755"" and G4 denote the discretized Green’s operators [20]. More-
over, A, (or A,;) is the area of the-th (or u-th) cell at thei-th resolution levelp,,;) ,, =

\/ (xn(z‘) — xm)z + (yn(i) - ?/m)2 andpu(iyni) = \/ (%(i) - xn(i))z + (yu(i) — yn(i))z-

Itis well known [6] that the equivalent current densitigs (z, y) can be expressed through the

linear combination of two different contributions
I
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namely theminimum norm(M N) or radiating current density and tin@n-measurabléN R)
current density where in (2) it i%J;’q (xn(i),yn(i))} = {9;;(@.)} U {(bn(z } and{ o (, y)}

{@g(i) (x,y)} U {cI);;(i) (x,y)}. The M N components of the equivalent source generate the
scattered fields in the observation domBjg,. Their coefficientsy; ;, can be defined at each
step of the multi-resolution procedure through a Singuu® DecompositionyV D) of the
Green'’s operator by solving Eg. (3). More in detail and adowy to the guidelines in [7], these

coefficients are given by
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where¢? ), n(i) = 1,..., R(i), is the set of non trivial singular valueg(i) being the rank of

the Green’s operator, afd/’, (x,y)} is an orthonormal system of eigenvectors obtained from

the SV D. The basis function%@;’l(i) (x,y)}, n(i) = 1,..., R(7), and{@fl(i) (x,y)}, n(i) =



R(i) + 1,...,N(i), used in (6) are two sets of orthogonal eigenvectors stilhdd through the
SV D [7].
In order to compute the non-radiating coefficient,), n(i) = R(i) + 1, ..., N(i), as well as

the coefficients of the contrast functiOﬂ(azn(i),yn(@-)), n(i) = 1,..., N(i), the following cost
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is minimized at each step of the multi-resolution proceduhere
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andC®) is the normalization coefficient
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Moreover,w is a weighting function defined as

if (2ni)s Uny)) ¢ Rol

(10)
1 if (:En yn(J) € Rol

w (Ta(s), Yn()) =

The multi-step process stops & S.,.q) when a stationary condition based on the analysis
of qualitative reconstruction parameters [19] is achiev&d minimize the functionall®), a
well assessed conjugate gradient approach based on amagdteninimization strategy [23] is

considered.

3 Experimental Validation

In this section, numerical results concerned with the isngr of experimental aspect-limited
data as reported and analyzed. The first part of this sectais dvith the reconstruction of
homogeneous lossless as well as lossy dielectric targéfsTBe reconstruction of inhomoge-

neous objects [25] is discussed in the second part. Theesogttdata have been made available



thank to the courtesy of the Institute Fresnel, MarseiltanEe. A thoroughly description of the
experimental setup can be found in [24] and [25].
In order to quantify the effectiveness of the proposed aggr@nd to compare with the single

step pare) procedure [7], théocation error, §, and theoccupation area errarA, are defined

as
a2 =]+ [ -]’
0= 11
- (12)
and
Lopt _ Lref
A = {T} X 100 (12)

where the apexes “opt” and “ref” mean retrieved and actuahtjties, respectively. Moreover,

(z., y.) is the position of the barycenter of the scatterer &nslits radius.

3.1 Homogeneous Scatterers

The first experiment deals with the reconstruction of a gngssless dielectric cylinder (test
case HielTM_dec8f.ex}) which is supposed to lie within a square region of side:mn. The
object is located atz"*/ = 0.0, z7% = —30.0) mm and is characterized by a contrast value
equal tor(x,y) = 2.0 £ 0.3. Figure 1 shows the reconstructions of the object functibn o
the bare approach (left column) and th&/ SA — N R (right column). Six different illumina-
tion frequencies in the rande; 6] G H » with stepl G H = have been used. At each frequency,
V = 36 different views have been considered and the data have lodlented onA/ ™) = 49
measurement points [24]. The side of the investigation doepressed in wavelengths varies
from one\ at the lowest frequency up t@\ at the highest frequency. In each simulation,
[';ny has been subdivided inty = 400 and N (i) = 100, i = 1,..., I, cells for the bare and
multi-resolution approach, respectively.

As it can be observed (Fig. 1), the values of the object fonstiretrieved with thé M/ SA —

N R method are much closer to the actual ones and, thanks thésualing procedure, the

scatterer is better localized within the investigation domi’;,,, where the actual position of



the scatterer is indicated by the dashed line. This factrhéun confirmed by the values of
the error figures (11) and (12) in Fig. &(and Fig. 2b) pointing out that thd M SA — NR
solutions are definitely better than those retrieved with Itlare procedure. Although some
location errors (mainly in the high frequencies) for the'SA — N R are higher than those of
the bare method [Fig. d]], it should be noted that the corresponding occupationa areors

of the bare procedure are one order of magnitude higher tiwsetof thel \/SA — N R [Fig.
2(b)]. Consequently, although the position of the barycergdoatter estimated by the bare
method, the qualitative reconstructions turn out beingse@s compared to the results of the
IMSA — NR.

The reconstructions of the equivalent current densitieg#®experiments in Fig. 1 are givenin
Fig. 3. On one hand, it is worth noting that the solutions atitiwer frequencies are better than
those retrieved at higher frequencies. On the other haed,¥hSA — N R approach always
outperforms the bare procedure in terms of retrieved ctidistributions as well as absence of
noise and artifacts in the background. As far as the minitiwmaf W is concerned, the value
of the cost function at each iteration is reported in Fig. e data collected atG H =, where
Sena = 4. In the simulations/K' = 2000 iterations are considered for the bare procedure and
K = 2000 iterations are used at each step of the multi-resoluti@tesy,i = 1, ..., I. For the
sake of completeness, some computational indexes for sdtseelated to Fig. 4 are reported
in Tab. | whereU is the number of problem unknown&},is the total number of iterations,
T, and T}, is the totalC PU time and that required for a single iteration, respectivélize
numerical simulations have been run oB@H = PC with1 GB of RAM.

In the second experiment, the data YetodielTM_8f.exJ is taken into account. Two ob-
jects identical to that of the previous example are embeddtdn the region under test. The
distance between the two barycenterg iss 90 mm and the data have been collected as for
the first experiment. The reconstructed object functiontsiobd through thd M SA — NR
approach are shown in Fig. 5. The images are concerned vatintersions of the data at
f =11, 2, 3, 4 GH~z. The best reconstruction from both a quantitative and tatale point of
view is achieved at G H z [Fig. 5(c)]. It is also interesting to notice that at lower frequescie

the reconstructions are characterized by a low-pass bahi@ig. 5@)], while sharper edges



result at higher frequencies. Moreover, the distance batvilee barycenters is over-estimated
at f = 2 GHz [Fig. 5(b)] and under-estimated gt= 4 GH z [Fig. 5(d)].

The reconstruction of a lossy target is performed in theltBkperiment‘fectTM_cent.exp)).
The rectangular cylinder is located at the center of thestigation domain. It has been il-
luminated by &l'M-polarized wave [24] af = 4 GH=z. The dimensions of the scatterer in
wavelengths turns out being equaltd7X x 0.34\. Figure 6 gives the reconstructions of the
object function [Figs. &)-(b)] and the equivalent current density [Figs.cB(d)] from the
bare procedure [Figs. &)-(c)] and the/MSA — NR approach [Figs. @®)-(d)]. Although
some artifacts are present in the background [see Figpy.a6¢ 6¢)], the enhancement in the

reconstruction is non-negligible.

3.2 Inhomogeneous Scatterers

In this section, the reconstruction of inhomogeneous et is dealt with. Two different ex-
periments are taken into account, namely the dataFeatrhDielExtTM and “FoamDielIntTM

[25]. Two scatterers of radius; = 80mm and L, = 30mm and contrast value equal to
i (x,y) = 0.45 and»(z,y) = 2.0 are considered. In the first experiment, the objects are
placed one close to the other (Fig. 7 - dashed line). In therskone, the smaller scat-
terer is located within the bigger one (Fig. 8 - dashed lik@®t each illumination frequency,

V' = 8 different views and the same number of measurement poirits #se previous exam-
ples (M) = 49) are used. Moreover, the dimension as well as the disctietizaf I';,, are

set to those considered for homogeneous scatterers. As tae dest caseFbamDielExtTM

is concerned, the distributions of the object functioniesd by means of the bare procedure
and thelM SA — NR approach are compared in Fig. 7 where [2; 5] GHz. Whatever the
case, the two objects can be clearly distinguished bothring®f dimension as well as contrast
function value when using the\/ SA — N R. The same cannot be stated for the reconstructions
with the bare approach. As a matter of fact, many artifacpaesent in Fig. &) and Fig. 7¢)
whenf =2GHz andf = 4 GH z, respectively.

Finally, thel M SA— N R approach is tested against the experimental datd&satfiDielIntTM

and the solutions obtained at the frequengies 2, 3, 4, 5| GH z are givenin Fig. 8. Although



the two objects can be identified in all the reconstructitms scatterers are better localized and

the best result is obtained when workinglat H .

4 Conclusions

In this paper, thd M SA — N R approach for the solution of inverse scattering problenss ha
been validated against experimental data. The resultsd@mvemed the effectiveness of the
multi-resolution approach as compared to the single stapade In all the reported examples,
the reconstructions of the\/ S A — N R resulted quite accurate both in terms of qualitative and

quantitative imaging.
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FIGURE CAPTIONS

e Figure 1. Dataset “dielTM_dec8f.exp” - Benchmark “Marseillg24]. Object Function
Reconstruction Retrieved distributions with the “bare” procedulef() and the/ M S A—
NR approach at = S, (right). Working frequency: &)(b) f = 1GHz, (c)(d) f =
2GHz, (©)(f) f=3GHz )(h) f=4GHz (i)(1) f =5GHz, (m)(n) f = 6GHz=.

e Figure 2. Dataset “dielTM_dec8f.exp” - Benchmark “Marseillg24]. Qualitative error
figures for the reconstructions of Fig. ) (ocation errory and () occupation area error

A.

e Figure 3. Dataset “dielTM_dec8f.exp” - Benchmark “Marseillg24]. Equivalent Cur-
rent Density ReconstructiorRetrieved distributions with the “bare” procedutef() and
the /I MSA — NR approach at = S.,4 (right). Working frequency: &)(d) f = 1 GHz,
(b)(e) f = 2GHz, (O)f) f = 3GHz, () f = 4GHz, (M) f = 5GHz, (i)(n)
f=6GHz:.

e Figure 4. Dataset “dielTM_dec8f.exp” - Benchmark “Marseillegf24] (f = 4GH?z)
- Behavior of the cost function value for the “bare” procezla@nd thel M SA — NR

approach.

e Figureb5. Dataset “twodielTM_8f.exp” - Benchmark “Marseillegf24]. Object Function
Reconstruction Retrieved distributions with thé M/ SA — NR approach at = S,,.4.
Working frequency: &) f = 1GHz, (b) f =2GHz,(¢) f =3GHz,(d) f =4GH-=.

e Figure 6. Dataset “rectTM_cent.exp” - Benchmark “Marseillg24] (f = 4GH=z) -
Reconstruction ofg)(b) the object function and ofcj(d) the equivalent current density

retrieved with @)(c) the “bare” procedure andb)(d) the /M SA — N R approach.

e Figure 7. Dataset “FoamDielExtTM” - Benchmark “MarseilleT25]. Object Function
Reconstruction Retrieved distributions with the “bare” procedulef() and the/ M S A —
NR approach at = S, (right). Working frequency: &)(b) f = 2GHz, (c)(d) f =
3GHz (e)f) f=4GHz (g)(h) f =5GHz=.

14



e Figure 8. Dataset “FoamDielIntTM” - Benchmark “Marseille’[25]. Object Function
Reconstruction Retrieved distributions with thé M/ SA — NR approach at = S,,.4.
Working frequency:&) f =2GHz, (b) f =3GHz,(c) f =4GHz,(d) f =5GH-=.

TABLE CAPTIONS

e Table 1. Dataset “dielTM_dec8f.exp” - Benchmark “Marseillef24] (f = 4GH?z).
Computational IssuesValues of the computational indexes in correspondendce thi

bare procedure and thé/SA — N R approach.
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