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Synthesis of Monopulse Sub-arrayed Linear and Planar Array

Antennas with Optimized Sidelobes

G. Oliveri and L. Poli

Abstract

In this paper, three approaches for the synthesis of thenaptompromise between sum
and difference patterns for sub-arrayed linear and plamaysare presented. The synthesis
problem is formulated as the definition of the sub-array ¢améition and the correspond-
ing sub-array weights to minimize the maximum level of thaekibes of the compromise
difference pattern. In the first approach, the definitiorhefainknowns is carried out simul-
taneously according to a global optimization schema. Bgfidy, the other two approaches
are based on a hybrid optimization procedures, exploitireggdonvexity of the problem
with respect to the sub-array weights. In the numericatieaion, representative results are
shown to assess the effectiveness of the proposed appsoddbimparisons with previously

published results are reported and discussed, as well.

Key words: Linear and Planar Arrays, Monopulse Antennas, Sum anckei®iffce Patterns,

Hybrid Optimization.



1 Introduction

Monopulse tracking radars [1] are based on the simultanemuparison ofumanddifference
signals to compute the angle-error and to steer the anteattexrs in the direction of the tar-
get (i.e., the boresight direction). Besides classicaltsmis where multi-feeder reflectors are
considered, the two (sum and difference) or three (sum antlddalifference) patterns, needed
to determine the angular location of the target along a $amgangular coordinate or both in
azimuth and elevation, can be synthesized through lineglaoar array antennas, respectively.
Recent studies are mainly devoted to array solutions becafuthe larger number of degrees
of freedom. As a matter of fact, such a solution allows oneatatrol the illumination of the
array directly on the aperture by modifying the excitatiohthe radiating elements. Moreover,
the synthesized patterns are electronically steerables élffables the fast change of the beam
direction and it avoids the inertia problems due to the usm@thanical positioning systems.
On the contrary, the drawbacks of the array implementatgriri the circuit complexity and
the arising costs. Nevertheless, the elements of the aparaim be grouped into sub-arrays in
order to simplify the antenna design and obtain cheapeedfddespite some reductions of the
antenna performances [2][3].

In antenna systems applied for real world applicationsdifferent strategies for implementing
monopulse radars have been adopted. A well known technigpsiders the partition of the
array aperture into two halves (linear array) o four quatir§planar arrays). The outputs of the
elements belonging to the same half/quadrant are combmgd@ntinuously compared with
the output/s of the other half/quadrants to determine tha signal. Such a signal is used to
steer the sum and difference beams and thus to track the gitarget.

In such a framework, recent papers have dealt with the optiorapromise problem between
sum and difference patterns, starting from an optimum sutteqpagenerated by a complete
and dedicated feed network. The elements of the array anggtfoeiped into sub-arrays with a
proper weighting to obtain a “sub-optimal” difference patt Either the optimization of some
specific pattern features (e.g., the directivity [5][6][# e normalized difference slope [8], the
sidelobe level §L L) [9][10]) or the fitting with an optimal pattern in the Dolpbhebyshev
sense [11][12] have been considered. Among themSthe minimization of the compromise

difference pattern has received particular attention. &al avith such a synthesis problem,



different optimization strategies based on global optation approaches [13][14] as well as
two-step hybrid techniques [9][10][11][15] have been prsed. However, an effective and
flexible procedure able to deal with both the synthesis @dmand planar structures has been
previously proposed only in [9][12][16]. Such an event ismhadue to the exponential growth
of the dimension of the solution space with the increase®htimber of array elements.

The approach proposed in [12] and then extended in [16], dabeatiguous Partition Method
(CPM), takes advantage from the knowledge of the relationshiywdsn the independent dis-
tributions of the optimal sum and difference [17] coeffi¢geto reduce the dimension of the
solution space. Accordingly, the synthesis of large plaweays is enabled and the converge
of the synthesis procedure speeded up. Essentially baset emcitation matching proce-
dure, the sub-array configuration is first obtained by miming the distance between the refer-
ence/optimal and synthesized (sub-arrayed) differene#ficents. Accordingly, the sub-array
gains are directly computed as a function of the optimal sndhdifference excitations exploit-
ing the guidelines of [20]. Nevertheless, th&” M procedure does not allow to control the
level of the sidelobes. To overcome this drawback, prelaninmesults obtained by means of
an iterative version of the’PM (the I — C'PM) have been shown in [18] and [19]. There,
the optimal pattern to match is iteratively changed un#l $t. L of the compromise solution
satisfied the user-defined constraints.

In this paper, three new approaches aimed at the minimizafithe S .. of the compromise
difference pattern are presented. In the first, the simetas optimization of the problem un-
knowns is dealt with likewise [12], but in this case the stietbsolution treg(i.e., the represen-
tation of all the admissible sub-array configuration [18]gkplored looking the solution with
minimumS L L. This strategy will be referred in the following as Modified® M (M —C' P M).
The other two approaches consider the hybridization ofitheCPM (HI — CPM) and of
the M — CPM (HM — C'PM) with a Convex Programming{P) procedure [10] to directly
introduceS L L constraints in the optimization procedure.

The paper is organized as follows. In Sect. 2, the synthesldgm is mathematically formu-
lated. The innovativé'PM-based procedure aimed at the optimization of$fid. is pointed
out in Sect. 3, where the one-step (Sect. 3.1) as well as thedhywo-step (Sect. 3.2) are

presented. A set of selected results concerning the syatbeknear as well as planar arrays



is reported in Sect. 4 to assess the effectiveness of th@gedpmethods. Comparison with
previously published results are also reported where avail Finally, some conclusions are

drawn (Sect. 5).

2 Mathematical Formulation

Let us consider either a linear or planar array with elemant®rmly spaced in they-plane

(Fig. 1). The array factor is
N

f(w,0) = 3 cpeluentoum) (1)

n=1
wherec,,, n = 1, ..., N, is the set of real excitations,= sin 6 cos ¢ andv = sin 6 sin ¢, where
the valueg, ¢), 0 € [0, g} and¢ € [0,2n] , indicate the angular direction, aitd= 2" is the
wavenumber of the background medium. Moreovey,, y,,) is the position of the:-th array
element.
To obtain sum and difference patterns, the distributionhef ¢oefficients is supposed to be
symmetric with respect to the physic center of the apertlwgoarticular and concerning the
linear case, the two halves of the array are summed in phasplase reversal, respectively.
Differently, the aperture is supposed to be divided inta ®ummetric quadrants in the case of
a planar array. Accordingly, the sum signal is obtained iraglin phase all the output of the
four quadrants, while the difference modes, namelyahienuth difference modé! — mode)
and theelevation difference modé’ — mode), are given with pair of quadrants added in phase
reversal.
The excitations of the “sub-optimal” difference patteth= d,, n = 1,..., N, as obtained

through the sub-arrayed feed network are
4 - 25:1 $n0a,qWq —m/2< ¢ <T7/2 )
S2 1 (—1) 8p0a,qwy T/2 < 6 < 31/2
whereS = {s,; n=1,..., N} is a set of fixed excitations affording an optimal sum pattern
[17], W = {w,; ¢ = 1,...,Q} are the (unknown) sub-array weight$,= {a,; n=1,.... N}
is a integer vector where the elememnt € [0, Q)] indicating the sub-array membership (when

a, = 0 it follows thatd,, = s,,) andd,,, is the Kronecker deltay(, , = 1 if a,, = g andd,,, =0

otherwise). Since monopulse planar arrays require therggoe of two spatially-orthogonal



difference patterns [4], the coefficients of the first diéiece mode are given as in (2), while the
second difference mode is obtained by adding the two paigsiafirants shifted by /2 in the
¢-direction with respect to (2).

Hence, the problem at hand is formulated as followsptimizing the sub-array configuration
A°P" and the corresponding set of weight&”* to obtain a compromise difference pattern with

minimum sidelobe level for a given main lobes beamwidth

3 Sidelobe Level Optimization Approaches

In this section, three new approaches for the solution obfitenal compromise between sum
and difference patterns are described, whereSthé optimization of the difference beams is
dealt with. In particular, the simultaneous optimizatidrboth the sub-array aggregation and
the sub-array gains is firstly considered according tolthe- C'PM (Sect. 3.1) and the main
differences with respect to the— C'P M [18] are pointed out. Then, their hybridized two-step
versions, namely th& I — C'PM and theH M — C'PM are presented in Sect. 3.2, as well.

3.1 Simultaneous Definition of the Unknowns

As far as the simultaneous synthesis of the problem unknaswecencerned, thierative Con-
tiguous Partition Method/ — C' PM) has been successfully applied. Its procedure and some
preliminary results have been already published in [18][48% where linear and planar array
synthesis problems have been dealt with, respectivelyaitiqular, thel — C'PM is based on
the following concept: by successively changing the refeegoptimal target to approximate,
at each step thé’PM [12] is applied until the requirements on thé. L for the synthesized
difference pattern are satisfied. It is worth to notice thahe! — C' P M [19], whose workflow
is schematically outlined in Fig. 2, the optimization of théL is obtained as a by-product. As
a matter of fact, thdare version of theC' PM [12] concerns the definition of the “best com-
promise” difference pattern close as much as possible toghimal one through an excitation
matching procedure. Nevertheless, enforcing@tie) to iteratively approximate an optimal
difference pattern with a referenc¢f.L lower and lower, it allows to reduce thel L of the

synthesized pattern and therefore to satisfy user-defioesti@aints.



The strategy proposed in this work, namely Medified Contiguous Partition Metho@\/ —
C'PM), tries to to explore theolution treg12], directly looking for the solution with minimum
SLL, unlike the one guaranteeing the best least-square patigiching. The solution with the
lowest SLL is searched by means of therder element methoB £ M) described in [12].

Towards this aim, the following cost function is considered

WMCPM (A W) = min {SLL (u,0)) (3)

for the linear and planar case, wheté L (u, v) is the maximum level of the sidelobes outside
the main lobe region. Let us we refer to this procedure as the .

It is worth noting that both thé — C'PM and theM — C'P M allow the simultaneous definition
of all the problem unknowns in a reliable and efficient waycsithe are based on tldieP M.

As a matter of fact, whether on one hand the final sub-arrageg@agjon is obtained through the
BE M, which computational efficiency has been pointed out in¢2]the other hand the defi-
nition of the sub-array weights does not increase the coatiputal burden, since an analytical

relationship [12] is considered:

WwCPM — [Zan Oang (Snﬁz>
! ZnNil 5anq (Sn)

whereB = {3,; n = 1, ..., N} is the set of optimal difference excitations [17].

] pqg=1,....Q (4)

3.2 Two-Step Hybrid Approaches

Inspired by the investigations on the synthesis of diffeeepatterns carried out in [21], it has
been recently discussed in [10] how the definition of the auhy weights can be formulated
as the solution of a convex programming problem, once th&eling of the array elements is
given. However, in [10] the solution of a th@P problem is required every time a new sub-
array configuration is obtained by means of the an approasbdban Simulated Annealing
(SA). Therefore, thes A — C'P approach turns out to be affected by an unavoidably and high
computational cost.

In order to cope with this drawback, in the following two newbhid (two-step) approaches

are proposed, where the solution of thé problem is required only once during the whole



synthesis process. The flowchart of both the approacheshérstically depicted in Fig. 2.
More specifically, at the first step the sub-array configoretiare computed according to the
principles of either théd/ — C' PM or thel — C'PM [18]. Successively, the sub-array weights,
Wert = {wé"p”; g=1,.., Q}, of the compromise feed network are computed so thasthe

of the afforded pattern is below a pre-fixed threshold. Thiewoang cost function

_ ORe{f (u,v)}

CcP
v (W) Oudv

(5)

=0, to f (ug,v9) = 0 and a function descriptive of
U = Ug

is minimized subject t Imgjéif’”)}

vV = g
an upper mask/ B (u, v) on the synthesized difference pattern. MoreoY&rand /m denotes

the real and imaginary part, respectively ang, vy) is the boresight direction. Towards this
end, a standar@ P procedure is used, whose initial guess solution is givei#}} as computed

through Eqg. (4).

4 Numerical Simulations and Results

In order to show the effectiveness and the versatility oftftgposed approaches, different syn-
thesis problems concerning linear (small and large) asaggtlanar monopulse array antennas
are shown in this section. In order to better point out theaathges and limitations of the si-
multaneous/global optimization and of the hybrid proceduthe numerical analysis has been
subdivided in two parts. The first one (Sect. 4.1) concernb thie syntheses of small linear
arrays, where the total number of unknowns is sm&ll € 20) and both global and hybrid
approaches reach the final solution in a limited amount o¢ fine., in the order of one minute
or less). The capability to deal with large linear arrays plachar apertures, characterized by a
large number of radiating elements, is then considered b Se2. Comparisons with bench-

marks already reported in the literature are considereaewviailable.



4.1 Small Linear Arrays Synthesis

In the first test, let us consider a linear arrayNof= 20 elements equally spaced #f2. The
sum excitations are chosen to afford a Villeneuve patteth Wi., = —25dB andm = 4
[22]. The number of sub-arrays has been set equé@l te 5. In this case the results obtained
by means of the proposed approaches are compared with tteenpaynthesized by means
of the constrained Excitation Matching Methdd M M) of [11], where the final pattern was
characterized by LL = —23.4dB.

As far as the proposed approaches are concerned, the ogiffeaénce excitation set consid-
ered intheM — C'PM is chosen to correspond to the one used at the last step bftlieP M.
Moreover, since the constrainéd\/ M [11] is also an excitation matching procedure, we force
thel — C'PM to avoid a reference target withl. L lower than that considered in [11] (i.e., a
modified Zolotarev difference pattern with. L = —25dB, n = 4 ande = 3 [23]).

The sub-array configuration§” . »,,, A% -p,; as well as the corresponding sub-array gains
WP oo W o pys Obtained at the final iterations by the two global optimizatiechniques
are summarized in Tab. |. The corresponding patterns ar@rsio Fig. 3. As expected,
improvements in term of L. minimization are given by th&/ —C' P M with aSLL lowered of
almost2dB (i.e., SLL;_cpy = —22.4dB VS. SLLy_cpy = —24.3dB). In this experiment,
only the M — CPM outperforms theE M M in terms of SLL minimization. As far as the
computational burden is concerned, thanks to the computefficiency of theBEM [12]
and by virtue of the fact that the sub-array weights are cdatpanalytically, the required
CPU time is equal tdl;_cpy = 0.05 sec andTy;_cpyr = 0.24 sec, while k;_cpy = 19 and
kyv—cpyv = 4 1S the total number of cost function evaluations.

In order to complete the analysis, Fig. 4 reports the valfidfseocost function of thé — C'PM

as well as that of thé/ — C'PM. Since two incommensurable quantities are minimized, in
order to make the comparison meaningful the following reteghip has been considered for
the plots of the fitness

Azl—%,kzl,...,f( (6)

where¢,, assumes either the valig” ~“”* (3) or ¥} ~“"M [18], according to the use of the

M — CPM or I — CPM, respectively. Moreovet™* = max;—; g {&} IS the maximum

.....

fitness value obtained throughout the whole optimizati@mtess.
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As a second step, the final aggregations obtained by mear dfare approaches (Tab. 1)
are considered as fixed clustering in tHe— ICPM and H — MCPM, i.e., A% ,cpy =
APy and A% oo = AT s, respectively. Then, the sub-array weights are determined
through the subroutine FMINCON [24], where the m&&R (0) has been set to haveil’ =
BWga and uniform level of sidelobes. Accordingly, starting framguess solution equal
to WY jopy = Wy and W oo = WL, the weights of the sub-arrays are
computed by the two hybrid approaches and the correspomdsudts are reported in Tab. |

. Also in this case, the synthesized patterns are shown inFidt is worth noting that both
the solutions achieved by the hybrid approaches havé ia below the one obtained with the
EMM [11], i.e., SLLy;_cpy = —24.4dB, SLLyy—cpy = —25.8dB VS, SLLgyy =
—23.4dB. Moreover, the hybrid versions are more effective in terny 6. minimization than
the respective bare procedures, with an improvemegtdd® and1 dB for the HI — CPM
andH M — C' P M, respectively. As a matter of fact, notwithstanding ¢he problem is aimed
at the maximization of the difference slope, the same hyépproaches can be used for the
optimization of theSLL, as pointed out in [10].

Fig. 5 reports the valueg{”, k = 1, ..., K (k being the iteration index) as well as the maximum

distanceC, between the actual pattern and the mask

Cl =maxy {f,(0) —~UB(0)} —5<0<3 (7)

where f;. (¢) is the array factor of the trail solution at tlieth iteration. As far as the costs of
the subroutine FMINCON [24] are concerned, let us first poirttthat the number of function
evaluations to reach the final solutions is equakto ;cpy = 1001 andky_yopy = 83.
The overallC PU-time required to obtaibl’ %" ;5. @AW", cpy, @MOUnts tdly_rcpas =
61.22 sec andTy_yopym = 9.66 sec, with a non-negligible cost saving of almost six times for
the HM — C'PM againstthed — C'PM.

As a second experiment, let us consider one of the benchniddlol previously proposed
in [14]. The number of sub-array was set@o = 6 and the sum excitations fixed to those
of a Dolph-Chebyshev pattern withl.. = —20 dB [25], while the difference excitations are
those of a Zolotarev pattern with.. = —31dB [26]. Similarly to the previous case, the
synthesis problems consists in defining the sub-arrayesingtand weights in order to obtain a

compromise difference beam with the lowédtL, once the pattern beamwidth has been fixed

10



to that obtained byifferential Evolution(D E) optimization in [14].

The sub-array configuration achieved in [10] in the cas8 bf, optimization wasA?; .p =
[15233425611652433251]with a maximumSLL = —30dB. For the sake of compari-
son, the result achieved by thel — C'P in the case of maximization of the slope (where a value
SLL = —29.50 dB was reached) has been reported in Fig. 6 as well as the oneedbiaith

the D E-based approach [14], together with those synthesizeddihrthe proposed approaches.
Concerning the two globdl' P M -based approaches, the- C PM and theM — C'PM achieve

two different sub-array configurations, namel{*’.»,, = [24566654311345666542)]
and A% .py, = [13456643211234665431], among thel 26 solutions defined in the so-
lution tree [12]. The corresponding sub-array weightssunt beindV %' »,, = {0.1641, 0.2422, 0.4652, 0.
and W py = {0.2081, 0.4652, 0.6917, 0.8776, 0.9840, 1.0044}. Moreover,T;_cpy =
0.001 sec, Thi—cpm = 0.267sec andkr_cpyr = 12, ky—cpyr = 10. Also the solutions
achieved by the hybrid versions are shown in Fig. 6. In thesesky;_cpyy = 15 and
kuv—cpym = 16 function evaluations were needed with a requi€edU time of Ty ;_cpyr =
2.703 sec andTy y—cpy = 2.719 sec. The corresponding sub-array weights ﬂéﬁ_cmj =
{0.6676, 0.9174, 1.7668, 2.6966, 3.4241, 3.8810} andM%W,CPM = {0.8019, 1.8409, 2.6401, 3.5552, 3.73
It is interesting to note how all the solutions defined by nseahthe proposed approaches
outperform that of [14], whereas only the solutions obtdibg means of hybrid approaches
HI — CPM andHM — C' PM are able to enhance the performances of [10]. As a matter of
fact SLL;_cpy = —28.81dB , SLLy—cpy = —29.12dB, SLLy—cpym = —30.09dB and
SLLyi_cpv = —30.13dB. In order to complete the analysis, the behavior of the alvec
functions for the global optimization procedures as wetheasr hybrid versions are reported in

Fig. 7@) and Fig. 7b), respectively.

4.2 Large Linear Arrays and Planar Apertures

This section is aimed at analyzing the performances of tbpgeed approaches when dealing
with the synthesis of array with a large number of elememtghé first example a linear aperture
of length100) is considered, whilv = 200 elements equi-spaced gn‘The sum excitations are
fixed to afford a Dolph-Chebyshev pattern [25] wilL L = —25 dB. The number of available

sub-array i) = 6. This synthesis problem was previously dealt with in [12incg a well

11



known trade-off exists between pattern beamwidth 8ad., the I — C' PM is not allowed to
use reference targets whaoSé L is below the one taken into account in [12] (i.e., a Zolotarev
difference pattern [26] witly LL = —30 dB). Fig. 8 shows the compromise difference patterns
synthesized by means of the proposed procedures. As edpéntesolution obtained with the

I — C'PM is the same obtained with tlie¢P M [12]. The behavior of the fitness values for the
global and hybrid approaches are shown in Fig. 9(a) and Fix), Bespectively.

Although all the solutions show a good behavior in term oékbes rejection, th& M —C P M
outperformed the other approaches WA Ly, cpyy = —27.1dB, while SLL;_cpy =
—25.2dB, SLLy_cpy = —26.2dB andSLLy;_cpy = —26.5dB. The sub-array configu-
rations as well as the corresponding sub-array weightsieea ¢n Tab. II.

Concerning the computational costs, the number of costifumevaluation and the required
C'PU time for each approach are reported in Tab. 1ll. It is worthimpthat in this case the
computational burden of th€ P problem is non-negligible (i.,ely;_cpy = 4105.12 and
Tuv—cpym = 957.51 sec). Such a drawback is principally due to the computatiot'gfwhere
the pattern has to be sampled densely in order to obtairfasatsy results. Likewise, the
computation of the power pattern is necessary also inithe C'PM to evaluate the L L for
each trial solution. Therefore, the— C'PM [18] turns out to be in this case the most efficient
strategy.

In the last example, in order to fully exploit the capaleégtiof theC' P M/ -based approaches, let
us consider a planar array with circular boundary 4.85 A and N = 300 elements equally-
spaced of] = % along the two coordinates. The sum mode is set to a circuldoiTpattern
[27] with SLL = —35dB andn = 6 . Moreover,(Q = 3 sub-arrays have been considered. The
synthesis problem has been originally dealt with in [9] byam®of a5 A-based algorithm and

then considered as benchmark in [19][16]. There sildelobe ratiaS L R) defined as
SLL (¢)

mazg [f (0,0)]

was optimized. Unlike [19], in this case we are aimed at s3siting a compromise difference

L 0<o< > (8)

SLR(¢) = :

pattern with a5 L L low as much as possible. As far as the C' P M is concerned, the reference
excitations (at the last iteration) was set in [19] to thodagliss pattern [28] withSLL =
—35dB andm = 6. In this case, th&'LL was equal to the one obtained with thel-based

approach (i.e$LLss = SLL;_cpy —19dB). Although an improvement of the performances

12



was expected by using its hybrid version, in this case theeaed compromise configuration
affords a pattern wittb LLy;_cpyy = —18.9dB, worse than the one obtained with the-
CPM. Onthe contrary, thé/ —C' P M synthesized a solution WithL L, _cpy = —24.45 d B,
almost tharb d B below the solution of [9]. Moreover, an additional improvemhof more than
2 dB was gained when using tiéM — CPM (i.e.,SLLy; _cpy = —26.55dB).

Fig. 10 show the 2D plots of the relative power patterns fbthed compromise solutions. The
corresponding sub-array configurations are shown in Figwhlle the sub-array weights for
the four approaches are summarized in Tab. IV. Although tbpgsed approaches are aimed
the optimization of the maximuriLL on the whole aperture, in this case béth— C'PM and
HM — CPM guaranteed that also the valuesSdi R were lower than that of [9] (Fig. 12).
Concerning the computational costs, it turns out that_-p); = 24186.6 sec (almost seven
hours) andl' y;_cpy = 39036.8 sec (more than ten hours). Moreovéty;_cpy = 6621 and
kuyi—cpym = 10001. On the contrary, the computational cost reducégfacpy, = 537.9 sec,

Tr_cpym = 165.5 sec, andky,_cpy = 6, kr_cpy = 81 for the bare approaches.

5 Conclusions

In this paper, innovative approaches to the synthesis obpiienal compromise between sum
and difference patterns for sub-arrayed monopulse arrtgnaas have been presented. The
synthesis of linear and planar array has been deal with, eMier problem at hand has been
formulated as the definition of the sub-array configuratiod @aeights of these latter to min-
imize theSLL of the synthesized difference beam. The definition of thenomks has been
simultaneously carried out according to a global optimaraschema, thé/ — C PM, and the
results have been compared with the previously propdsed” PM. Unlike thel — CPM,

the compromise solution with minimu§iL L has been directly looked for among the solutions
belonging to thesolution tree In a different fashion, thé// — CPM and theHM — CPM
have shown better performance in termSdf L minimization with respect to the corresponding
one-step approaches. In these case, the convexity of théepravith respect to a part of the
unknowns has been exploiting, where the synthesis prob&srbbeen reduced to solve’aP?
problem for a fixed clustering. The effectiveness of the pegal techniques in terms 61.L

minimization has been assessed by showing some experiswnisrned with small as well as

13



large array synthesis problems, hardly to manage with agichoptimization procedures for
the arising computational burden. Moreover, by virtue @ tiact that the solution of thé' P
problem is required only once, the hybddP M -based strategies seem to represent promising

tools to be further analyzed and extended to other anteroragjees.
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FIGURE CAPTIONS

e Figure 1. Planar array geometry
e Figure 2. Pictorial representation of the CPM-based approaches.

e Figure 3. Small Linear Array(N = 20, d = % @ = 5) - Relative power patterns obtained

by means of the proposed approaches anditheV/ [11].

e Figure 4. Small Linear Array(N = 20, d = 3, Q = 5) - Behavior of the cost function of
thel — CPM andM — C' PM versus the iteration index

e Figure 5. Small Linear Array(N = 20, d = 3, Q@ = 5) - Behavior of the cost function
and evolution of the distance from the constraints forthe— CPM andHM — CPM

versus the iteration index

e Figure 6. Small Linear Array(N = 20, d = % () = 6) - Relative power patterns obtained

by means of the proposed approaches SHe— C'P [10] and theD E [14].

e Figure 7. Small Linear Array(N = 20, d = 3, Q = 6) - Behavior of the cost function of
the@ [ — CPM andM — CPM and of the) HI — CPM andHM — C'PM versus

the iteration index.

e Figure 8. Large Linear Array(N = 200, d = % @ = 6) - Relative power patterns

obtained by means of the proposed approaches and ¥ [12].

e Figure 9. Large Linear Array(N = 200, d = % @ = 6) - Behavior of the cost function
ofthe@ I —CPM andM —CPM and of the) HI —CPM andH M — C' P M versus

the iteration index.

e Figure 10. Planar Array SynthesiéN = 300, d = % r = 4.85), @ = 3) - Relative
power patterns obtained by means af the I — CPM, (b) the M — CPM, (c) the
HI—CPMand@d) HM — CPM.

e Figure 11. Planar Array SynthesiéN = 300, d = % r = 4.85), Q = 3) - Sub-array
configurations obtained witta) the/ — C'PM and @) theM — CPM.
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e Figure 12. Planar Array Synthesi$éN = 300, d = % r = 4.85), Q = 3) - Plots of
the synthesized L R values by means of the proposed approaches anfiAN@] in the
rangeo € [0°, 807].
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TABLE CAPTIONS

e Table I. Small Linear Array(N = 20, d = % @ = 5) - Sub-array configurations and

weights.

e Table Il. Large Linear Array(N = 200, d = %, @ = 6) - Sub-array configurations and

weights.

e Table lll. Large Linear Array(N = 200, d = % () = 6) - Fitness evaluations adPU

time.

e Table IV. Planar Array Synthesi§éN = 300, d = % r = 4.85)\, Q = 3) - Sub-array

weights obtained by means of the proposed approaches asitf®).
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N =20 | AlCPM = pH-ICPM 34555433211233455543
AMCPM - AH=MCOPM 34555443211234455543
Q=5 wlerM 0.1738 | 0.5083 | 0.9561 | 1.3299 | 1.4775
wMePM 0.1738 | 0.5083 | 0.8358 | 1.2042 | 1.4775
wH-IePM 0.2896 | 0.7476 | 1.4378 | 2.1858 | 2.3207
WH-MEPM 0.3423 | 0.7816 | 1.6012 | 2.1233 | 2.7166

Tab. | - G. Oliveri et al., “Synthesis of Monopulse ...
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ve

- 3SINdOUOIAl JO SISBUIUAS, “[e B UBAIO "D - || "qeL

M =100 a{L‘CP M p=1,..., M | 1111111111111122222222333333334444444455555555566666666666666666666666666666666555555555444444433331
a%_CPM , n = 1, vy M 1111111112222222333333333333334444444444555555555555666666666666666666666655555555555444444444443332
Q=6 wi-crM 0.8206 1.4472 2.0200 2.5000 2.9000
wM-cPM 0.3739 1.0060 1.8017 2.5520 3.0300
wHI=¢PM 0.2132 0.7236 0.9411 1.0909 1.2754
wHM-CPM 0.1134 0.3327 0.6773 1.1001 1.1871




Approach k | T [sed]

I —-CPM || 128| 15.6
HI —CPM | 383 |4105.17
M —CPM | 24 | 519.98

HM — CPM || 95 | 957.51

Tab. Ill - G. Oliveri et al., “Synthesis of Monopulse ...
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Approach wi wi wi
I —CPM | 0.3499 | 0.9333 | 1.4170
M —CPM | 0.2870 | 0.8120 | 1.3886
HI —CPM | 0.3684 | 2.4088 | 4.0573
HM —CPM || 0.3313 ] 0.9719 | 1.4113

SA[9] 1.69 | 3.69 | 5.00

Tab. IV - G. Oliveri et al., “Synthesis of Monopulse ...”
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