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tive Testing, Mi
rowave Imaging, Geneti
 AlgorithmsAbstra
t - This paper is aimed at exploring the possibility of using a mi
rowave approa
hbased on a geneti
 algorithm to dete
t a defe
t inside a known host obje
t. Startingfrom the knowledge of the s
attered �eld, the problem solution is re
ast as a two steppro
edure. After de�ning a 
ost fun
tion depending on the geometri
 parameters of the
ra
k, a minimization pro
edure based on a hybrid-
oded geneti
 algorithm is applied.The in�uen
e of the noise as well as of the geometry of the defe
t on the 
ra
k dete
tionand re
onstru
tion is investigated. Moreover, the numeri
al e�e
tiveness of the iterativeapproa
h is examined. 1



1 Introdu
tionThe use of mi
rowaves for material 
hara
terization and nondestru
tive testing and evalu-tation (NDT/NDE) is now rather 
ommon in several appli
ations involving the inspe
tionof diele
tri
s or 
ondu
ting materials 
oated by diele
tri
 layers. The reader 
an refer topapers [1℄[2℄[3℄[4℄ and referen
es therein to have an idea of the dire
tions followed by theresear
h in this �eld. However, in the NDE 
ommunity, mi
rowaves are used in generalto interrogate a sample and the information on the status of this sample is retrieved fromtransmission/re�e
tion data. At the same time, deeper studies have been made 
on
ern-ing the potentialities of using mi
rowaves as an imaging methodology in other areas (e.g.,medi
al imaging [5℄). Sin
e the intera
tion of mi
rowave and diele
tri
s with ma
ros
opi
dimension 
omparable with the wavelength gives rise to s
attering phenomena, the infor-mation on the "image" of the obje
t is 
ontained in rather 
omplex way into the s
attered�eld. The resulting problem is higly nonlinear and ill-posed, and simple and e�
ient so-lution 
an be found only in parti
ularly simple 
ases in whi
h the obje
t represents onlya weak dis
ontinuity in the propagating medium. In those 
ases, linearization te
hniques
an be applied, whi
h are usually based on Born-type approximations.On the 
ontrary, to inspe
t (for imaging purposes) stronger s
atterers more 
omplex it-erative te
hniques (both deterministi
 and sto
hasti
) must be used. It should be stressedthat a number of iterative te
hniques have been proposed in re
ent years, essentially fromresear
hers in the mi
rowave 
ommunity, who have no strong interse
tions with the NDE
ommunity. Those iterative pro
edures are usually very time 
onsuming and, at present,are far from allowing a real or quasi-real time pro
essing. Sometime, the use of parallel
omputers has also been suggested.However, in the NDE area, a 
omplete image of a s
atterer may often 
onstitute aredundant (although not undesired) information and a faster 
omputation or a simpli�edpro
essing is often preferred. In many 
ases the obje
t to be inspe
ted is 
ompletely2



known ex
ept for a defe
t. The lo
alization and shaping of the defe
t may 
onstitutea su�
ient information. Combining the above requirements with the e�
ien
y of someof imaging-oriented methodologies, it is possible to develop a rather e�
ient tool forinspe
ting diele
tri
s in the NDE �eld.In the authors' opinion, a key role for the 
hoi
e of the methodologies most suitableto be "adapted" to the new problem in hand, is played by the possibility of in
luding"a priori" information into the model. Con
erning this point, sto
hasti
 approa
hes areusually superior to deterministi
 ones. Moreover, sto
hasti
 approa
hes are in prin
ipleable to get a global solution of the problem (the "
orre
t" solution), whereas deterministi
approa
hes 
an often be trapped in lo
al solutions ("false" solutions). On the 
ontrary,in imaging-oriented appli
ations, deterministi
 approa
hes are usually mu
h faster thansto
hasti
 methods. However, the time of 
onvergen
e of these methods 
an be stronglyredu
ed if the number of unknowns (whi
h is of 
ourse very high in ea
h imaging-basedappli
ation) 
an be signi�
antly limited, as it o

urs in the presently proposed approa
h.To this end, in the present paper we explore the possibility of using a sto
hasti
pro
edure based on a geneti
 algorithm to dete
t defe
ts in a known host obje
t. A two-dimensional tomographi
 
on�guration is assumed and the defe
t is approximated by avoid of �xed shape (re
tangular). Position, dimensions and orientation of the defe
t insidethe obje
t 
ross-se
tion are unknowns to be determined by measuring the s
attered �eld.The inverse problem is redu
ed to an optimization one in whi
h a suitable fun
tionaldepending on only �ve geometri
 parameters de�ning the 
ra
k, have to be minimized. Inthis framework, geneti
 algorithms are very e�e
tive and rea
h the minimum (potentially,the global minimum) in a very short time.In the following, the approa
h will be dis
ussed and some results also for noisy envi-ronment provided, in whi
h the main emphasis is on the 
orre
t defe
t lo
alization andin the retrieval of its dimensions. 3



2 Mathemati
al FormulationLet us 
onsider a two dimensional geometry where a 
ylindri
al inhomogeneous s
attereris embedded in a homogeneous external medium (Figure 1). The s
atterer is 
hara
terizedby a s
alar permittivity " (x; y) and a 
ondu
tivity � (x; y) and is su

essively illuminatedby a number of known in
ident �elds Evin
, v = 1; :::; V . The working frequen
y is indi
atedby f0. The in
ident �elds are linearly polarized with the ele
tri
 �eld dire
ted along theaxis of the s
atterer: Evin
 (r) = Evin
 (x; y)z (TM polarization).The s
attered ele
tri
 �eld, Evs
att (x; y), (de�ned as Evs
att (x; y) = Evtot (x; y)�Evin
 (x; y),being Evtot (x; y) the total �eld 
orresponding to the in
ident �eld Evin
 (x; y)) is 
olle
tedin an observation domain, S, external to the s
atterer. The following integral equationholds: Evs
att (x; y) = Z ZD � (x0; y0)Evtot (x0; y0)G2D (k0�) dx0dy0 (x; y) 2 S (1)where D is the obje
t 
ross-se
tion; � (x; y) denotes the s
attering potential de�ned as� (x; y) = " (x; y)�1� j �(x;y)2�f0"0 ; G2D is the two-dimensional free-spa
e Green's fun
tion [6℄;and � = q(x� x0)2 + (y � y0)2. The problem is that of dete
ting the presen
e of a void
ra
k in the original s
atterer. In more detail, we sear
h for the position, the orientationand the size of a 
ra
k present in the original stru
ture. The 
ra
k is approximated by anobje
t of re
tangular shape and parameterized by length, `, width, w, orientation, �, and
enter 
oordinates, (x0; y0) (Figure 1).The approa
h used is a two step pro
edure, in whi
h a dete
tion phase pre
edes anidenti�
ation phase. Firstly, we 
he
k whether there exists a 
ra
k in the stru
ture byusing the following obje
t fun
tion:�dete
tion = 1V VXv=18><>:R RS ���Evs
att(
f) (x; y)� Evs
att(
) (x; y)���2 dxdyR RS ���Evs
att(
f) (x; y)���2 dxdy � 
noise9>=>; (2)4



where Evs
att(
f) (x; y) and Evs
att(
) (x; y) are the s
attered ele
tri
 �eld measured in theobservation domain for a 
ra
k-free 
ase and when the defe
t is present, respe
tively;
noise is a measure of the noise level de�ned as follows:
noise = R RS ���Evs
att(
f) (x; y)� Ev(noiseless)s
att(
f) (x; y)���2 dxdyR RS ���Ev(noiseless)s
att(
f) (x; y)���2 dxdy (3)where the super-s
ript noiseless indi
ates the �eld values for the noise-free 
ase. Ifthe value of the obje
t fun
tion is less than a �xed threshold �, then the investigateds
atterer is assumed 
ra
k-free. Otherwise the identi�
ation phase starts. It should bepointed out that the value of the dete
tion threshold is a fun
tion of the sensitivity of themeasurement system.The 
ra
k-identi�
ation problem is that of �nding the parameters of the 
ra
k, x0, y0,w, �. The obje
t fun
tion when the defe
t is present is given by:�(
) (x; y) = 8>><>>: �0 if X 2 h� 2̀ ; 2̀i and Y 2 h�w2 ; w2 i�(
f) (x; y) otherwise (4)where X = (x� x0) 
os�+(y � y0) sin�, Y = (x0 � x) sin�+(y � y0) 
os� , �(
f) (x; y)and �0 are the obje
t fun
tion for the 
ra
k-free geometry and for the void 
ra
k, respe
-tively. Moreover, the ele
tri
 internal �eld for the �aw 
on�guration is unknown. Wesear
h for the array 	 = fx0, y0, `, w, �; Evtot(
) (x; y)g minimizing the following 
ostfun
tion:�identifi
ation f	g =�V VXv=18><>:R RS ���Evs
att(
) (x; y)� R RD �(
) (x0; y0)Evtot(
) (x0; y0)G2D (k0�) dx0dy0���2 dxdyR RS ���Evs
att(
f) (x; y)���2 dxdy 9>=>;+
5



�V VXv=18><>:R RD ���Evin
 (x; y)� Evtot(
) (x; y) + R RD �(
) (x0; y0)Evtot(
) (x0; y0)G2D (k0�) dx0dy0���2 dxdyR RS jEvin
 (x; y)j2 dxdy 9>=>;(5)The �rst term is the normalized error in �tting the measured data (�data); the se
ondterm is a measure of the error in satisfy the state equation (�state); � and � are tworegularizing 
onstants.By the Ri
hmond method [7℄, the following dis
retized version of the fun
tional (4) isobtained:�identifi
ation f g =�MV VXv=1 MXm=18><>:���Evs
att(
) (xm; ym)�PNn=1 �(
) (xn; yn)Evtot(
) (xn; yn) RDn G2D (k0�mn) dx0dy0���2���Evs
att(
) (xm; ym)���2 dxdy 9>=>;+
�NV VXv=1 NXn=18><>:���Evin
 (xn; yn)� Evtot(
) (xn; yn) +PNp=1 �(
) (xp; yp)Evtot(
) (xp; yp) RDp G2D (k0�np) dx0dy0���2jEvin
 (xn; yn)j2 dxdy 9>=>;(6)where  = nx0; y0; `; w; �;Evtot(
) (xn; yn) ; n = 1; :::; No; (xn; yn) denotes the 
enter ofthe n-th dis
retization domain; (xm; ym) indi
ates the m-th measurement point; �ij is thedistan
e between the i -th and j -th 
enters and Dl the area of the l -th sub-domain. The
onsidered problem dis
retization suggests the assumption that `, w, � belong to �nitesets of values: ` 2 fLj; j = 1; :::; Lg, w 2 fwi; i = 1; :::;Wg, � 2 fp��; p = 1; :::; Pg. Inparti
ular, ` and w are multiple of the side of the dis
retization 
ell and � of the angularstep used for the multiview pro
ess.�identifi
ation f g is minimized by an iterative pro
edure able to generate a sequen
eof trial 
on�gurations  (k); k = 1; :::; K, being k the iteration number, whi
h 
onverges tothe extremum of the fun
tional. Be
ause of the nature of the unknowns, it is ne
essary6



to 
hoose a method able to treat simultaneously dis
rete and 
ontinuous variables. More-over, due to the nonlinearity of the fun
tional (the nonlinearity arises from the multiples
attering phenomena), an algorithm able to avoid lo
al minima is ne
essary. A GA [8℄seems to be a good 
hoi
e. In general, GAs have demonstrated their e�e
tiveness in treat-ing nonlinear fun
tion with many unknowns [9℄ and avoiding the solution to be trappedin lo
al minima.
3 Appli
ation of the Geneti
 AlgorithmGeneti
 algorithms [8℄[10℄[11℄[12℄ are e�
ient and robust population-based sear
h andoptimization te
hniques. An individual in a GA population (
alled 
hromosome) is a�nite-length string 
ode 
orresponding to a solution of a given problem (in our 
ase,  ).Ea
h individual has a �tness value (in our 
ase, �identifi
ation f g) asso
iated with it, thatis a measure of its 
loseness to the a
tual solution. Iteratively, an initial population of NPindividuals (population size) evolves through su

essive generations by the appli
ationof geneti
 operators namely, sele
tion, 
rossover and mutation until some termination
riterion is satis�ed.In order to design a geneti
 algorithm for a spe
i�
 problem the following points mustbe taken into a

ount:1. An en
oding pro
edure must be de�ned in order to provide a one-to-one mappingbetween the parameter spa
e and the 
hromosomes;2. Variation operators must be de�ned that obey the mathemati
al properties of the
hosen representation and permit to 
reate new individuals starting from the existingones; 7



3. A termination 
riterion is needed.This se
tion des
ribes the 
hoi
es 
onsidered when a geneti
 algorithm is applied for theidenti�
ation of a 
ra
k.3.1 En
oding Pro
edureIn general, GAs use a binary representation of the individuals as �xed-length stringsover the alphabet f0; 1g [10℄, su
h that they are well suited to handle pseudo-Booleanoptimization problems. For optimization problems with dis
rete parameters, an integer-valued parameter is typi
ally represented by a string of q bits, where q = log2�, being� the number of values that the dis
rete variable 
an assume. In this work, `, �, and w,are 
oded in binary strings of Q = log2L bits, T = log2P , and R = log2W , respe
tively.Moreover, after dis
retization of the investigation domain, also the 
enter 
oordinatesof the 
ra
k are 
onsidered as dis
rete parameters, then x0 and y0 are represented withC = log2Nl bits, where Nl = pN . For simpli
ity, a square 
ross-se
tion is assumed.Furthermore, a real-valued representation is used for the ele
tri
 �eld Evtot(
) (xn; yn) ; n =1; :::; N . This 
hoi
e seems to be parti
ularly suitable in this 
ase [13℄[14℄[15℄[16℄. Theuse of the �oating-point representation for real unknowns results in a redu
tion of the
omputational load (the binary 
oding/de
oding pro
edure is avoided) without violat-ing the algorithmi
 framework [17℄. Then ea
h unknown array results in a hybrid-
odedindividual (
hromosome) obtained 
on
atenating the 
ode of ea
h parameter (gene), asshown in Figure 2.3.2 Geneti
 OperatorsBinary tournament sele
tion [18℄ and binary double point 
rossover [19℄ are used forsele
tion and 
rossover, respe
tively. Then, the mutation is performed with probabilityPm on an individual of the population. This mutation 
onsists in perturbing, a

ording to8



an assigned probability fun
tion Pbm, only one element of the 
hromosome. If the elementis a bit, it is 
hanged from zero to one or vi
eversa; otherwise the following mutation ruleis 
onsidered
= nEv(k+1)tot(
) (xn; yn)o =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:
= nEv(k)tot(
) (xn; yn)o+r ���maxn h= nEvtot(
) (xn; yn)oi� = nEv(k)tot(
) (xn; yn)o���if p � 0:5= nEv(k)tot(
) (xn; yn)o�r ���= nEv(k)tot(
) (xn; yn)o�minn h= nEvtot(
) (xn; yn)oi���otherwise

(7)
where =fg indi
ates the imaginary or the real part; r and p are random values be-longing to the range [0; 1℄, with a uniform distribution generated by a pseudo-randomnumber generator; (minn= nEvtot(
) (xn; yn)o; maxn= nEvtot(
) (xn; yn)o) is the a

eptan
edomain for the unknown = nEvtot(
) (xn; yn)o.3.3 Termination CriterionSin
e the amount of 
omputing time required to obtain solution of a desired quality is notknown a-priori, the halting 
riterion for the iterative algorithm is taken to be a 
ertainmaximum number of generations (Kmax), or when a �xed threshold (�) for the �tnessfun
tion is a
hieved (�identifi
ation f g � �).In this work, in order to keep the population diversity among new generations andavoiding a premature 
onvergen
e, we de�ne a new pro
edure 
alled refresh step. Thisis 
arried out whenever the �tness di�eren
e between the �ttest and weakest individualsof the population is below a spe
i�ed trigger level, 
 (i.e., a measure of the premature9




onvergen
e for the algorithm) or when the value of the optimal �tness is stationaryfor more than K0 = 0:1Kmax generations. Starting from the best individual generated, (opt) ={x(opt)0 ,y(opt)0 , `(opt), w(opt), �(opt), Ev(opt)tot(
) (xn; yn) ; n = 1; :::; N}, we generate a newpopulation a

ording to the following rules:� the best individual is 
opied into the new population;� Np2 individuals are randomly generated inside the sear
h spa
e� one 
hromosome (
alled Born-type 
hromosome) is generated. The �rst B-bits arethe same of the best individual, whereas the last bits are obtained by 
onsidering ase
ond-order Born approximation [20℄:Ev(K0)tot (xn; yn) = Evin
 (xn; yn)+ NXp=1 � (opt)(
) (xp; yp)Evin
 (xp; yp) ZDp G2D (k0�np) dx0dy0+
NXp=1 � (opt)(
) (xp; yp)8<: NXq=1 � (opt)(
) (xq; yq)Evin
 (xq; yq) ZDq G2D (k0�pq) dx0dy09=;ZDp G2D (k0�np) dx0dy0(8)� the others �Np2 � 1� 
hromosomes are randomly generated by 
onsidering multiplemutations in the Born-type 
hromosome.

4 Numeri
al ResultsIn the following, some numeri
al results are shown in order to assess the e�e
tiveness butalso 
urrent limitations of the proposed approa
h. Let us 
onsider a square homogeneous
ylinder lD-sided with an area equal to AD. M equally spa
ed measurement points are10



lo
ated on a 
ir
le r in radius (r > lDp2). The values of the s
attered ele
tri
 �eld at themeasurement points are syntheti
ally obtained by the moment method. V in
ident planewaves are assumed: Evin
 (x; y) = e�jk0(x
os#v+ysin#v), where the angles #v = (v � 1) 2�V ,v = 1; :::; V de�ne the propagation dire
tions. As far as the parameters for the GA are
on
erned, the following values are 
hosen: NP = 80, P
 = 0:7, Pm = 0:4, Pbm = 0:01,Kmax = 1000.4.1 De�nitionsThe signal-to-noise (SNR) ratio is de�ned asSNR = 10log10PVv=1PMm=1 jEvs
att (xm; ym)j22MV �2noise (9)where �2noise is the varian
e of the additive Gaussian noise with zero mean value.The errors in the 
ra
k identi�
ation are quanti�ed by the following �gures.1) Error in the lo
ation of the 
enter of the 
ra
k, Æ
:Æ
 = q(x0 � bx0)2 + (y0 � by0)2dmax � 100 (10)being (bx0; by0) the estimated 
oordinates of the 
ra
k, and dmax = p2lD the maximumerror in de�ning the 
ra
k 
enter when it belongs to the host s
atterer.2) The same error as in 1) but normalized to the wavelength:Æ0 = q(x0 � bx0)2 + (y0 � by0)2�0 � 100 (11)3) Error in the estimation of the 
ra
k area:ÆA = A
 � bA
A
 � 100 (12)where bA
 and A
 are the estimated and a
tual 
ra
k areas, respe
tively.11



4) Errors in predi
ting the ele
tri
 �eld are quanti�ed by:��Etot(xn; yn) = ������ bEvtot (xn; yn)���� jEvtot (xn; yn)j���jEvtot (xn; yn)j � 100 (13)where bEvtot is the estimated ele
tri
 �eld.4.2 Cra
k Dete
tionIn the �rst example, the aim is to explore the possibility of dete
ting the 
ra
k presen
efrom the knowledge of the measured s
attered ele
tri
 �eld in a noisy environment 
har-a
terized by di�erent values of the signal-to-noise ratio. Let us 
onsider a square obje
t0:214�-sided, being � the free-spa
e wavelength 
orresponding to the working frequen
yf . The obje
t is 
hara
terized by a diele
tri
 permittivity " (x; y) = 2:0"0. The s
atteredele
tri
 �eld is 
olle
ted in M = 81 measurement points pla
ed in a 
ir
le r = 3215� inradius and V = 4 views are 
onsidered. The 
oordinates of the 
enter of the square 
ra
kare x0 = y0 = �30 and its area assumes di�erent values. Figure 3(a) shows a 
olor-level rep-resentation of the dete
tion fun
tion for di�erent values of the 
ra
k area and for varioussignal-to-noise ratios in the range 5�50dB. We 
an observe that when the SNR is greaterthan 10dB, as the 
ra
k area in
reases the dete
tion fun
tion proportionally in
reases. Onthe 
ontrary, when the noise amplitude in
reases, the value of �dete
tion tends to be
omemore and more small and almost 
onstant whatever the 
ra
k dimensions. Consequently,the possibility of dete
ting the presen
e of the 
ra
k is 
onsiderably redu
ed. As an ex-ample assuming a threshold value � = 30, the �dete
tion region� (de�ned as the range ofvalues of SNR and A
 for whi
h �dete
tion � �) is limited to SNR � 10:5 for 
ra
ks ofarea greater than 10% of the area of the obje
t 
ross se
tion.The e�e
tiveness of the dete
tion pro
ess is in
reased when an higher frequen
y isused as 
an be inferred from Figure 3(b) where a frequen
y f0 = 3f is 
onsidered. In this
ase, the values of the dete
tion fun
tion are higher, even for SNR values less than 10dB.12



For � = 30, the dete
tion area is limited by SNR = 6dB and for 
ra
ks of area greaterthan 3% of the whole 
ross se
tion.4.3 Cra
k Identi�
ation.In the �rst example, let us 
onsider an obje
t 
ross se
tion 45�0-sided, and a 
ra
k 
enteredat point x0 = y0 = �010 . The 
ra
k is square and its area is 
hanged in the range between0:1% to 10% of AD. The measurement domain is a 
ir
le r = 1625�0 in radius. SNR variesbetween 5dB and 50dB. Figure 4 shows the error �gures in the 
ra
k identi�
ation and�eld predi
tion. Sin
e the GA-based pro
edure is non-deterministi
, ea
h data point inthe following �gures is based on the average of the results obtained with twenty indepen-dent runs of the algorithm. Therefore slight variations may be observed among 
urvesrepresenting runs with similar parameters. From Figure 4, it 
an be observed that theerrors in the 
enter lo
ation are less than 3% of dmax for all the 
ra
ks when SNR � 20dBand for 
ra
k with area greater than 4% of AD when SNR � 6dB. For the region de-�ned by 8dB � SNR � 20dB and 2 � 10�3 � A
AD � 4 � 10�2, a greater error results(Æ
 �= 10). The 
ra
k lo
ation results very di�
ult otherwise. Figure 4(b) gives an idea ofthe evaluation of the 
ra
k area performed by the algorithm. It 
an be observed that thedistribution of the amplitude of ÆA is similar to that of Æ
, but generally the error valuesare greater.The third example is aimed at assessing the e�e
tiveness of the algorithm for di�erent
ra
k positions inside the host medium. The position of a 
ra
k with an area equal to0:04AD is 
hanged along the diagonal of the square investigation domain. All the plotsreported in Figure 5 show that the re
onstru
tion is independent of the position of the
ra
k. The amplitude of the errors are determined from the signal-to-noise value. Inparti
ular, Æ
 � 10, jÆAj � 20, and ÆEtot � 2 for SNR � 14dB.The e�e
tiveness of the algorithm in lo
ating the 
ra
k is then evaluated when the13



dimensions of the obje
t 
ross se
tion are 
hanged. A square 
ra
k 0:05�0-sided andlo
ated in x0 = y0 = lD4 is 
onsidered. Figure 6 gives the plot of Æ0 for di�erent dimensionsof lD and for various values of SNR. The 
enter of the 
ra
k is determined with greata

ura
y for 0:1 � lD�0 � 1:0 (Æ0 � 10). For greater dimensions of the investigation domain,the error in
reases about linearly (Æ0 = 114 lD�0 � 100).In order to give some indi
ations about the iterative pro
ess, Figure 7 shows the behav-ior of the �tness fun
tion versus the iteration number for the same geometry 
onsideredin the previous example and for a noiseless 
ase. The de
reasing of the �tness fun
tionin 
orresponden
e with the best individual (�identifi
ation f optg) is about three order ofmagnitude in the �rst 400 iterations. Then the rate of 
onvergen
e 
onsiderably redu
esand the refresh pro
edure operates a

ording to the rule stated in Se
tion 3. Generally,large variations in the average of the �tness values of the individuals of the population(< �identifi
ation f kg >) are due to the generation of new individuals whi
h are very dif-ferent from the other individuals of the previous population. The mutation but espe
iallythe refresh pro
edure are responsible of this fa
t. For 
ompleteness also the plots of thetwo terms of the identi�
ation fun
tion are shown.An idea of the data �tting obtained with the presented approa
h is given in Figure 8,where the amplitude of the estimated s
attered ele
tri
 �eld (� = 1) in the observationdomain is presented for di�erent noisy 
ases. In all 
ases the agreement between measuredand re
onstru
ted amplitude pro�les is quite good starting from the iteration k = 100.Figure 9 gives the plot of the error in estimating the 
ra
k area during the iterativepro
ess, respe
tively. It should be pointed out that, starting from k = 100, the 
enterof the 
ra
k is lo
ated quite 
orre
tly and Æ
 � 10 whatever the noisy 
ase 
onsidered.On the 
ontrary, the estimation of the area of the 
ra
k results more di�
ult and the�nal re
onstru
tion is performed with an error amplitude whi
h ranges from jÆAj = 0 to|ÆAj = 25 (SNR = 20dB).Finally, Figure 10 gives an idea of the predi
tion of the ele
tri
 �eld distribution14



inside the investigation domain during the iterative pro
ess. Figures 10(a) and 10(b)show the amplitude of �eld distribution for the 
ra
k free 
on�guration and with the
ra
k, respe
tively. In the following, the error ��Etot(xn; yn), � = 1 in reprodu
ing thea
tual distribution is reported at the iterations k = 0 (Fig. 10(
)), k = 100 (Fig. 10(d)),k = 300 (Fig. 10(e)), and k = 800 (Fig. 10(f )). As 
an be seen, initially the predi
tionis very poor and related errors are large. Starting from iteration k = 100 the estimatedvalues of the ele
tri
 �eld tend to be
ome more and more similar to the a
tual ones. Thenot uniform distribution that the error keeps at the �rst iterations (Figs. 10(
)-(d)),tends to disappear as k in
reases, as shown in Figure 10(e) and the solution agree verywell with the referen
e one as 
learly indi
ated in Figure 10(f ).5 Con
lusionsA mi
rowave imaging approa
h has been applied for 2D 
ra
k dete
tion using syntheti
data. An iterative pro
edure based on a geneti
 algorithm whi
h allows for an use of the a-priori knowledge, has been presented. Parti
ular attention has been devoted to 
hoose anappropriate representation of the unknowns of the problem and suitable geneti
 operatorshave been de�ned. The validity of the approa
h has been veri�ed by using noisy dataand 
urrent limitations pointed out. In order to avoid these drawba
ks and in
rease therange of the appli
ability of the proposed approa
h, further investigations will be devotedto de�ne suitable penalty terms in order to favor a physi
ally reasonable solution.
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FIGURE CAPTIONS� Figure 1.Problem Geometry.� Figure 2.Example of a 
hromosome used in the geneti
 algorithm pro
edure.� Figure 3.Color-s
ale representation of the dete
tion fun
tion. (a) Operating frequen
y f . (b)Operating frequen
y f0 = 3f .� Figure 4.Errors in the re
onstru
tion for di�erent areas of the 
ra
k and for di�erent valuesof the signal-to-noise ratio: (a) Æ
, and (b) jÆAj.� Figure 5.Errors in the re
onstru
tion for di�erent positions of the 
ra
k and for di�erentvalues of the signal-to-noise ratio: (a) Æ
, and (b) jÆAj.� Figure 6.Plot of the lo
alization error, Æ0, versus the side dimension of the host obje
t.� Figure 7.Behavior of the �tness fun
tion versus the number of iterations.� Figure 8.Amplitude of the s
attered ele
tri
 �eld in the observation domain. A
tual, 
ra
k-free and re
onstru
ted �eld distributions (k iteration number). (a) SNR = 40dband (b) SNR = 20db.
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� Figure 9.Behavior of the error parameters in (a) the 
ra
k lo
alization and in (b) the 
ra
ksizing versus the number of iterations and for di�erent signal-to-noise ratio.� Figure 10.Predi
tion of the ele
tri
 �eld inside the investigation domain. Images of the ele
tri
�eld amplitude for (a) the 
ra
k- free 
ase and (b) with the 
ra
k. Images of theerror ��Etot(xn; yn), � = 1, at the iteration: (
) k = 0, (d) k = 100, (e) k = 300,and (f ) k = 800.
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