
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE
  

38123 Povo – Trento (Italy), Via Sommarive 14 
http://www.disi.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
OPTIMAL SUB-ARRAYING OF COMPROMISE PLANAR ARRAYS 
THROUGH AN INNOVATIVE ACO-WEIGHTED PROCEDURE 
  
G. Oliveri and L. Poli 
 
 
January 2011 
 
Technical Report # DISI-11-011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.
 



Optimal Sub-arraying of Compromise Planar Arrays throughan Innovative ACO-Weighted Pro
edure
G. Oliveri and L. Poli
ELEDIA Resear
h GroupDepartment of Information Engineering and Computer S
ien
e,University of Trento, Via Sommarive 14, 38123 Trento - ItalyTel. +39 0461 882057, Fax +39 0461 882093E-mail: {gia
omo.oliveri, lorenzo.poli}�disi.unitn.itWeb-site: http://www.eledia.ing.unitn.it

1



Optimal Sub-arraying of Compromise Planar Arrays throughan Innovative ACO-Weighted Pro
edure
G. Oliveri and L. Poli

Abstra
tIn this paper, the synthesis of sub-arrayed monopulse planar arrays providing an op-timal sum pattern and best 
ompromise di�eren
e patterns is addressed by means ofan innovative 
lustering approa
h based on the Ant Colony Optimizer. Exploitingthe similarity properties of optimal and independent sum and di�eren
e ex
itationsets, the problem is reformulated into a 
ombinatorial one where the de�nition of thesub-array 
on�guration is obtained through the sear
h of a path within a weightedgraph. Su
h a weighting strategy allows one to e�e
tively sample the solution spa
eavoiding bias towards sub-optimal solutions. The sub-array weight 
oe�
ients arethen determined in an optimal way by exploiting the 
onvexity of the problem athand by means of a 
onvex programming pro
edure. Representative results arereported to assess the e�e
tiveness of the weighted global optimization and its ad-vantages over previous implementations.
Key words: Sum and Di�eren
e Patterns Synthesis, Monopulse Antennas, Planar Ar-rays, Ant Colony Optimization, Convex Programming.2



1 Introdu
tionMonopulse radars present several advantages over other sear
h-and-tra
k systems [1℄ basedon 
oni
al s
an or lobe swit
hing approa
hes [2℄. Indeed, tra
king the angular positions ofhigh-speed targets is enabled just pro
essing a single pulse e
ho (a monopulse). Moreover,range measurements are generally more reliable be
ause of e
ho signals with higher signal-to-noise ratios are dealt with, the sum beam being always dire
ted towards the target.Monopulse radars require the generation of one sum pattern and a 
ouple of spatially-orthogonal di�eren
e patterns to tra
k targets both in azimuth and elevation [3℄. Severalimplementations exploit re�e
tors or lens antennas [2℄, even if antenna arrays turn out tobe more 
onvenient for te
hnologi
al (e.g., the main beam 
an be ele
troni
ally steered),implementative (e.g., heavy stru
tures as re�e
tors are avoided), and appli
ative (e.g.,arrays 
an be made 
onformal and installed on air
rafts) reasons. However, the 
omplex-ity of the underlying beamforming network (BFN) must be properly taken into a

ountsin
e it unavoidably grows be
ause of the need to generate more than one pattern andto use a large number of elements. To over
ome these limitations, sub-arraying strategies(e.g., sub-array weighting [4℄ and overlapped sub-arrays [5℄) as well as sharing 
ommonweights between the sum and di�eren
e 
hannels [6℄[7℄ have been proposed. The sub-arrayweighting te
hnique has re
eived the widest interest as 
on�rmed by the large number ofpublished resear
h works [8℄-[17℄. Generally, the problem is formulated as the synthesis ofan optimal sum beam and the �best� 
ompromise di�eren
e patterns grouping the arrayelements into suitably weighted sub-arrays. Towards this purpose, several optimizationstrategies have been applied. More spe
i�
ally, the Simulated Annealing (SA) has beenused in [8℄ to 
ompute the sub-array weights for a-priori �xed element groupings, while aGeneti
 Algorithm (GA) [9℄ and two di�erent implementations of the Di�eren
e Evolution(DE) algorithm [10℄[13℄ have been adopted to determine both weights and subarraying.Moreover, an e�e
tive hybrid method has been proposed in [11℄ to exploit the 
onvexityof the problem with respe
t to the sub-array weights. Whether, on one hand, global op-timization is mandatory to deal with the non-
onvex part of the problem, on the other,the �brute for
e� appli
ation of sto
hasti
 optimizers turns out being 
omputationally3




umbersome and ine�
ient be
ause of the exponential growth versus the number of arrayelements of the admissible sub-array 
on�gurations. Su
h a bottlene
k has been e�-
iently solved in [18℄ by means of an ex
itation mat
hing strategy where the sub-arrayinggrouping is �guided� by the similarity properties between the ex
itations providing thesum pattern and a set of referen
e ex
itations generating an optimal (referen
e) di�er-en
e pattern. The dimension of the solution spa
e has been signi�
antly redu
ed and the�nal partitioning has been obtained by 
hoosing Q − 1 
ut points (Q being the numberof sub-arrays) in a sorted list of real values ea
h one related to an antenna element. Insu
h a way, the admissible set of sub-array 
on�gurations grows polynomially versus thenumber of elements with a non-negligible redu
tion of the solution spa
e if 
ompared tostandard approa
hes. Furthermore, the essential solution spa
e has been represented bymeans of a non-
omplete binary tree [18℄ and, su

essively, through a more 
ompa
t andnon-redundant dire
t a
y
li
 graph (DAG) [19℄. By virtue of its hill 
limbing behavior(mandatory for non-
onvex fun
tionals), the Ant Colony Optimizer (ACO) [20℄ has beenused to look for the optimal sub-array 
on�guration both within the solution tree [21℄ aswell as in the DAG [22℄. Although the ACO has shown to outperform the ad-ho
 deter-ministi
 method 
alled Border Element Method (BEM) in both linear [18℄ and planar[19℄ problems, it still presents some ine�
ien
ies when large-dimension problems as forplanar ar
hite
tures. It is worth pointing out that these drawba
ks do not depend on therepresentation of the solution spa
e or its dimension, but mainly on the 
ontrol of theevolution pro
ess. Indeed, if all edges of the DAG have the same probability of being
hosen at the initialization, some paths (i.e., sub-arraying solutions) turn out having lessprobability of being explored, while other paths are privileged. Su
h a bias is undesiredand unavoidably limits the potentialities of the approa
h. On the other hand, althoughthe non-
omplete binary tree [21℄ is not a�e
ted by su
h a drawba
k, it is not suitablefor synthesizing large arrays be
ause of high 
omputational 
osts and memory storagerequirements. In this work, a new synthesis approa
h based on an edge-weighting s
hemeis proposed to guarantee ea
h path of the DAG be explored with an equal probability.The rest of the paper is organized as follows. The synthesis problem is mathemati
ally4



formulated in Se
t. 2 where the edge-weighting s
heme for graph sear
hing is presented,as well. Se
tion 3 is devoted to the numeri
al analysis aimed at des
ribing the behaviorof the proposed approa
h and assessing its advantages and enhan
ed potentialities overprevious implementations. Eventually, 
on
lusions are drawn (Se
t. 4).2 Mathemati
al FormulationLet us 
onsider a monopulse planar array of 2M × 2N elements displa
ed on a regularlatti
e with inter-element spa
ing dx and dy along the x and y axes, respe
tively. Theantenna aperture is subdivided into four symmetri
al quadrants whose outputs are 
om-bined to generate the sum and di�eren
e mode signals (Fig. 1) for the estimation of theo�-boresight angle (OBA), namely the dire
tion of the target with respe
t to the ele
tri
alaxis (i.e., the boresight dire
tion) of the antenna [2℄[3℄.The summode, used both in transmission (i.e., for the generation of the radar pulses aimedat sensing the surrounding environment) and in re
eption (i.e., for dete
ting the presen
eand range of a target through a monopulse 
omparator), is obtained by summing thesignal from the four quadrants in phase. Under the assumption of quadrantal symmetryfor the ex
itations [24℄, the sum pattern 
an be expressed as follows
S (θ, φ) = 4

M
∑

m=1

N
∑

n=1

αmncos

(

2m− 1

2
ψx

)

cos

(

2n− 1

2
ψy

) (1)where αmn, m = 1, ...,M , n = 1, ..., N , are real ex
itation weights. Moreover, ψx =

kdxsinθcosφ, ψy = kdysinθsinφ, k = 2π
λ
is the free-spa
e wavenumber, λ being the wave-length.The 
ouple of di�eren
e mode signals used to determine the azimuthal and elevation OBAare generated summing in phase reversal pairs of quadrants of the optimal ex
itations βmnthat a�ord a desired di�eren
e pattern D (θ, φ). More spe
i�
ally, the following di�eren
epattern is synthesized

Daz (θ, φ) = 4j
M

∑

m=1

N
∑

n=1

βmnsin

(

2m− 1

2
ψx

)

cos

(

2n− 1

2
ψy

) (2)5



to tra
k the target along the azimuthal plane [Daz (θ, φ) = D (θ, φ)℄, while the di�eren
epattern for the elevation mode [Del (θ, φ) = D
(

θ, φ+ π
2

)℄ is given by
Del (θ, φ) = 4j

M
∑

m=1

N
∑

n=1

βmncos

(

2m− 1

2
ψx

)

sin

(

2n− 1

2
ψy

)

. (3)A

ording to the sub-arraying strategy [4℄, the ex
itations of the 
ompromise di�eren
epatterns turn out to be
bm,n = αmn

Q
∑

q=1

δcmnqwq ; m = 1, ...,M ; n = 1, ..., N ; q = 1, ..., Q (4)whereC = {cmn; m = 1, ...,M ; n = 1, ..., N} with cmn ∈ [0, Q] andW = {wq; q = 1, ..., Q}are the degrees of freedom of the problem at hand. They are two sets of integer values that
ode the element grouping and the weights of the 
orresponding 
lusters, respe
tively. In(4), δcmnq is the Krone
ker delta fun
tion de�ned as: δcmnq = 1 if the element belongs tothe q-th sub-array (i.e., cmn = q) and δcm,nq = 0, otherwise.Following the guidelines des
ribed in [18℄, given a set of independent ex
itations A =

{αmn; m = 1, ...,M ; n = 1, ..., N} a�ording an optimal sum pattern, the solution of the
ompromise between sum and di�eren
e patterns is obtained by minimizing the following
ost fun
tion
Ψ (C) =

1

Γ

M
∑

m=1

N
∑

n=1

α2
mn

{

gmn −

Q
∑

q=1

δcmnqwq (C)

}2 (5)where gmn ,
βmn

αmn
, m = 1, ...,M , n = 1, ..., N is the set of optimal gains and Γ ≤ M × Nis the number of radiating/a
tive elements in ea
h quadrant. Equation (5) de�nes a 'leastsquare' problem and its solution (i.e., the partition that minimizes the 
ost fun
tion) isa 
ontiguous partition whose As for the the unknown weighting ve
tor W 
an be it isanalyti
ally 
omputed for ea
h trial sub-array 
on�guration C as follows

wq (C) =

∑M
m=1 δcmnqαmnβmn
∑M

m=1 δcmnqα2
mn

. (6)sin
e the value minimizing the sum of the square distan
es in a 
ontiguous subset is the6



weighted arithmeti
 mean of the 
orresponding gmn values. In order to determine the�optimal� sub-array 
on�gurations C
opt, Eq. (5) is optimized a

ording to the followingpro
edure:

• Step 1 - Contiguous Partition Method (CPM). Exploiting the theory in [23℄for the de�nition of 
ontiguous partitions least-square grouping of real-valued quan-tities, C
opt is obtained by 
hoosing Q subsets of the optimal gains gmn sorted on aline [19℄. Towards this end, a list L of Γ referen
e parameters is generated setting

l1 = minm,n {gmn} and lΓ = maxm,n {gmn}. In su
h a way, the number of admis-sible sub-array 
on�gurations (or 
ontiguous partitions) belonging to the so-
alledessential solution spa
e ℜ(ess) (1) amounts to U (ess) =







Γ− 1

Q− 1






.

• Step 2 - Solution Spa
e Representation. Thanks to the sorted list de�ned atStep 1 , the solutions in ℜ(ess) are 
oded into a Dire
t A
y
li
 Graph (DAG) [28℄.The graph G (Γ, Q,Ψ) represented in Fig. 2 is 
hara
terized by:� Q rows ea
h one 
ontaining V = (Γ−Q+ 1) vertexes, V being the maximumnumber of elements that 
an be grouped in a sub-array;� a maximum depth Γ equal to the number of levels of the DAG and to thedimension of the list L as well as the number of vertexes along ea
h r-th path
Pr, r = 1, ..., U (ess) in G;� a suitability fun
tion Ψ (5) aimed at evaluating the goodness of ea
h path Pr,
r = 1, ..., U (ess).The levels of the DAG map one-to-one the elements in L. A vertex vq,lq , q = 1, ..., Q,

lq = q, ..., q + V − 1 is identi�ed by its row index, q, and the depth index, lq.Moreover, its argument, arg
(

vq,lq

)

= q, indi
ates the sub-array membership of ea
harray element of the list L. A path P of Γ vertexes and Γ − 1 edges 
odes a trialsolution C. As shown in Fig. 2, e+q,lq
is the edge (if present) 
onne
ting the vertexes

(1) Essential with respe
t to the solution spa
e whi
h 
an be sampled using standard global optimizerswhose dimension is U = QΓ. 7



vq,lq and vq,lq+1 on the same row of the DAG, while e−q,lq
is the edge (if admissible)between the vertexes vq,lq and vq+1,lq on two di�erent rows of the DAG;

• Step 3 - Edge Weighting. In [22℄, the ACO was used to explore the DAG foridentifying the best sub-array 
on�guration C
opt. Sin
e the quantity of pheromone

τ±q,lq
(0), q = 1, ..., Q, lq = q, ..., q + V − 1 was uniformly set, the edges e±q,lq

(0),
q = 1, ..., Q, lq = q, ..., q + V − 1 have at the initialization the same probability ofbeing explored. Be
ause of the DAG stru
ture and the value of the ratio V

Q
, su
h a
hoi
e a�e
ts in a non-negligible way the ACO-based sampling of the DAG. Indeed,some edges paths have a higher probability of being sampled sin
e the vertexes 
ouldbelong to a di�erent number of paths. As representative examples, the DAGs ofthe 
ases (Γ = 8, Q = 3) and (Γ = 8, Q = 6), both having U (ess) = 21, are reportedin Fig. 3(a) and Fig. 3(b), respe
tively. By sake of 
larity, the number of solutionsto whi
h edge belongs to is indi
ated.In order A proper edge weighting s
heme is here adopted to assure a uniform prob-ability of sampling to ea
h solution/path and to allow an unbiased sear
h a properedge weighting s
heme is ne
essary. Towards this end, The e�e
t is that of in
reas-ing/redu
ing the level of pheromone on ea
h edge is in
reased/redu
ed proportion-ally to the number of di�erent 
ontiguous partition de�ned through that edge. Letus observe that the number of paths leaving the root vertex v1,1 
orresponds tothe dimension of the whole solution spa
e Ω1,1 = U (ess) =







Γ− 1

Q− 1






, while thosedeparting from the vertex v1,2 [Fig. 4(a)℄ and v2,2 [Fig. 4(b)℄ are Ω1,2 =







Γ− 2

Q− 1





and Ω2,2 =







Γ− 2

Q− 2






, namely the number of path through G (Γ− 1, Q,Ψ) and

G (Γ− 1, Q− 1,Ψ), respe
tively. Generalizing, the number Ω of paths/solutions
8



available from the generi
 vertex vq,lq is equal to
Ωq,lq =







Γ− lq

Q− q






. (7)Therefore, the edge-weighting s
heme is applied at the initialization (j = 0) asfollows: A

ordingly, the level of pheromone on edge e+q,lq

is set to
τ+
q,lq

(j) =
Ωq,lq+1

Ωq,lq

(8)while on the edge e−q,lq

τ−q,lq
(j) =

Ωq+1,lq

Ωq,lq

. (9)It is worth noting that Ωq,lq = Ωq,lq+1 + Ωq+1,lq .
• Step 4 - DAG ACO-Sampling. Iteratively, the ACO [20℄[25℄ explores the DAG to�nd C

opt. Ea
h ant of the 
olony A (j) = {at (j) ; t = 1, ..., T}, T being the 
olonydimension, samples the graph starting from the root v1,1 and 
hoosing the next edgewith probability
η±q,lq

(j) =
τ±q,lq

(j)

τ+
q,lq

(j) + τ−q,lq
(j)

, q = 1, ..., Q; lq = q, ..., q + V − 1. (10)The set of vertexes visited by an ant, at (j), from the root to the end of the graph
odes a path Pt (j) =
{

vq,lq ; q = 1, ..., Q; lq = 1, ...,Γ
} of Γ vertexes 
omposed by

Γ−1 edges that identi�es a trial sub-array 
on�guration Ct (j) = arg {Pt (j)}. Theoptimality of ea
h trial solution is quanti�ed by the value of the 
ost fun
tion in
orresponden
e with the 
orresponding subarray 
on�guration, Ψ (Ct (j)). Su
h aninformation is exploited to update the pheromone level on the edges of the DAG as
τ±q,lq

(j + 1)← (1− ρ)

[

τ±q,lq
(j) +

T
∑

t=1

H ×Ψmin
j

Ψ (Ct (j))

] (11)9



where either e+q,lq
or e−q,lq

∈ Pt (j) and Ψmin
j = mint=1,...,T {Ψ (Ct (j))}. Moreover,

ρ ∈ (0, 1] and H are positive indexes that 
ontrol the pheromone evaporation anddeposition on the edges of the DAG. The algorithm stops when a maximum numberof iterations Jmax is rea
hed or the minimization of the 
ost fun
tion rea
hes astationary point (j = Jstat), then C
opt 
hosen as

C
opt = arg [minjmint {Ψ (Ct (j))}] . (12)

3 Numeri
al ResultsA set of numeri
al experiments has been 
arried out to point out the potentialities of theproposed approa
h as well as its improvements over previous implementations.The �rst example deals with the synthesis of a small array in order to detail in a 
ompar-ative fashion the behavior of the edge-weighted approa
h versus the uniform te
hnique[22℄. The array elements are lo
ated on a regular latti
e with M = N = 3 (dx = dy = λ
2
)and belong to a 
ir
ular support of radius R = 1.5λ su
h that the resulting arrangementis 
omposed by Γ = 32 radiators (8 for ea
h quadrant). The ex
itations of the sum mode(Fig. 5) have been 
hosen to a�ord a Taylor pattern with SLL = −35 dB and n̄ = 6[24℄. As far as the referen
e di�eren
e beam D (θ, φ) is 
on
erned, a Bayliss pattern with

SLL = −30 dB and n̄ = 7 [24℄ has been used by setting the ex
itation distribution as inFig. 6.The 
ompromise di�eren
e beam has been synthesized varying the number of sub-arraysin the range Q ∈ [2, 6] to analyze the performan
e of the proposed method. First, the
Γ optimal gains have been 
omputed and the list L generated (Fig. 7) a

ording to the
CPM .Figure 8 shows the values of the 
ost fun
tion for the best solutions found by the proposedweighted-graph ACO-based (WG − ACO) approa
h and the ACO version in [22℄ whenrunning 10 di�erent simulations for ea
h value of Q. The ACO parameters have been set10



a

ording to the out
omes from [22℄: T = 0.1 × U (ess) with a minimum value equal to
Tmin = 5 to exploit the 
ooperative behavior of the 
olony, Jmax = 1000, H = 1, and ρ =

0.05. It is worth noting that both methods �nd the global optimum when Q is smaller than
Γ (e.g., Q = {2, 3, 4}) as 
on�rmed by the plot in Fig. 9(a) that shows the 
ost fun
tionvalues for all the solutions belonging to ℜ(ess) (Γ = 8, Q = {2, 3, 4}). Nevertheless, thebare ACO does not rea
h the global solution when Q ≃ Γ (Γ = 8, Q = {5, 6}) sin
e it getsstu
k in a lo
al minimum [Fig. 9(b)℄. As a matter of fa
t, Ψopt

WG−ACO

∣

∣

Q=5
= 5.023×10−4 vs.

Ψopt
ACO

∣

∣

Q=5
= 5.438×10−4 and Ψopt

WG−ACO

∣

∣

Q=6
= 1.685×10−4 vs. Ψopt

ACO

∣

∣

Q=6
= 4.965×10−4.The 
orresponding paths within theDAG are as follows: P opt

WG−ACO

∣

∣

Q=5
= {11123445} vs.

P
opt
ACO

∣

∣

Q=5
= {12234445} and P opt

WG−ACO

∣

∣

Q=6
= {12234556} vs. P opt

ACO

∣

∣

Q=6
= {11123456}.Let us noti
e that, despite the dimension of the solution spa
e does not vary from Q = 3up to Q = 6 (see Tab. I), the uniform ACO is able to get the �best� 
ompromise solutiononly in the former 
ase, while sub-optimal solutions are found otherwise. Su
h a resultis not due to the DAG representation of the solution spa
e, but on the �
ontrol level� ofthe ACO [25℄ (i.e., 
ontrol parameters, initialization 
riteria, 
onstraints, and termination
onditions) whi
h exploits the pheromone update me
hanism to sample the solution spa
elooking for the global optimum. As a matter of fa
t, still keeping the same ACO stru
turepresented in [22℄, but initializing the pheromone levels through the weighted approa
h, thereliability of the DAG sampling has been improved. As an illustrative example, Figure10 gives a representation of the relative amount of pheromone on the edges of the DAGfor the 
ase (Γ = 8, Q = 3) [Fig. 10(a)℄ and the 
ase (Γ = 8, Q = 6) [Fig. 10(b)℄.More in detail, the thi
kness of the segments between two vertexes is proportional to theamount of pheromone on the 
orresponding edge. Moreover, the dotted lines indi
ateobliged 
hoi
es when only the 
orresponding path is admissible.The ine�
ien
ies of the uniform-weight approa
h is more evident when U (ess) grows aspointed out by the plots of Ψopt in Fig. 11. The test 
ase is here 
on
erned with a latti
eof dimension 2M × 2N = 20× 20, a 
ir
ular boundary R = 5.0λ in radius, and a numberof a
tive elements for ea
h quadrant equal to Γ = 75. The number of sub-arrays has beenvaried between Q = 2 and Q = 20. As for the ex
itations, the sum ex
itations was 
hosen11



to a�ord a Taylor pattern with SLL = −35 dB and n̄ = 6 [24℄, while referen
e ex
itationswas used to generate a Bayliss pattern with SLL = −30 dB and n̄ = 7 [24℄. Con
erningthe parameters of the ACO, the same setting of the previous experiment has been usedalso introdu
ing a maximum threshold Tmax = 1000 (when T = 0.1 × U (ess) > Tmax) onthe number of ants for ea
h iteration to limit the 
omputational time. As expe
ted (Fig.11), the weighted approa
h always outperforms the previous implementation and, for ea
hexample (i.e., Uess value or Q value), solutions with lower 
ost fun
tion values have beendetermined.As far as the 
omputational issues are 
on
erned, let us 
onsider that the CPU-timerequired to 
omplete an ACO iteration is the same for both the weighted and uniforms
heme. It is also worth noti
ing that the improvements from the weighted s
heme arenot 
on
erned with the 
onvergen
e speed, but rely in a more reliable sear
h of theoptimal solution. For 
ompleteness and as a representative example, the 
ase Q = 5needs Jstat = 85 iterations of the WG − ACO (i.e., a total CPU-time of 16.34 se
) tosample the solution spa
e of dimension U (ess) = 1150626, while the uniform approa
h withthe same ACO parameter setting stops after Jstat = 122 iterations (i.e., a total CPU-timeof 23.28 se
).3.1 The Hybrid ExtensionAlthough the WG − ACO proved its e�e
tiveness, the 
omputation of the sub-arrayweights through (6) does not guarantee the retrieval of the global optimum solution.Moreover, it does not allow to set 
onstraints on the desired radiation pattern in a dire
tfashion [26℄[27℄. The hybrid method in [11℄[29℄ over
omes su
h a limitation. On
e C
optwas de�ned by means of the WG−ACO, the optimal weights W

opt 
an be 
omputed bymeans of a 
onvex programming (CP ) strategy [30℄, aimed at minimizing
Φ (W) = −Im

{

∂D (θ, φ)

∂γ

}

γ={θ,φ}

∣

∣

∣

∣

∣ θ = θ0

φ = φ0

(13)
12



to the maximize the slope along the boresight dire
tion (θ0, φ0) of the di�eren
e pattern
D (θ, φ), subje
t to Re

{

∂D(θ,φ)
∂γ

}

γ={θ,φ}

∣

∣

∣

∣

θ = θ0

φ = φ0

= 0, D (θ0, φ0) = 0, and |D (θ, φ)|2 ≤

M (θ, φ), M (θ, φ) being a positive upper bound fun
tion on the power radiated in thesidelobe region. Moreover, Re { } and Im { } indi
ate the real and imaginary part, respe
-tively. Furthermore, θ ∈ [

0, π
2

] and φ ∈ [0, 2π].To show the behavior of the hybrid method (H−WG−ACO), an array withM = N = 5elements lo
ated on a square grid with uniform spa
ing d = λ
2
is used as ben
hmarkgeometry. The aperture radius has been set to R = 2.5λ su
h that Γ = 19. The same sumpattern of the previous examples has been kept, while the referen
e di�eren
e ex
itations

βmn [Figs. 12(a)-(b)℄ have been generated by applying the pro
edure in [30℄ to synthesizethe optimal di�eren
e pattern D(θ, φ) with SLLref = −25 dB shown in Fig. 12(
). Inorder to design the 
ompromise di�eren
e pattern, Q = 5 sub-arrays have been used forea
h quadrant.The array 
lustering found by the WG − ACO when exploring the solution graph with
T = 30 ants is shown in Fig. 13(a). Su

essively, the 
onvex programming pro
edurehas been applied by 
onstraining the pattern to the same mask used to determine theoptimal di�eren
e pattern [Fig. 12(
)℄. The values W

opt are then given in Tab. II, whilethe 
orresponding pattern is shown in Fig. 13(b). For 
omparison, the same synthesisproblem has been addressed with the hybrid-BEM (H − BEM) approa
h [19℄ and theresults are reported in Fig. 13 and Tab. II, as well. For 
ompleteness, Figure 14 plots thelevel of the se
ondary lobe normalized to the maximum of the power pattern for ea
h φ-
ut, φ ∈ [0 : 80o] [Fig. 14(a)℄ and the sidelobe ratio de�ned as SLR (φ) = SLL(φ)
max

0≤θ< π
2

[D(θ,φ)]
,

φ ∈ [0 : 80o] [Fig. 14(b)℄. As it 
an be observed, the H −WG− ACO solution improvesthat obtained with the H − BEM in terms of maximum SLL (SLLH−BEM = −21.3 dBvs. SLLH−WG−ACO = −25.4 dB) and SLR value, whi
h turns out to be smaller in a largepart (i.e., almost 90%) of the angular range. The reliability of the new hybridization inbetter mat
hing the referen
e pattern D (θ, φ) [Fig. 12(
)℄ is further pointed out in Fig.15 where the mismat
h index Ξ (θ, φ) ,
∣

∣DdB (θ, φ)−DH
dB (θ, φ)

∣

∣ is shown for both hybrid13



methods.Finally, in order to give some indi
ations on the 
omputational 
osts of the hybrid ACO-based approa
h, let us 
onsider that sampling the solution spa
e of dimension U (ess) =

3060 requires 133 ACO iterations and 11CP iterations when using the H −WG−ACO[i.e., 5.8 × 10−2se
 (WG − AGO) and 850 se
 (CP )℄, while the H − BEM performs 22

BEM iterations and 17 CP iterations [i.e., < 10−6 se
 (BEM) and 1370 se
 (CP )℄.4 Con
lusionsIn this work, an edge weighting te
hnique has been proposed for the e�e
tive ACO-based sampling of the graph ar
hite
ture 
oding the admissible 
lustering 
on�gurationsof a sub-arrayed monopulse planar array. The advantages of the ACO in dealing with thenon-
onvexity of the problem at hand and to explore graph representations of the solutionspa
e have been further and better exploited for enabling the synthesis of large-s
ale planararrangements. Representative results have demonstrated the enhan
ement of the synthesisperforman
e with respe
t to previous methods (e.g., BEM) and implementations (i.e.,uniform ACO).

14



Referen
es[1℄ M. I. Skolnik, Radar Handbook (3rd Edition). USA: M
Graw-Hill, 2008.[2℄ S. M. Sherman, Monopulse Prin
iples and Te
hniques. USA: Arte
h House, 1984.[3℄ D. K. Barton, Monopulse Radar . USA: Arte
h House, 1977.[4℄ D. A. M
Namara, �Synthesis of sub-arrayed monopulse linear arrays through mat
h-ing of independently optimum sum and di�eren
e ex
itations,� IEE Pro
. H Mi-
rowaves Antennas Propag., vol. 135, no. 5, pp. 371-374, O
t. 1988.[5℄ T.-S. Lee and T.-Y. Dai, �Optimum beamformers for monopulse angle estimationusing overlapping subarrays,� IEEE Trans. Antennas Propag ., vol. 42, no. 5, pp.651-657, May 1994.[6℄ T.-S. Lee and T.-K. Tseng, �Subarray-synthesized low-side-lobe sum and di�eren
epatterns with partial 
ommon weights,� IEEE Trans. Antennas Propag ., vol. 41, no.6, pp. 791-800, Jun. 1993.[7℄ A. F. Morabito and P. Ro

a, �Optimal synthesis of sum and di�eren
e patternswith arbitrary sidelobes subje
t to 
ommon ex
itations 
onstraints,� IEEE AntennasWireless Propag. Lett., vol. 9, pp. 623-626, 2010.[8℄ F. Ares, S. R. Rengarajan, J. A. Rodriguez, and E. Moreno, �Optimal 
ompromiseamong sum and di�eren
e patterns,� J. Ele
tromag. Waves Appl., vol. 10, pp. 1143-1555, 1996.[9℄ P. Lopez, J. A. Rodriguez, F. Ares, and E. Moreno, �Subarray weighting for di�eren
epatterns of monopulse antennas: Joint optimization of subarray 
on�gurations andweights,� IEEE Trans. Antennas Propag ., vol. 49, no. 11, pp. 1606-1608, Nov. 2001.[10℄ S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, �Optimization of the di�eren
epatterns for monopulse antennas by a hybrid real/integer-
oded di�erential evolutionmethod,� IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 372-376, Jan. 2005.15



[11℄ M. D'Urso, T. Isernia, and E. F. Meliado', �An e�e
tive hybrid approa
h for theoptimal synthesis of monopulse antennas,� IEEE Trans. Antennas Propag ., vol. 55,no. 4, pp. 1059-1066, Apr. 2007.[12℄ P. Ro

a, L. Mani
a, A. Martini, and A. Massa, �Synthesis of large monopulse lineararrays through a tree-based optimal ex
itations mat
hing,� IEEE Antennas WirelessPropag. Lett., vol. 6, pp. 436-439, 2007.[13℄ Y. Chen, S. Yang, and Z. Nie, �The appli
ation of a modi�ed di�erential evolutionstrategy to some array pattern synthesis problems,� IEEE Trans. Antennas Propag.,vol. 56, no. 7, pp. 1919-1927, Jul. 2008.[14℄ L. Mani
a, P. Ro

a, and A. Massa, �On the synthesis of sub-arrayed planar arrayantennas for tra
king radar appli
ations,� IEEE Antennas Wireless Propag. Lett.,vol. 7, pp. 599-602, 2008.[15℄ L. Mani
a, P. Ro

a, and A. Massa, �An ex
itation mat
hing pro
edure for sub-arrayed monopulse arrays with maximum dire
tivity,� IET Radar, Sonar & Naviga-tion, vol. 3, no. 1, pp. 42-48, Feb. 2009.[16℄ P. Ro

a, L. Mani
a, and A. Massa, �Dire
tivity optimization in planar sub-arrayedmonopulse antenna,� PIER L, vol. 4, pp. 1-7, 2008.[17℄ P. Ro

a, L. Mani
a, M. Pastorino, and A. Massa, �Boresight slope optimization ofsub-arrayed linear arrays through the 
ontiguous partition method,� IEEE AntennasWireless Propagat. Lett., vol. 8, pp. 253- 257, 2008.[18℄ L. Mani
a, P. Ro

a, A. Martini, and A. Massa, �An innovative approa
h based ona tree-sear
hing algorithm for the optimal mat
hing of independently optimum sumand di�eren
e ex
itations,� IEEE Trans. Antennas Propag ., vol. 56, no. 1, pp. 58-66,Jan. 2008.[19℄ L. Mani
a, P. Ro

a, M. Benedetti, and A. Massa, �A fast graph-sear
hing algorithmenabling the e�
ient synthesis of sub-arrayed planar monopulse antennas,� IEEETrans. Antennas Propag., vol. 57, no. 3, pp. 652-663, Mar. 2009.16



[20℄ M. Dorigo, V. Maniezzo, and A. Colorni, �Ant system: optimization by a 
olonyof 
ooperating agents,� IEEE Trans. Syst. Man and Cybern. B , vol. 26, no. 1, pp.29-41, Feb. 1996.[21℄ P. Ro

a, L. Mani
a, F. Stringari, and A. Massa, �Ant 
olony optimization for tree-sear
hing based synthesis of monopulse array antenna,� Ele
tron. Lett., vol. 44, no.13, pp.783-785, Jun. 2008.[22℄ P. Ro

a, L. Mani
a, and A. Massa, �An improved ex
itation mat
hing methodbased on an ant 
olony optimization for suboptimal-free 
lustering in sum-di�eren
e
ompromise synthesis,� IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2297-2306,Aug. 2009.[23℄ W. D. Fisher, �On grouping of maximum homogeneity,� Ameri
an Statisti
al Journal ,pp. 789-798, De
. 1958.[24℄ R. S. Elliott, Antenna Theory and Design. Wiley-Inters
ien
e IEEE Press, 2003.[25℄ P. Ro

a, M. Benedetti, M. Donelli, D. Fran
es
hini, and A. Massa, �EvolutionaryOptimization as Applied to Inverse S
attering Problems,� Inverse Problems, vol. 25,p. 1-41, 2009.[26℄ P. Ro

a, L. Mani
a, and A. Massa, �Synthesis of monopulse antennas through theiterative 
ontiguous partition method,� Ele
tron. Lett., vol. 43, no. 16, pp. 854-856,Aug. 2007.[27℄ P. Ro

a, L. Mani
a, A. Martini, and A. Massa, �Compromise sum-di�eren
e opti-mization through the iterative 
ontiguous partition method,� IET Mi
rowaves, An-tennas & Propagat., vol. 3, no. 2, pp. 348-361, 2009.[28℄ P. Ro

a, L. Mani
a, and A. Massa, �An e�e
tive mat
hing method for the synthesisof optimal 
ompromise between sum and di�eren
e patterns in planar arrays,� PIERB , vol. 3, pp. 115-130, 2008.
17



[29℄ P. Ro

a, L. Mani
a, R. Azaro, and A. Massa, �A hybrid approa
h for the synthesisof sub-arrayed monopulse linear arrays,� IEEE Trans. Antennas Propagat., vol. 57,no. 1, pp. 280-283, Jan. 2009.[30℄ O. Bu

i, M. D'Urso, and T. Isernia, �Optimal synthesis of di�eren
e patterns sub-je
t to arbitrary sidelobe bounds by using arbitrary array antennas,� IEE Pro
. Mi-
rowaves Antennas Propag., vol. 152, no. 3, pp. 129-137, Jun. 2005.

18



FIGURE CAPTIONS
• Figure 1. Sket
h of a sub-arrayed monopulse array antenna.
• Figure 2. DAG representation of the solution spa
e.
• Figure 3. DAG Analysis (Γ = 8, Q = {3, 6}) - Number of trial solutions to whi
hthe DAG edges belong to when (a) Γ = 8, Q = 3 and (b) Γ = 8, Q = 6.
• Figure 4. Edge Weighting Approa
h - DAG regions admissible from (a) the vertex
v1,1 and (b) the vertex v2,2.
• Figure 5. WG − ACO Numeri
al Results (M = N = 3, Γ = 8, Q ∈ [2, 6]) -Ex
itations of the optimal sum pattern (Taylor , SLL = −35 dB, n̄ = 6 [24℄).
• Figure 6. WG − ACO Numeri
al Results (M = N = 3, Γ = 8, Q ∈ [2, 6]) -Ex
itations of the referen
e di�eren
e pattern (Bayliss, SLLref = −30 dB, n̄ = 7[24℄): (a) amplitudes and (b) phase weights.
• Figure 7. WG − ACO Numeri
al Results (M = N = 3, Γ = 8, Taylor - SLL =

−35 dB - n̄ = 6, Bayliss - SLLref = −30 dB - n̄ = 7) - List L of the sorted optimalgains.
• Figure 8. Comparative Assessment (M = N = 3, Γ = 8, Q ∈ [2, 6], Taylor -
SLL = −35 dB - n̄ = 6, Bayliss - SLLref = −30 dB - n̄ = 7) - Cost fun
tionvalues in 
orresponden
e with the optimal solutions found by the ACO and the
WG− ACO.
• Figure 9. Comparative Assessment (M = N = 3, Γ = 8, Q ∈ [2, 6], Taylor -
SLL = −35 dB - n̄ = 6, Bayliss - SLLref = −30 dB - n̄ = 7) - Cost fun
tion valuesof the solutions 
oded within the DAG when (a) Q ∈ [2, 5] and (b) Q = {5, 6}. The
ACO and the WG−ACO solution are denoted by with a 
ir
le.
• Figure 10. WG− ACO Numeri
al Results (Γ = 8, Q = {3, 6}) - Edge weightingapproa
h as applied to the DAG sampling when (a) Γ = 8, Q = 3 and (b) Γ = 8,
Q = 6. The dotted lines indi
ates mandatory 
hoi
es.19



• Figure 11. Comparative Assessment (M = N = 20, Γ = 75, Q ∈ [2, 20], Taylor- SLL = −35 dB - n̄ = 6, Bayliss - SLLref = −30 dB n̄ = 7) - Cost fun
tionvalues in 
orresponden
e with the optimal solutions found by the ACO and the
WG − ACO versus (a) the dimension of the solution spa
e, U (ess), and (b) thenumber of sub-arrays, Q.
• Figure 12. Hybrid Extension (M = N = 5, Γ = 19, Referen
e di�eren
e [30℄ -
SLLref = −25 dB) - Referen
e di�eren
e ex
itations: (a) amplitudes and (b) phaseweights. Power pattern of the referen
e mode (
).
• Figure 13. Hybrid Extension (M = N = 5, Γ = 19, Referen
e di�eren
e [30℄ -
SLLref = −25 dB, Q = 5) - Plots of (a)(
) the sub-array 
on�gurations and of(b)(d) the relative power pattern determined with (a)(b) the H −WG−ACO and(
)(d) the H − BEM .
• Figure 14. Hybrid Extension (M = N = 5, Γ = 19, Referen
e di�eren
e [30℄ -
SLLref = −25 dB, Q = 5) - Plots of (a) the SLL and (b) the SLR of the solutionsfound by the H −WG− ACO and the H − BEM .
• Figure 15. Hybrid Extension (M = N = 5, Γ = 19, Referen
e di�eren
e [30℄ -
SLLref = −25 dB, Q = 5) - Plot of the mismat
h fun
tion Ξ(θ, φ) when applyingthe (a) H −WG− ACO and the (b) H − BEM .TABLE CAPTIONS
• Table I. WG − ACO Numeri
al Results (M = N = 3, Γ = 8, Q ∈ [2, 6]) -Dimension of the solution spa
e U (ess).
• Table II. Hybrid Approa
h (M = N = 5, Γ = 19 × 4, Q = 5) - Values of thesub-array weights.
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Γ 8

Q 2 3 4 5 6

U (ess)
7 21 35 35 21
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w1 w2 w3 w4 w5

H −WG− ACO 1.0942 2.0305 2.9870 4.5573 5.6723

H −BEM 1.0488 2.7605 4.2845 4.8999 5.5077

Tab. II - G. Oliveri and L. Poli, �Optimal Sub-Arraying of Compromise Planar ...�37


