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Abstract

The purpose of this paper is to present a microwave imaging approach for the de-
termination of the position, the orientation and dimensions of a crack located inside
a lossy dielectric host medium. The inversion procedure is based on a genetic algo-
rithm which allows to iteratively generate a sequence of trial solutions minimizing
a suitable cost function. The dependence of the performances of the proposed mi-
crowave imaging approach on the conductivity value of the host medium is checked.
Moreover, the robustness of the algorithm to operate with noisy data is evaluated.

Finally, the reconstruction of an irregular crack is considered.



1 Introduction

The use of interrogating microwaves for inspecting dielectric materials or conducting struc-
tures coated by dielectrics has been proposed from long time. However, microwave tomo-
graphic techniques are relatively news in this field.

In this paper we propose an approach for data inversion in tomographic imaging which
can be of interest in the light of nondestructive evaluation (NDE) applications. The
usually proposed diffraction tomography aims at reconstructing an “image” of the object
under test, e.g. a pixel matrix (usually, two-dimensional imaging is performed) in which
each pixel corresponds to a discretization cell (whose dimensions essentially determine the
system resolution) [1].

At microwave frequencies, the scattering mechanisms must be taken into account in the
reconstruction procedure. Consequently, diffraction tomography is much more complex
than classical CT approaches based on approximations (e.g., straight ray propagation).
The complexity results in a large computational load, mainly in terms of CPU time, for
the data inversion and the image formation [1].

However, in NDE areas [2], [3], [4], the generation of a complete image of the target is
not always required. The object is usually known and what is of interest is only a defect in
the known cross section. The inspection process should accurately localize, orientate and
shape the defect. At microwave frequencies, the inverse problem that must be solved is a
highly nonlinear one. The possibility of multiple solutions may result in false localizations
or artifacts that can be very problematic in several applications.

Stochastic optimization procedures [5], [6], [7] seem to be able to reach the “global”
solution of the problem. Consequently, they are potential inversion tools. Procedures of
this kind (in particular the genetic algorithms (GAs)) have previously been proposed for
microwave imaging purposes [8]|. Nevertheless, their main drawback is the computational
time required to achieve the solution when many unknowns must be determined. In the

microwave imaging framework, this problem is overcame by hybridizing the GA-based



procedure with a deterministic method (see for example [8], [9], [10] and the references
therein). In NDE applications, the number of unknowns considerably reduces and the
search space can be limited by imposing some deterministic constraints arising from the
a-priori knowledge on the problem at hand.

It should be noted that a number of approaches based on the use of GAs has been
already proposed in the NDE field. These approaches are mainly concerned with the
detection of cracks by using eddy current techniques. For example, a classic binary-
coded GA has been in [11], where the interaction of the exciting ECT coil with arbitrary
shape cracks (parallel with each other and perpendicular to the surface of an infinite non-
ferromagnetic conductor plate) is calculated by using integral equation. A constrained
GA associated with a finite-element modeling for solving 2D inverse problems in ECT
has been also proposed in [12]. Moreover, a numerical example of crack detection using a
probe that can operate from DC to medium frequency has been presented in [13], in which
a finite element method is used for the direct problem solution and a GA is applied as
inversion tool. A process monitoring system has been developed in [14] for cold heading
applications. In that work, a GA has been used to select the small subset of waveform
features necessary to develop a robust artificial neural network for the differentiation
among cold head machine conditions. Another evolutionary algorithm has been considered
in [15] for solving the electromagnetic NDE inverse problem consisting in finding the
position, dimension, categories, type, shape or number of flaws in a conducting sample
starting from the information obtained by a ECT probe. Since a high number of degrees
of freedom are present in the choice of the parameters governing these kind of algorithm,
paper [15] is a preliminary attempt to use a meta-algorithm aiming to find the best
values for the operator parameters. Essentially, this meta-algorithm is a GA having as

population a set of evolutionary algorithms.



2 Mathematical Formulation

In Figure 1, a classic tomographic configuration is represented. An incident wave is gen-
erated by the transmitting antenna and impinges on the object to be inspected. To deal
with a two-dimensional scalar problem, the incident wave is assumed to be transverse
magnetic (T'M,) with the electric field vector polarized in the same direction of the axis
of the cylindrical object. Generally, the aim is to inspect the cross-section of the cylinder,
which is assumed to be homogeneous only in the z direction. A set of probes is located
around the object. The measurement probes and the transmitting antenna jointly rotate
around the object in order to collect multiview information (the use of multiview process-
ing is of fundamental importance in inverse problems, as it results in a reduction of the
ill-conditioning).

At microwave frequencies, there is a complicated relationship between measured data
and spatial distributions of dielectric parameters of the object under test. This relation-

ship mathematically models the laws of the e.m. scattering and can be written as [16],

[17]:
scatt = Breas = Bine = S {7} (1)
where:
o E.v.: scattered field (z-component) at point m (m = 1,..., M) for the v-th view
(v=1,..,V);
o Em » measured electric field;
e E.": incident electric field;
e 7: object function defined as 7 = (¢ —1) — j5=2— being ¢ and o the dielectric permit-
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tivity and conductivity of the cross section (in general, inhomogeneous quantities),

respectively;



e 3V first-order Fredholm operator having as kernel the Hankel function of second

kind and zero order [16];

e M, V: numbers of measurement probes and views.

In imaging applications [1], the target is the reconstruction of the object function in the
whole cross-section. If highly contrasted bodies are to be inspected, “inverting” (1) results
in a cumbersome and complex nonlinear inverse problem.

However, in many NDE applications, the problem is the detection of a defect in an
otherwise known object (7ypject). In this paper, we explore the possibility of identifying
the position, the orientation and the size of a crack (for simplicity approximated with a
void rectangle) in the original structure. The crack is characterized by: L (length), w
(width), @ (orientation), (g, yo) coordinates of the center (Figure 1). The parameters L,
w, and @, are assumed to belong to finite sets: L € {L;,j =1,..,.T'}, w € {w;,i =1,...,w}
and § € {pAf,p=1,..,T}. The unknowns constitute an array {. The reconstruction

problem is then to minimize the following functional:

where:

e E.": incident electric field at the center of the n-th pixel (the original cross section

is partitioned into N square pixels);

e 37": the operator corresponding to the Volterra equation relating the internal fields

(the so called state equation) [17];

® 71, 72: regularization constants.



By using (2), the original inverse problem is recast into a global optimization problem.
Since Iy and Y™ contain as unknown also the internal total electric field, one can
use the first order Born approximation [18] (E;,; ~ E,. inside the cross section). Since
the Born approximation is not able to deal with strong scatterers [19], By = Eyot.2
is assumed here to be an unknown, and the values E.;', n = 1,....N, v = 1,...,V are
enclosed in the array &.

The minimization of ¢ {g} (relation (2)) is obtained by using a GA. The GA evolves
a set of trial arrays, called a population of individuals, €2 = {§l;l =1,.., Lo}, toward
the global minimum of the cost function [20]. The individuals are represented by string
of coded unknowns, each element of which is called geme. An hybrid integer-real coding
scheme is considered. A binary encoding [21] is used for the parameters characterizing

the crack. On the contrary, electric field unknowns are represented with real-valued genes

[22], [8]- Then the following sequence of steps is performed:

e Randomly generate an initial population, Q);

e Compute the value of the cost function of each individual of the current population,

§§k) being k the population number;

(k)

e Generate an intermediate population, ;,;, applying the proportionate selection [6]

operator;

e Generate a new population, Q*+Y  applying mutation and crossover operators to
QEZ% These operators are applied in probability, where the crossover and mutation
probabilities are system parameters. As far as crossover operator is concerned stan-
dard two-point crossover is used [7]. The mutation is performed following different
strategies according to the type of the gene to mutate. If the randomly selected gene
is binary-valued, then standard binary mutation is adopted. Otherwise, the gene is

modified by adding a random value, such that the obtained solution be physically

admissible.



e When Lq new individuals are generated, the elitism mechanism [5] is applied in

order to always maintain the best solution in the current population.

The iterative procedure is repeated until a termination criterion is attained. In particular,
the process is stopped if a fixed threshold for the value of the cost function (¢) is attained

or if a maximum number of generations is achieved (K,az)-

3 Numerical Results

To test the performance of the proposed algorithm, a number of simulations have been
performed with the use of both noiseless and noisy synthetic data. Let us consider a lossy
square host object 0.8 \g-sided, being A, the free-space wavelength, characterized by a rel-
ative dielectric permittivity qpject(, y) = 2.0. The scatterer is successively illuminated by
V = 4 incident unit plane waves whose impinging directions are given by 9, = (v — 1) 22,
v=1,...,V. The observation domain is made up of M = 40 measurement points equally
spaced and located in a circle 0.64)\, in radius.

In the first example, the effect of the conductivity of the host medium on the detection
of a crack is analyzed. A square crack (L = W = 0.2)\;) is centered at the point z, =
yo = 0.1)\g. The assumed parameter concerning the GA (chosen according to values
suggested in the literature [6], [7]) are the following: crossover probability, p. = 0.7;
mutation probability, p,, = 0.7; dimension of the population, Lo = 80; maximum number
of generations, K,,,; = 1000; cost function threshold, ¢ = 10~°.

In order to quantify the errors in the crack positioning, in the definition of the crack

area, and for the electric field prediction suitable error figures are defined:

~\2 7 \2
To — Tp) + -
e = \/( 0~ To)” + (%o — ) x 100 (location error) (3)

dmaz

~

YA = % x 100 (area error) (4)
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o, = H ‘ x 100 (field error) (5)

being (o, 7o) the estimated coordinates of the crack, dye, = v2[p the maximum error
in defining the crack center when it belongs to the host scatterer, ﬁc and A, the estimated
and actual crack areas, respectively, and Efof the estimated electric field inside the nth
subdomain. Figure 2, shows the behavior of the maximum, average and minimum values
of the location (Fig. 2(a)) and area (Fig. 2(b)) errors versus o. As can be seen, the
algorithm performs better in the crack location than in defining the crack dimensions. As
far as the location error is concerned, the average value is less than 13% in the range of
variability of o. On the contrary, the area error results less than 50% for a conductivity
value ranging between 0 and 0.4 (S/m), and considerably increases for larger value of o.
For completeness, Figure 3 shows the plots of the electric field distribution (v = 3) inside
the investigation domain when o = 0.3 (S/m). In more detail, figures 3(a) and 3(b) give
the field amplitude for the crack-free configuration and for the reference configuration
with the crack, respectively. In order to give some indications about the convergence
of the iterative procedure, figures 3(¢)-3(f) show the plot of @, inside the investigation
domain for different iterations. Starting from the initial iteration (k = 0), the average
value of the field error decreases until a percentage value equal to 26% is reached at the
stopping iteration (k = 1000) (Table I).

An idea of the data fitting obtained with the presented approach is given in Figure 4
and Figure 5. Figure 4 shows the amplitude of the estimated scattered electric field (v = 3)
in the observation domain. The reconstructed amplitudes are given in correspondence
with different iterations and also the actual distribution is reported. Starting from the
iterations around k£ = 400, the agreement between reference and reconstructed amplitudes
is very good. For completeness, the fitness function and related addends (i.e., ¢patq {§} =

M s B v )] and dsiae {€) = S0 SV [BRm - S0m {€)|) are shown

in Figure 5. The plots confirm a good fitting with the data related to the scattered electric



field in the observation domain as well as with those proportional to the incident field
inside the investigation domain.

The results in a noisy environment are considered in the second example where the
host medium is characterized by a conductivity ¢ = 0.1 (S/m). To simulate the presence
of the noise in observed data, Gaussian noise is added. The noise is a complex random
variable whose real and imaginary parts are independent Gaussian random variables with

zero mean and standard deviation given by

_ DR S \Eﬁcﬂt ’
T () ©)

being (%) the signal-to-noise ratio. The results in term of error figures, derived from
the inversion procedure when a Gaussian noise characterized by different power levels
is considered, are given in Table II. The influence of the noise on the reconstruction
capabilities of the approach is visible. The values of the error figures increase as the
signal-to-noise ratio decreases. However it should be noted that the approach show a
good robustness to the noise. As far as 7. and 74 are concerned the increase in the
error values results less than 5% and 7% between the strongly and weakly noisy case,
respectively.

Finally, the detection of an irregular crack has been considered. Figure 6 is concerned
with the case of a void crack located inside a lossy host medium (¢ = 0.01(S/m)) as
shown in Figure 6(a). In particular, Figures 6(b), 6(c), and 6(d) give the images of
the reconstructed configuration at the initialization (k = 0), at an intermediate iteration
(k = 50), and at the convergence iteration (k* : @ {é} < (), respectively. Starting from
an initial estimate of the area and location of the crack randomly chosen (fig. 6(b)), the
estimated crack parameters tend to become more and more similar to the actual one. The
final image (fig. 6(d)) shows that the crack is correctly located and also the crack area
is similar to the reference one. In particular, the estimate of the crack area results very

good if we consider that the constraint of a rectangular crack to be detected is assumed

10



during the iterative process.

4 Conclusions

A two-dimensional inverse scattering method for reconstructing the parameters of a crack
located inside a lossy host medium has been proposed. The method is based on minimiz-
ing the mean-square errors between measured and reconstructed scattered and incident
electric fields, respectively. Unlike the inversion methods based on deterministic opti-
mization techniques, the proposed approach allows to use the large amount of a-priori
knowledge avoiding the solution to be trapped in local minima of the nonlinear functional.

The reconstruction technique has been tested with synthetic data in both noisy and
noiseless conditions. It has been demonstrated that quite accurate results can be achieved
especially as far as the crack location is concerned.

Finally, preliminary results concerned with an irregular void crack have been shown.
Further improvement in the performance of the proposed approach may be achieved by
adding appropriate penalty terms or by choosing a more accurate parameterization of the

crack perimeter. This is left for future works.
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FIGURE CAPTIONS

e Figure 1.

Problem Geometry.

e Figure 2.
Reconstruction of a void crack inside a lossy host medium. Minimum, maximum,
and average values of (a) 7. and of (b) v for different values of the host medium

conductivity.

e Figure 3.
Reconstruction of a void crack inside a lossy host medium (o = 0.3 (S/m)). Am-
plitude of the electric field inside the investigation domain (v = 3). (a) Crack-free
distribution. (b) Actual distribution. Field error distribution inside the investiga-
tion domain obtained by using the microwave imaging approach at the iterations

(¢) k=0, (c) k=100, (¢) k=500, and (¢) k = 1000.

e Figure 4.
Reconstruction of a void crack inside a lossy host medium (o = 0.3 (S/m)). Ampli-
tude of the scattered electric field at the measurement points (v = 3). Comparison

between actual and reconstructed values.

e Figure 5.
Reconstruction of a void crack inside a lossy host medium (o = 0.3 (S/m)). Behavior

of the functional versus the number of iterations.

e Figure 6.
Reconstruction of a void irregular crack inside a lossy host medium (o = 0.01
(S/m)). Images of reconstruction results. (a) Actual configuration. Reconstructed

configuration at the iterations (b) £ =0, (¢) £ = 50, and (d) k = 1000.
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TABLE CAPTIONS

e Table I.
Reconstruction of a void crack inside a lossy host medium (o = 0.3 (S/m)). Statistics
of the field error inside the investigation domain for different numbers of iterations.

Simulation in Fig. 3.

e Table II.
Influence of the noise on the reconstruction of a void crack inside a lossy host medium

(0 =0.01 (S/m)). Error figures.
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Fig. 6 - S. Caorsi et al., “Crack Detection in Lossy ...”
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ko jav{®(z,y)} | var {® (z,y)} | min{® (z,y)} | maz{P (z,y)}
0 365.40 4519.4 0.29 x 107! 1138.44
100 15.47 64.47 0.36 x 1072 43.95
500 12.61 29.66 0.26 x 1071 29.65
1000 12.10 26.00 0.66 x 1072 31.85

Tab. I - S. Caorsi et al., “Crack Detection in Lossy ...”
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10 9.53 49.37 12.664

30 7.38 47.11 12.614

50 4.92 42.96 12.613
Tab. IT - S. Caorsi et al., “Crack Detection in Lossy ...”
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