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Abstract - This paper is aimed at exploring the possibility of using a microwave approach
based on a genetic algorithm to detect a defect inside a known host object. Starting
from the knowledge of the scattered field, the problem solution is recast as a two step
procedure. After defining a cost function depending on the geometric parameters of the
crack, a minimization procedure based on a hybrid-coded genetic algorithm is applied.
The influence of the noise as well as of the geometry of the defect on the crack detection
and reconstruction is investigated. Moreover, the numerical effectiveness of the iterative

approach is examined.



1 Introduction

The use of microwaves for material characterization and nondestructive testing and evalu-
tation (NDT/NDE) is now rather common in several applications involving the inspection
of dielectrics or conducting materials coated by dielectric layers. The reader can refer to
papers [1][2][3|[4] and references therein to have an idea of the directions followed by the
research in this field. However, in the NDE community, microwaves are used in general
to interrogate a sample and the information on the status of this sample is retrieved from
transmission /reflection data. At the same time, deeper studies have been made concern-
ing the potentialities of using microwaves as an imaging methodology in other areas (e.g.,
medical imaging [5]). Since the interaction of microwave and dielectrics with macroscopic
dimension comparable with the wavelength gives rise to scattering phenomena, the infor-
mation on the "image" of the object is contained in rather complex way into the scattered
field. The resulting problem is higly nonlinear and ill-posed, and simple and efficient so-
lution can be found only in particularly simple cases in which the object represents only
a weak discontinuity in the propagating medium. In those cases, linearization techniques
can be applied, which are usually based on Born-type approximations.

On the contrary, to inspect (for imaging purposes) stronger scatterers more complex it-
erative techniques (both deterministic and stochastic) must be used. It should be stressed
that a number of iterative techniques have been proposed in recent years, essentially from
researchers in the microwave community, who have no strong intersections with the NDE
community. Those iterative procedures are usually very time consuming and, at present,
are far from allowing a real or quasi-real time processing. Sometime, the use of parallel
computers has also been suggested.

However, in the NDE area, a complete image of a scatterer may often constitute a
redundant (although not undesired) information and a faster computation or a simplified

processing is often preferred. In many cases the object to be inspected is completely



known except for a defect. The localization and shaping of the defect may constitute
a sufficient information. Combining the above requirements with the efficiency of some
of imaging-oriented methodologies, it is possible to develop a rather efficient tool for
inspecting dielectrics in the NDE field.

In the authors’ opinion, a key role for the choice of the methodologies most suitable
to be "adapted" to the new problem in hand, is played by the possibility of including
"a priori" information into the model. Concerning this point, stochastic approaches are
usually superior to deterministic ones. Moreover, stochastic approaches are in principle
able to get a global solution of the problem (the "correct" solution), whereas deterministic
approaches can often be trapped in local solutions ("false" solutions). On the contrary,
in imaging-oriented applications, deterministic approaches are usually much faster than
stochastic methods. However, the time of convergence of these methods can be strongly
reduced if the number of unknowns (which is of course very high in each imaging-based
application) can be significantly limited, as it occurs in the presently proposed approach.

To this end, in the present paper we explore the possibility of using a stochastic
procedure based on a genetic algorithm to detect defects in a known host object. A two-
dimensional tomographic configuration is assumed and the defect is approximated by a
void of fixed shape (rectangular). Position, dimensions and orientation of the defect inside
the object cross-section are unknowns to be determined by measuring the scattered field.
The inverse problem is reduced to an optimization one in which a suitable functional
depending on only five geometric parameters defining the crack, have to be minimized. In
this framework, genetic algorithms are very effective and reach the minimum (potentially,
the global minimum) in a very short time.

In the following, the approach will be discussed and some results also for noisy envi-
ronment provided, in which the main emphasis is on the correct defect localization and

in the retrieval of its dimensions.



2 Mathematical Formulation

Let us consider a two dimensional geometry where a cylindrical inhomogeneous scatterer
is embedded in a homogeneous external medium (Figure 1). The scatterer is characterized
by a scalar permittivity £ (x,y) and a conductivity o (x, %) and is successively illuminated
by a number of known incident fields E} ., v =1, ..., V. The working frequency is indicated
by fo. The incident fields are linearly polarized with the electric field directed along the
axis of the scatterer: EY (r) = E?..(z,y)z (TM polarization).

The scattered electric field, EY,,, (x,y), (defined as EY,,, (z,y) = E., (x,y)—E%,. (z, 1),

mc

being E}, (z,y) the total field corresponding to the incident field EY, . (z,y)) is collected

in an observation domain, S, external to the scatterer. The following integral equation

holds:

B @) = [ [ 7 4) By (0,9)) Gon (kop) da'dy’ (zy) €S (1)

where D is the object cross-section; 7 (z, y) denotes the scattering potential defined as

7(z,y) =¢(z,y)—1 —jgﬁogi, Glop is the two-dimensional free-space Green’s function [6];

and p = \/(x — ')’ + (y — y')®. The problem is that of detecting the presence of a void
crack in the original scatterer. In more detail, we search for the position, the orientation
and the size of a crack present in the original structure. The crack is approximated by an
object of rectangular shape and parameterized by length, ¢, width, w, orientation, #, and
center coordinates, (o, o) (Figure 1).

The approach used is a two step procedure, in which a detection phase precedes an
identification phase. Firstly, we check whether there exists a crack in the structure by

using the following object function:
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where Ef . (7, y) and Eg,,,,) (7, y) are the scattered electric field measured in the
observation domain for a crack-free case and when the defect is present, respectively;

Qy0ise 18 @ measure of the noise level defined as follows:

v v(noiseless 2
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Qnoise =

where the super-script noiseless indicates the field values for the noise-free case. If
the value of the object function is less than a fixed threshold 7, then the investigated
scatterer is assumed crack-free. Otherwise the identification phase starts. It should be
pointed out that the value of the detection threshold is a function of the sensitivity of the
measurement system.

The crack-identification problem is that of finding the parameters of the crack, xq, yo,

w, 6. The object function when the defect is present is given by:

o (@9) = o ifXe[-4 ¢ andY € [-¥, 2] n

T(ef) (,Y) otherwise
where X = (z — xg) cosf+ (y — yo) sinh, Y = (xg — x) sinf+ (y — yo) cost , 7(cp) (z,y)
and 7y are the object function for the crack-free geometry and for the void crack, respec-
tively. Moreover, the electric internal field for the flaw configuration is unknown. We
search for the array ¥ = {xg, 4o, ¢, w, 6, Epe (z,y)} minimizing the following cost

function:

(bidentification {\Ij} =
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(5)
The first term is the normalized error in fitting the measured data (@4, ); the second
term is a measure of the error in satisfy the state equation (®gy); « and [ are two

regularizing constants.

By the Richmond method [7], the following discretized version of the functional (4) is

obtained:
(bidentification {'QZ/'} =
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where 1) = {:cg,yg,é,w, 0; Epi(c) (Tpyyn) ,n=1,..., N}; (@, yn) denotes the center of

the n-th discretization domain; (,,, y,) indicates the m-th measurement point; p;; is the

distance between the i-th and j-th centers and D; the area of the [-th sub-domain. The

considered problem discretization suggests the assumption that ¢, w, 6 belong to finite

sets of values: ¢ € {L;,j=1,..,L}, w € {w;,i=1,..., W}, 0 € {pAd,p=1,..,P}. In

particular, £ and w are multiple of the side of the discretization cell and € of the angular
step used for the multiview process.

Didentification {1} is minimized by an iterative procedure able to generate a sequence

of trial configurations 1/®), k =1, ..., K, being k the iteration number, which converges to

the extremum of the functional. Because of the nature of the unknowns, it is necessary



to choose a method able to treat simultaneously discrete and continuous variables. More-
over, due to the nonlinearity of the functional (the nonlinearity arises from the multiple
scattering phenomena), an algorithm able to avoid local minima is necessary. A GA [§|
seems to be a good choice. In general, GAs have demonstrated their effectiveness in treat-
ing nonlinear function with many unknowns [9] and avoiding the solution to be trapped

in local minima.

3 Application of the Genetic Algorithm

Genetic algorithms [8][10][11][12] are efficient and robust population-based search and
optimization techniques. An individual in a GA population (called chromosome) is a
finite-length string code corresponding to a solution of a given problem (in our case, ).
Each individual has a fitness value (in our case, ®;genti fication {1}) associated with it, that
is a measure of its closeness to the actual solution. Iteratively, an initial population of Np
individuals (population size) evolves through successive generations by the application
of genetic operators namely, selection, crossover and mutation until some termination
criterion is satisfied.

In order to design a genetic algorithm for a specific problem the following points must

be taken into account:

1. An encoding procedure must be defined in order to provide a one-to-one mapping

between the parameter space and the chromosomes;

2. Variation operators must be defined that obey the mathematical properties of the
chosen representation and permit to create new individuals starting from the existing

ones;



3. A termination criterion is needed.

This section describes the choices considered when a genetic algorithm is applied for the

identification of a crack.

3.1 Encoding Procedure

In general, GAs use a binary representation of the individuals as fixed-length strings
over the alphabet {0,1} [10], such that they are well suited to handle pseudo-Boolean
optimization problems. For optimization problems with discrete parameters, an integer-
valued parameter is typically represented by a string of ¢ bits, where ¢ = l0g;©, being
© the number of values that the discrete variable can assume. In this work, 7, #, and w,
are coded in binary strings of ) = logsL bits, T' = logy P, and R = log, W, respectively.
Moreover, after discretization of the investigation domain, also the center coordinates
of the crack are considered as discrete parameters, then xy and y, are represented with
C = logs N, bits, where N, = v/N. For simplicity, a square cross-section is assumed.
Furthermore, a real-valued representation is used for the electric field Ey,, (Tn, Yn) ,n =

1,..., N. This choice seems to be particularly suitable in this case [13]|[14]|[15][16]. The
use of the floating-point representation for real unknowns results in a reduction of the
computational load (the binary coding/decoding procedure is avoided) without violat-
ing the algorithmic framework [17]. Then each unknown array results in a hybrid-coded
individual (chromosome) obtained concatenating the code of each parameter (gene), as

shown in Figure 2.

3.2 Genetic Operators

Binary tournament selection [18] and binary double point crossover [19] are used for
selection and crossover, respectively. Then, the mutation is performed with probability

P,, on an individual of the population. This mutation consists in perturbing, according to



an assigned probability function P, only one element of the chromosome. If the element
is a bit, it is changed from zero to one or viceversa; otherwise the following mutation rule

is considered

3 {Eto(t()) (T Yn) [ +
r|maz, [S{ B @ ua)}] — S{E1S, (
ifp>0.5
S{Eimisy (@niun)} = )
S{ES (nivn) } —
r|S{ B (@nsyn) } = minng [S{ By () }]|

otherwise

()]

where & {} indicates the imaginary or the real part; r and p are random values be-
longing to the range [0, 1], with a uniform distribution generated by a pseudo-random
number generator; (min, ¥ {E;’ot( ) (:rn,yn)}; max,I {E;’ot( ) (xn,yn)}) is the acceptance

domain for the unknown & {E;’ot( ) (@, yn)}

3.3 Termination Criterion

Since the amount of computing time required to obtain solution of a desired quality is not
known a-priori, the halting criterion for the iterative algorithm is taken to be a certain
maximum number of generations (K,,.;), or when a fixed threshold (§) for the fitness

function is achieved (®;genti fication {¥} < §).

In this work, in order to keep the population diversity among new generations and
avoiding a premature convergence, we define a new procedure called refresh step. This
is carried out whenever the fitness difference between the fittest and weakest individuals

of the population is below a specified trigger level, v (i.e., a measure of the premature



convergence for the algorithm) or when the value of the optimal fitness is stationary

for more than Ky = 0.1K,,,; generations. Starting from the best individual generated,

Ev(opt)

lort) - qplopt) - glopt) ot(e)

Y

plopt) ={ ot 4 Lort) (T, yn),n = 1,..., N}, we generate a new

population according to the following rules:

e the best individual is copied into the new population;
. %individuals are randomly generated inside the search space

e one chromosome (called Born-type chromosome) is generated. The first B-bits are
the same of the best individual, whereas the last bits are obtained by considering a

second-order Born approximation [20]:

N
B (20, yn) = Eine (s yn) + 30 708 (2, 4p) B (2, 93) /D Gan (kopny) dz'dy'+
p=1 p

N N
> 71" (s 1) {Z e s 0) B (20, va) [ G (ko) dx'dy'} | Gan (kopuy) da'dy
)

e the others (% — 1) chromosomes are randomly generated by considering multiple

mutations in the Born-type chromosome.

4 Numerical Results

In the following, some numerical results are shown in order to assess the effectiveness but
also current limitations of the proposed approach. Let us consider a square homogeneous

cylinder [p-sided with an area equal to Ap. M equally spaced measurement points are

10



located on a circle r in radius (r > %) The values of the scattered electric field at the
measurement points are synthetically obtained by the moment method. V incident plane
waves are assumed: EY, (z,y) = e /ko@cosdutusinde) - where the angles 9, = (v —1) 22,
v =1,...,V define the propagation directions. As far as the parameters for the GA are
concerned, the following values are chosen: Np = 80, P. = 0.7, P,, = 0.4, P,,, = 0.01,
Kinaz = 1000.

4.1 Definitions

The signal-to-noise (SNR) ratio is defined as

v 2
21‘1/:1 z%:l |Escatt (l‘m, ym)|
2MVo?

noise

SNR = 10[0910

2

noise

where o is the variance of the additive Gaussian noise with zero mean value.
The errors in the crack identification are quantified by the following figures.

1) Error in the location of the center of the crack, d,:

~ \2 ~ \2
i + J—
5, = V(= 30)° + (30— ) % 100 (10)

dma:r

being (Zo, 7o) the estimated coordinates of the crack, and d,., = v/2lp the maximum
error in defining the crack center when it belongs to the host scatterer.

2) The same error as in 1) but normalized to the wavelength:

0g = x 100 11
: . (1)
3) Error in the estimation of the crack area:
Ac - A\c

where ﬁc and A, are the estimated and actual crack areas, respectively.

11



4) Errors in predicting the electric field are quantified by:

v HEz)ot (l‘nv yn)‘ - |Ez)ot (l‘na yn)”
ALior (T, Yn) = 1BL, (T )|
0 ny Yn

x 100 (13)

where E;’ot is the estimated electric field.

4.2 Crack Detection

In the first example, the aim is to explore the possibility of detecting the crack presence
from the knowledge of the measured scattered electric field in a noisy environment char-
acterized by different values of the signal-to-noise ratio. Let us consider a square object
0.214)-sided, being A the free-space wavelength corresponding to the working frequency
f. The object is characterized by a dielectric permittivity € (x,y) = 2.0g9. The scattered
electric field is collected in M = 81 measurement points placed in a circle r = %)\ in

radius and V' = 4 views are considered. The coordinates of the center of the square crack

A

55 and its area assumes different values. Figure 3(a) shows a color-level rep-

are Ty = yo =
resentation of the detection function for different values of the crack area and for various
signal-to-noise ratios in the range 5—50dB. We can observe that when the SN R is greater
than 10dB, as the crack area increases the detection function proportionally increases. On
the contrary, when the noise amplitude increases, the value of ®;.t00ti0n tends to become
more and more small and almost constant whatever the crack dimensions. Consequently,
the possibility of detecting the presence of the crack is considerably reduced. As an ex-
ample assuming a threshold value n = 30, the “detection region” (defined as the range of
values of SNR and A, for which ®geection > 1) is limited to SNR > 10.5 for cracks of
area greater than 10% of the area of the object cross section.

The effectiveness of the detection process is increased when an higher frequency is

used as can be inferred from Figure 3(b) where a frequency fo = 3f is considered. In this

case, the values of the detection function are higher, even for SN R values less than 10dB.

12



For n = 30, the detection area is limited by SNR = 6dB and for cracks of area greater

than 3% of the whole cross section.

4.3 Crack Identification.

In the first example, let us consider an object cross section %)\O—sided, and a crack centered
at point xyp = yp = ?—8. The crack is square and its area is changed in the range between
0.1% to 10% of Ap. The measurement domain is a circle r = %)\0 in radius. SN R varies
between 5dB and 50dB. Figure 4 shows the error figures in the crack identification and
field prediction. Since the GA-based procedure is non-deterministic, each data point in
the following figures is based on the average of the results obtained with twenty indepen-
dent runs of the algorithm. Therefore slight variations may be observed among curves
representing runs with similar parameters. From Figure 4, it can be observed that the
errors in the center location are less than 3% of d,,,, for all the cracks when SNR > 20dB
and for crack with area greater than 4% of Ap when SNR > 6dB. For the region de-
fined by 8dB < SNR < 20dB and 2 x 1073 < :—; < 4 x 1072, a greater error results
(0. 22 10). The crack location results very difficult otherwise. Figure 4(b) gives an idea of
the evaluation of the crack area performed by the algorithm. It can be observed that the
distribution of the amplitude of d4 is similar to that of J., but generally the error values
are greater.

The third example is aimed at assessing the effectiveness of the algorithm for different
crack positions inside the host medium. The position of a crack with an area equal to
0.04Ap is changed along the diagonal of the square investigation domain. All the plots
reported in Figure 5 show that the reconstruction is independent of the position of the
crack. The amplitude of the errors are determined from the signal-to-noise value. In
particular, 6, < 10, [04] < 20, and dpy < 2 for SNR > 14dB.

The effectiveness of the algorithm in locating the crack is then evaluated when the

13



dimensions of the object cross section are changed. A square crack 0.05)\p-sided and
located in xy = yo = ITD is considered. Figure 6 gives the plot of dy for different dimensions
of [p and for various values of SNR. The center of the crack is determined with great
accuracy for 0.1 < l)\% < 1.0 (6o < 10). For greater dimensions of the investigation domain,
the error increases about linearly (dy = 114!)\—D0 —100).

In order to give some indications about the iterative process, Figure 7 shows the behav-
ior of the fitness function versus the iteration number for the same geometry considered
in the previous example and for a noiseless case. The decreasing of the fitness function
in correspondence with the best individual (®;gentification {¥°"*}) is about three order of
magnitude in the first 400 iterations. Then the rate of convergence considerably reduces
and the refresh procedure operates according to the rule stated in Section 3. Generally,
large variations in the average of the fitness values of the individuals of the population
(< Pidentification {¥x} >) are due to the generation of new individuals which are very dif-
ferent from the other individuals of the previous population. The mutation but especially
the refresh procedure are responsible of this fact. For completeness also the plots of the
two terms of the identification function are shown.

An idea of the data fitting obtained with the presented approach is given in Figure 8,
where the amplitude of the estimated scattered electric field (v = 1) in the observation
domain is presented for different noisy cases. In all cases the agreement between measured
and reconstructed amplitude profiles is quite good starting from the iteration & = 100.

Figure 9 gives the plot of the error in estimating the crack area during the iterative
process, respectively. It should be pointed out that, starting from £ = 100, the center
of the crack is located quite correctly and 6. < 10 whatever the noisy case considered.
On the contrary, the estimation of the area of the crack results more difficult and the
final reconstruction is performed with an error amplitude which ranges from |54 = 0 to
|04] =25 (SNR = 20dB).

Finally, Figure 10 gives an idea of the prediction of the electric field distribution

14



inside the investigation domain during the iterative process. Figures 10(a) and 10(b)
show the amplitude of field distribution for the crack free configuration and with the
crack, respectively. In the following, the error A%, .(x,,y,), v = 1 in reproducing the
actual distribution is reported at the iterations £ = 0 (Fig. 10(¢)), £ = 100 (Fig. 10(d)),
k = 300 (Fig. 10(e)), and k£ = 800 (Fig. 10(f)). As can be seen, initially the prediction
is very poor and related errors are large. Starting from iteration k£ = 100 the estimated
values of the electric field tend to become more and more similar to the actual ones. The
not uniform distribution that the error keeps at the first iterations (Figs. 10(¢)-(d)),
tends to disappear as k increases, as shown in Figure 10(e) and the solution agree very

well with the reference one as clearly indicated in Figure 10(f).

5 Conclusions

A microwave imaging approach has been applied for 2D crack detection using synthetic
data. An iterative procedure based on a genetic algorithm which allows for an use of the a-
priori knowledge, has been presented. Particular attention has been devoted to choose an
appropriate representation of the unknowns of the problem and suitable genetic operators
have been defined. The validity of the approach has been verified by using noisy data
and current limitations pointed out. In order to avoid these drawbacks and increase the
range of the applicability of the proposed approach, further investigations will be devoted

to define suitable penalty terms in order to favor a physically reasonable solution.
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FIGURE CAPTIONS

e Figure 1.

Problem Geometry.

e Figure 2.

Example of a chromosome used in the genetic algorithm procedure.

e Figure 3.
Color-scale representation of the detection function. (a) Operating frequency f. (b)

Operating frequency fo = 3f.

e Figure 4.
Errors in the reconstruction for different areas of the crack and for different values

of the signal-to-noise ratio: (a) d., and (b) |04].

e Figure 5.
Errors in the reconstruction for different positions of the crack and for different

values of the signal-to-noise ratio: (a) ., and (b) |§4].

e Figure 6.

Plot of the localization error, dy, versus the side dimension of the host object.

e Figure 7.

Behavior of the fitness function versus the number of iterations.

e Figure 8.
Amplitude of the scattered electric field in the observation domain. Actual, crack-
free and reconstructed field distributions (k iteration number). (a) SNR = 40db

and (b) SNR = 20db.
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e Figure 9.
Behavior of the error parameters in (a) the crack localization and in (b) the crack

sizing versus the number of iterations and for different signal-to-noise ratio.

e Figure 10.
Prediction of the electric field inside the investigation domain. Images of the electric
field amplitude for (a) the crack- free case and (b) with the crack. Images of the
error AV, (Tn,yn), v = 1, at the iteration: (¢) k = 0, (d) k£ = 100, (e) k = 300,
and (f) & = 800.
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