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Cra
k Dete
tion in Lossy Two-Dimensional Stru
turesby means of a Mi
rowave Imaging Approa
hSalvatore Caorsi*, Andrea Massa**, Matteo Pastorino***, and Fabio Righini***

Abstra
tThe purpose of this paper is to present a mi
rowave imaging approa
h for the de-termination of the position, the orientation and dimensions of a 
ra
k lo
ated insidea lossy diele
tri
 host medium. The inversion pro
edure is based on a geneti
 algo-rithm whi
h allows to iteratively generate a sequen
e of trial solutions minimizinga suitable 
ost fun
tion. The dependen
e of the performan
es of the proposed mi-
rowave imaging approa
h on the 
ondu
tivity value of the host medium is 
he
ked.Moreover, the robustness of the algorithm to operate with noisy data is evaluated.Finally, the re
onstru
tion of an irregular 
ra
k is 
onsidered.
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1 Introdu
tionThe use of interrogating mi
rowaves for inspe
ting diele
tri
 materials or 
ondu
ting stru
-tures 
oated by diele
tri
s has been proposed from long time. However, mi
rowave tomo-graphi
 te
hniques are relatively news in this �eld.In this paper we propose an approa
h for data inversion in tomographi
 imaging whi
h
an be of interest in the light of nondestru
tive evaluation (NDE) appli
ations. Theusually proposed di�ra
tion tomography aims at re
onstru
ting an �image� of the obje
tunder test, e.g. a pixel matrix (usually, two-dimensional imaging is performed) in whi
hea
h pixel 
orresponds to a dis
retization 
ell (whose dimensions essentially determine thesystem resolution) [1℄.At mi
rowave frequen
ies, the s
attering me
hanisms must be taken into a

ount in there
onstru
tion pro
edure. Consequently, di�ra
tion tomography is mu
h more 
omplexthan 
lassi
al CT approa
hes based on approximations (e.g., straight ray propagation).The 
omplexity results in a large 
omputational load, mainly in terms of CPU time, forthe data inversion and the image formation [1℄.However, in NDE areas [2℄, [3℄, [4℄, the generation of a 
omplete image of the target isnot always required. The obje
t is usually known and what is of interest is only a defe
t inthe known 
ross se
tion. The inspe
tion pro
ess should a

urately lo
alize, orientate andshape the defe
t. At mi
rowave frequen
ies, the inverse problem that must be solved is ahighly nonlinear one. The possibility of multiple solutions may result in false lo
alizationsor artifa
ts that 
an be very problemati
 in several appli
ations.Sto
hasti
 optimization pro
edures [5℄, [6℄, [7℄ seem to be able to rea
h the �global�solution of the problem. Consequently, they are potential inversion tools. Pro
edures ofthis kind (in parti
ular the geneti
 algorithms (GAs)) have previously been proposed formi
rowave imaging purposes [8℄. Nevertheless, their main drawba
k is the 
omputationaltime required to a
hieve the solution when many unknowns must be determined. In themi
rowave imaging framework, this problem is over
ame by hybridizing the GA-based3



pro
edure with a deterministi
 method (see for example [8℄, [9℄, [10℄ and the referen
estherein). In NDE appli
ations, the number of unknowns 
onsiderably redu
es and thesear
h spa
e 
an be limited by imposing some deterministi
 
onstraints arising from thea-priori knowledge on the problem at hand.It should be noted that a number of approa
hes based on the use of GAs has beenalready proposed in the NDE �eld. These approa
hes are mainly 
on
erned with thedete
tion of 
ra
ks by using eddy 
urrent te
hniques. For example, a 
lassi
 binary-
oded GA has been in [11℄, where the intera
tion of the ex
iting ECT 
oil with arbitraryshape 
ra
ks (parallel with ea
h other and perpendi
ular to the surfa
e of an in�nite non-ferromagneti
 
ondu
tor plate) is 
al
ulated by using integral equation. A 
onstrainedGA asso
iated with a �nite-element modeling for solving 2D inverse problems in ECThas been also proposed in [12℄. Moreover, a numeri
al example of 
ra
k dete
tion using aprobe that 
an operate from DC to medium frequen
y has been presented in [13℄, in whi
ha �nite element method is used for the dire
t problem solution and a GA is applied asinversion tool. A pro
ess monitoring system has been developed in [14℄ for 
old headingappli
ations. In that work, a GA has been used to sele
t the small subset of waveformfeatures ne
essary to develop a robust arti�
ial neural network for the di�erentiationamong 
old head ma
hine 
onditions. Another evolutionary algorithm has been 
onsideredin [15℄ for solving the ele
tromagneti
 NDE inverse problem 
onsisting in �nding theposition, dimension, 
ategories, type, shape or number of �aws in a 
ondu
ting samplestarting from the information obtained by a ECT probe. Sin
e a high number of degreesof freedom are present in the 
hoi
e of the parameters governing these kind of algorithm,paper [15℄ is a preliminary attempt to use a meta-algorithm aiming to �nd the bestvalues for the operator parameters. Essentially, this meta-algorithm is a GA having aspopulation a set of evolutionary algorithms.
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2 Mathemati
al FormulationIn Figure 1, a 
lassi
 tomographi
 
on�guration is represented. An in
ident wave is gen-erated by the transmitting antenna and impinges on the obje
t to be inspe
ted. To dealwith a two-dimensional s
alar problem, the in
ident wave is assumed to be transversemagneti
 (TMz) with the ele
tri
 �eld ve
tor polarized in the same dire
tion of the axisof the 
ylindri
al obje
t. Generally, the aim is to inspe
t the 
ross-se
tion of the 
ylinder,whi
h is assumed to be homogeneous only in the z dire
tion. A set of probes is lo
atedaround the obje
t. The measurement probes and the transmitting antenna jointly rotatearound the obje
t in order to 
olle
t multiview information (the use of multiview pro
ess-ing is of fundamental importan
e in inverse problems, as it results in a redu
tion of theill-
onditioning).At mi
rowave frequen
ies, there is a 
ompli
ated relationship between measured dataand spatial distributions of diele
tri
 parameters of the obje
t under test. This relation-ship mathemati
ally models the laws of the e.m. s
attering and 
an be written as [16℄,[17℄: Ev;ms
att = Ev;mmeas � Ev;min
 = =v;m f�g (1)where:� Ev;ms
att: s
attered �eld (z -
omponent) at point m (m = 1; :::;M) for the v-th view(v = 1; :::; V );� Ev;mmeas: measured ele
tri
 �eld;� Ev;min
 : in
ident ele
tri
 �eld;� � : obje
t fun
tion de�ned as � = ("�1)�j �2�f"0 being " and � the diele
tri
 permit-tivity and 
ondu
tivity of the 
ross se
tion (in general, inhomogeneous quantities),respe
tively; 5



� =v;m: �rst-order Fredholm operator having as kernel the Hankel fun
tion of se
ondkind and zero order [16℄;� M , V : numbers of measurement probes and views.In imaging appli
ations [1℄, the target is the re
onstru
tion of the obje
t fun
tion in thewhole 
ross-se
tion. If highly 
ontrasted bodies are to be inspe
ted, �inverting� (1) resultsin a 
umbersome and 
omplex nonlinear inverse problem.However, in many NDE appli
ations, the problem is the dete
tion of a defe
t in anotherwise known obje
t (�obje
t). In this paper, we explore the possibility of identifyingthe position, the orientation and the size of a 
ra
k (for simpli
ity approximated with avoid re
tangle) in the original stru
ture. The 
ra
k is 
hara
terized by: L (length), w(width), � (orientation), (x0; y0) 
oordinates of the 
enter (Figure 1). The parameters L,w, and �, are assumed to belong to �nite sets: L 2 fLj; j = 1; :::;�g, w 2 fwi; i = 1; :::; !gand � 2 fp��; p = 1; :::;�g. The unknowns 
onstitute an array �. The re
onstru
tionproblem is then to minimize the following fun
tional:� n�o = 
1 MXm=1 VXv=1 ���Ev;ms
att � =v;m n�o���2+

2 NXn=1 VXv=1 ���Ev;nin
 � =v;n0 n�o���2 (2)where:� Ev;nin
 : in
ident ele
tri
 �eld at the 
enter of the n-th pixel (the original 
ross se
tionis partitioned into N square pixels);� =v;n0 : the operator 
orresponding to the Volterra equation relating the internal �elds(the so 
alled state equation) [17℄;� 
1, 
2: regularization 
onstants. 6



By using (2), the original inverse problem is re
ast into a global optimization problem.Sin
e =v;n0 and =v;m 
ontain as unknown also the internal total ele
tri
 �eld, one 
anuse the �rst order Born approximation [18℄ (Etot � Ein
 inside the 
ross se
tion). Sin
ethe Born approximation is not able to deal with strong s
atterers [19℄, Etot = Etot;z bzis assumed here to be an unknown, and the values Ev;ntot , n = 1; :::; N , v = 1; :::; V areen
losed in the array �.The minimization of � n�o (relation (2)) is obtained by using a GA. The GA evolvesa set of trial arrays, 
alled a population of individuals, 
 = f�l; l = 1; :::; L
g, towardthe global minimum of the 
ost fun
tion [20℄. The individuals are represented by stringof 
oded unknowns, ea
h element of whi
h is 
alled gene. An hybrid integer-real 
odings
heme is 
onsidered. A binary en
oding [21℄ is used for the parameters 
hara
terizingthe 
ra
k. On the 
ontrary, ele
tri
 �eld unknowns are represented with real-valued genes[22℄, [8℄. Then the following sequen
e of steps is performed:� Randomly generate an initial population, 
(0);� Compute the value of the 
ost fun
tion of ea
h individual of the 
urrent population,�(k)l being k the population number;� Generate an intermediate population, 
(k)int, applying the proportionate sele
tion [6℄operator;� Generate a new population, 
(k+1), applying mutation and 
rossover operators to
(k)int. These operators are applied in probability, where the 
rossover and mutationprobabilities are system parameters. As far as 
rossover operator is 
on
erned stan-dard two-point 
rossover is used [7℄. The mutation is performed following di�erentstrategies a

ording to the type of the gene to mutate. If the randomly sele
ted geneis binary-valued, then standard binary mutation is adopted. Otherwise, the gene ismodi�ed by adding a random value, su
h that the obtained solution be physi
allyadmissible. 7



� When L
 new individuals are generated, the elitism me
hanism [5℄ is applied inorder to always maintain the best solution in the 
urrent population.The iterative pro
edure is repeated until a termination 
riterion is attained. In parti
ular,the pro
ess is stopped if a �xed threshold for the value of the 
ost fun
tion (�) is attainedor if a maximum number of generations is a
hieved (Kmax).3 Numeri
al ResultsTo test the performan
e of the proposed algorithm, a number of simulations have beenperformed with the use of both noiseless and noisy syntheti
 data. Let us 
onsider a lossysquare host obje
t 0:8�0-sided, being �0 the free-spa
e wavelength, 
hara
terized by a rel-ative diele
tri
 permittivity "obje
t(x; y) = 2:0. The s
atterer is su

essively illuminated byV = 4 in
ident unit plane waves whose impinging dire
tions are given by #v = (v � 1) 2�V ,v = 1; :::; V . The observation domain is made up of M = 40 measurement points equallyspa
ed and lo
ated in a 
ir
le 0:64�0 in radius.In the �rst example, the e�e
t of the 
ondu
tivity of the host medium on the dete
tionof a 
ra
k is analyzed. A square 
ra
k (L = W = 0:2�0) is 
entered at the point x0 =y0 = 0:1�0. The assumed parameter 
on
erning the GA (
hosen a

ording to valuessuggested in the literature [6℄, [7℄) are the following: 
rossover probability, p
 = 0:7;mutation probability, pm = 0:7; dimension of the population, L
 = 80; maximum numberof generations, Kmax = 1000; 
ost fun
tion threshold, � = 10�5.In order to quantify the errors in the 
ra
k positioning, in the de�nition of the 
ra
karea, and for the ele
tri
 �eld predi
tion suitable error �gures are de�ned:

 = q(x0 � bx0)2 + (y0 � by0)2dmax � 100 (lo
ation error) (3)
A = A
 � bA
A
 � 100 (area error) (4)8



�n = ������ bEv;ntot ���� jEv;ntot j���jEv;ntot j � 100 (field error) (5)being (bx0; by0) the estimated 
oordinates of the 
ra
k, dmax = p2lD the maximum errorin de�ning the 
ra
k 
enter when it belongs to the host s
atterer, bA
 and A
 the estimatedand a
tual 
ra
k areas, respe
tively, and bEv;ntot the estimated ele
tri
 �eld inside the nthsubdomain. Figure 2, shows the behavior of the maximum, average and minimum valuesof the lo
ation (Fig. 2(a)) and area (Fig. 2(b)) errors versus �. As 
an be seen, thealgorithm performs better in the 
ra
k lo
ation than in de�ning the 
ra
k dimensions. Asfar as the lo
ation error is 
on
erned, the average value is less than 13% in the range ofvariability of �. On the 
ontrary, the area error results less than 50% for a 
ondu
tivityvalue ranging between 0 and 0:4 (S/m), and 
onsiderably in
reases for larger value of �.For 
ompleteness, Figure 3 shows the plots of the ele
tri
 �eld distribution (� = 3) insidethe investigation domain when � = 0:3 (S/m). In more detail, �gures 3(a) and 3(b) givethe �eld amplitude for the 
ra
k-free 
on�guration and for the referen
e 
on�gurationwith the 
ra
k, respe
tively. In order to give some indi
ations about the 
onvergen
eof the iterative pro
edure, �gures 3(
)-3(f ) show the plot of �n inside the investigationdomain for di�erent iterations. Starting from the initial iteration (k = 0), the averagevalue of the �eld error de
reases until a per
entage value equal to 26% is rea
hed at thestopping iteration (k = 1000) (Table I).An idea of the data �tting obtained with the presented approa
h is given in Figure 4and Figure 5. Figure 4 shows the amplitude of the estimated s
attered ele
tri
 �eld (� = 3)in the observation domain. The re
onstru
ted amplitudes are given in 
orresponden
ewith di�erent iterations and also the a
tual distribution is reported. Starting from theiterations around k = 400, the agreement between referen
e and re
onstru
ted amplitudesis very good. For 
ompleteness, the �tness fun
tion and related addends (i.e., �Data n�o =PMm=1PVv=1 ���Ev;ms
att �=v;m n�o���2 and �State n�o = PMn=1PVv=1 ���Ev;min
 �=v;n0 n�o���) are shownin Figure 5. The plots 
on�rm a good �tting with the data related to the s
attered ele
tri
9



�eld in the observation domain as well as with those proportional to the in
ident �eldinside the investigation domain.The results in a noisy environment are 
onsidered in the se
ond example where thehost medium is 
hara
terized by a 
ondu
tivity � = 0:1 (S/m). To simulate the presen
eof the noise in observed data, Gaussian noise is added. The noise is a 
omplex randomvariable whose real and imaginary parts are independent Gaussian random variables withzero mean and standard deviation given by� = PMn=1PVv=1 ��� bEv;ms
att���22NV � SN � (6)being � SN � the signal-to-noise ratio. The results in term of error �gures, derived fromthe inversion pro
edure when a Gaussian noise 
hara
terized by di�erent power levelsis 
onsidered, are given in Table II. The in�uen
e of the noise on the re
onstru
tion
apabilities of the approa
h is visible. The values of the error �gures in
rease as thesignal-to-noise ratio de
reases. However it should be noted that the approa
h show agood robustness to the noise. As far as 

 and 
A are 
on
erned the in
rease in theerror values results less than 5% and 7% between the strongly and weakly noisy 
ase,respe
tively.Finally, the dete
tion of an irregular 
ra
k has been 
onsidered. Figure 6 is 
on
ernedwith the 
ase of a void 
ra
k lo
ated inside a lossy host medium (� = 0:01(S/m)) asshown in Figure 6(a). In parti
ular, Figures 6(b), 6(
), and 6(d) give the images ofthe re
onstru
ted 
on�guration at the initialization (k = 0), at an intermediate iteration(k = 50), and at the 
onvergen
e iteration (k� : �k� n�o < �), respe
tively. Starting froman initial estimate of the area and lo
ation of the 
ra
k randomly 
hosen (�g. 6(b)), theestimated 
ra
k parameters tend to be
ome more and more similar to the a
tual one. The�nal image (�g. 6(d)) shows that the 
ra
k is 
orre
tly lo
ated and also the 
ra
k areais similar to the referen
e one. In parti
ular, the estimate of the 
ra
k area results verygood if we 
onsider that the 
onstraint of a re
tangular 
ra
k to be dete
ted is assumed10



during the iterative pro
ess.4 Con
lusionsA two-dimensional inverse s
attering method for re
onstru
ting the parameters of a 
ra
klo
ated inside a lossy host medium has been proposed. The method is based on minimiz-ing the mean-square errors between measured and re
onstru
ted s
attered and in
identele
tri
 �elds, respe
tively. Unlike the inversion methods based on deterministi
 opti-mization te
hniques, the proposed approa
h allows to use the large amount of a-prioriknowledge avoiding the solution to be trapped in lo
al minima of the nonlinear fun
tional.The re
onstru
tion te
hnique has been tested with syntheti
 data in both noisy andnoiseless 
onditions. It has been demonstrated that quite a

urate results 
an be a
hievedespe
ially as far as the 
ra
k lo
ation is 
on
erned.Finally, preliminary results 
on
erned with an irregular void 
ra
k have been shown.Further improvement in the performan
e of the proposed approa
h may be a
hieved byadding appropriate penalty terms or by 
hoosing a more a

urate parameterization of the
ra
k perimeter. This is left for future works.
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FIGURE CAPTIONS� Figure 1.Problem Geometry.� Figure 2.Re
onstru
tion of a void 
ra
k inside a lossy host medium. Minimum, maximum,and average values of (a) 

 and of (b) 
A for di�erent values of the host medium
ondu
tivity.� Figure 3.Re
onstru
tion of a void 
ra
k inside a lossy host medium (� = 0:3 (S/m)). Am-plitude of the ele
tri
 �eld inside the investigation domain (� = 3). (a) Cra
k-freedistribution. (b) A
tual distribution. Field error distribution inside the investiga-tion domain obtained by using the mi
rowave imaging approa
h at the iterations(
) k = 0, (
) k = 100, (
) k = 500, and (
) k = 1000.� Figure 4.Re
onstru
tion of a void 
ra
k inside a lossy host medium (� = 0:3 (S/m)). Ampli-tude of the s
attered ele
tri
 �eld at the measurement points (� = 3). Comparisonbetween a
tual and re
onstru
ted values.� Figure 5.Re
onstru
tion of a void 
ra
k inside a lossy host medium (� = 0:3 (S/m)). Behaviorof the fun
tional versus the number of iterations.� Figure 6.Re
onstru
tion of a void irregular 
ra
k inside a lossy host medium (� = 0:01(S/m)). Images of re
onstru
tion results. (a) A
tual 
on�guration. Re
onstru
ted
on�guration at the iterations (b) k = 0, (
) k = 50, and (d) k = 1000.
14



TABLE CAPTIONS� Table I.Re
onstru
tion of a void 
ra
k inside a lossy host medium (� = 0:3 (S/m)). Statisti
sof the �eld error inside the investigation domain for di�erent numbers of iterations.Simulation in Fig. 3.� Table II.In�uen
e of the noise on the re
onstru
tion of a void 
ra
k inside a lossy host medium(� = 0:01 (S/m)). Error �gures.
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k av f� (x; y)g var f� (x; y)g min f� (x; y)g max f� (x; y)g0 365.40 4519.4 0:29� 10�1 1138.44100 15.47 64.47 0:36� 10�2 43.95500 12.61 29.66 0:26� 10�1 29.651000 12.10 26.00 0:66� 10�2 31.85
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� SN �dB 

 
A av f� (x; y)g10 9.53 49.37 12.66430 7.38 47.11 12.61450 4.92 42.96 12.613
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