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ABSTRACT 
 

This paper deals with inverse scattering techniques 
based on genetic algorithms (GAs), and is devoted to 
microwave imaging and microwave nondestructive 
testing and evaluation (NDT/NDE). In the framework 
of near-field spatial-domain algorithms, a brief 
overview of current trends and future developments of 
the research work is given. Numerical results of 
selected simulations, modeling realistic geometries, are 
presented in order to assess the effectiveness of the 
proposed optimization methodology. Finally, a 
discussion fixes some guidelines and points out the 
open problems to be addressed in order to enlarge the 
application area of GA-based inverse scattering 
techniques. 

 
 

I.   INTRODUCTION 
 

Microwave inverse scattering techniques are aimed at 
sensing a given scenario by means of interrogating 
electromagnetic waves in the range of microwaves. 
From a numerical point of view, the algorithmic aspects 
constitute the main obstacle to the development of 
efficient and practical reconstruction systems. At the 
present stage of their evolution, microwave imaging 
methodologies have limited applications to real-world  
problems (see [1, 2] and the references therein) and 
they are applied especially in research laboratories. 
However, non-invasive diagnostics by using low-power 

electromagnetic fields could be very attractive in 
several area. Let us consider biomedical engineering [3, 
4], non-invasive thermometry [5], geophysical analysis 
[6], archaeology [7] and industrial engineering [8] (e.g., 
nondestructive testing and evaluation [9,10]).  

In order to allow a transfer from theory to practical 
imaging systems, the main theoretical difficulties are 
due to the ill-posedness and nonlinearity of the inverse 
scattering problem. As far as the ill-posedeness is 
concerned, the ‘golden rule’ for solving an inverse 
problem is the search for approximate solutions 
satisfying additional constraints coming from the 
physics of the problem. This information is usually 
called a priori information and the obtained solution is 
a regularized solution [11]. 

On the other hand, in order to take into account for 
multiple-scattering effects, a nonlinear model of the 
electromagnetic interactions between scatterers and 
probing fields must be considered. In the past, 
significant efforts were devoted to study numerical 
methods allowing the use of approximate relationships 
(e.g., Born-type approaches [12]). However, realistic 
scatterers to be inspected rarely are “weak” enough to 
allow the practical use of simplified techniques [13, 
14]. Consequently, a lot of nonlinear inverse 
approaches have been proposed [15-18]. As far as the 
inversion procedures in the spatial domain are 
concerned, generally the solution of the problem is 
recast as the minimization of a suitable cost function. 
Very effective gradient-based iterative techniques have 
been successfully applied [19-21]. However, in this 



case, a great care must be exercised due to the presence 
of local minima, which represent wrong solutions or 
artifacts, where the minimization algorithm can be 
trapped.  

In the last few years, among optimization techniques, 
stochastic inversion procedures [22, 23] have gained 
great attention due to the rapid growth in computer 
technology. In particular, genetic strategies have shown 
their effectiveness in imaging two-dimensional 
dielectric [24, 25] or conducting scatterers [26, 27]. 
Generally speaking, GAs present typical characteristics 
very useful in dealing with microwave inverse 
scattering problems. Let us consider that: 

 
• GAs are hill-climbing algorithms; 
 
• GAs allow the straightforward introduction of a 

priori information (or constraints); 
 
• GAs are able to deal with real and/or integer and/or 

binary unknowns at the same time; 
 
• GAs are intrinsically parallel algorithms; 
 
• GAs allow a hybridization with deterministic 

procedures. 
 

However, in this framework, further researches are 
necessary in order to overcome some characteristic 
drawbacks of these approaches (e.g., large amount of 
computational burden, low convergence rate) allowing 
practical applications of microwave tomography to 
more complex industrial and medical applications.  

In this paper, a review of a class of GA-based 
approaches for 2D microwave imaging is presented. 
The theoretical formulation is supported by some test 
cases involving canonical scatterers, showing the 
capabilities but also current limitations of the proposed 
techniques. A great emphasis is also given to the 
applications and different (customized) 
implementations of  GAs are presented. Finally, a 
discussion closes this short review focusing on future 
trends of GA-based inverse scattering techniques. 

 

II.   MATHEMATICAL FORMULATION 
 

Let us consider in a 2D geometry an inhomogeneous 
dissipative object embedded in a homogeneous lossless 
medium as shown in Fig. 1. The non-magnetic scatterer 
is characterized by a complex object function 
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being 0ε  the permittivity of the background, Rε  and σ  
the relative permittivity and the conductivity of the 
object, respectively. TM-polarized incident radiations, 

VyxEinc ,...,1);,( =νν , illuminate the investigation 
domain, D. A multi-view/multi-illumination acquisition 
system is considered [28]. 
 

 
Figure 1. Two-dimensional problem geometry. 

 
 

Under these conditions, the electromagnetic 
scattering process can be modeled by means of the 
following equations [29] 
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where S indicates the observation domain, ν
scattE  and 

ν
totE  are the scattered and total fields related to the ν-th 

illumination condition, DG2  is the two-dimensional 
free-space Green’s function. The inverse scattering 
problem consists of determining the object function or 
its representation from the knowledge of the incident 
fields ( VEinc ,...,1; =νν ) and of the scattered fields, 

( VEscatt ,...,1; =νν ) collected in a set of measurement 

points ( ( ) Mmyx mm ,...,1;, = ) located in the observation 
domain. In order to numerically solve the system of 
equations (2)-(3), let us consider a representation of the 
unknown object function and of the electric field 
distribution. If the domain D is partitioned into N 
square sub-domains and ν

totE  and τ are taken to be 
piecewise constant in each subdivision of D, the 
discrete forms of the equations (2) and (3) result equal 
to 
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and where 

{ }VNnyxEyxf nntotnn ,...,1;,...,1);,();,( =ν=τ= ν  
is the unknown array, J1 is the Bessel function of the 
second kind, H0

2( )  and H1
2( )  are the 0th and first order 

Hankel functions of the second kind, respectively; 
a An n= / π , An  being the area of the nth cell, ρpn is 
the distance between the centers of the pth and nth cells 
and ρν

mn is the distance between the point ( , )x ym m
ν ν  and 

the center of the nth cell. Then, the approach involves 
the simultaneous solution of the system of equations (4) 
and (5). Let us consider the functional, Φ  
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The basic idea of the approach is the iterative 
construction of a succession { }kf  which converges to 
minimize the functional (6). To this end, a GA-based 
procedure is used. 
 
 

III.   GA-BASED INVERSION PROCEDURE 
 

Genetic algorithms (GAs) are searching processes 
modeled on the concepts of natural selection and 
genetics. Their basic principles were first introduced by 
Holland in 1975 [30] and extended to functional 
optimization by De Jong [31]. GAs have been 
employed with success in a variety of problems in the 
field of applied and computational electromagnetics 
(see, for example, [32 - 34]). What makes GA’s 
immediately attractive is that they can be easily applied 
to problems involving non-differentiable functions and 
discrete as well as continuous spaces. These are 
qualities shared by other techniques, but GAs also 
exhibits an intrinsic parallelism. These features induced 
us to develop GA-based codes for microwave imaging 
purposes. The key points in designing a GA-based 
inversion procedure are: 
• the representation of the solution, f ; 



• the design of evolutionary operators responsible for 
the generation of the trial solution succession, { }kf ; 

• the evolutionary procedure. 
Different choices result in different inversion 
procedures able to efficiently deal with different 
microwave imaging problems. 

 
1. BINARY GA-BASED INVERSION PROCEDURE (BGA) 

Genetic Algorithms operate on a coding of the 
problem parameters. The GA, when applied to 
minimize the functional ( )fΦ  (equation (6)), requires 
the definition of a population of trial solutions 
 

{ }PpfP p ,...,1;)(
00 ==                       (7) 

 
being P the dimension of the trial solution population. 
Iteratively (being k the iteration number), the solutions 
are ranked according their fitness measures 
 

( ){ } KkPpfF p
kk ,...,0,...,1;)( ==Φ=        (8) 

 
and, following the classical binary-coded version of the 
GA [35], coded in strings of ( )QNN par 2log=  bits, 
being Q the number of quantization levels used for each 
of the parN  unknowns 
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At this point, new populations of trial solutions are 
iteratively obtained by applying the genetic operators 
(selection, crossover and mutation) according to an 
evolutionary strategy [33]. For each iteration, firstly, a 
mating pool is chosen by means of a selection 
procedure 
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where ℵ  indicates the selection operator. Then, a new 
population is generated applying, in a probabilistic 
way, the binary crossover and the binary mutation [24] 
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The genetic operators are iteratively applied 
corresponding to their probabilities. Crossover is 
applied with a probability cP , mutation is carried out 
with a probability mP , the rest of the individuals are 

reproduced. The iterative generation process stops if a 
termination criterion, usually based on a maximum 
number of generations, K (i.e., Kk ≤ ), or on a 
threshold on the fitness measure, δ (i.e., ( ) δ≤Φ )( optp

kf  

being ( ) ( ){ })(

,...,1

)( min p
kPp

p
k ff opt Φ=Φ

=
), is verified. 

The BGA works with a finite dimension parameter 
space. This characteristic makes the BGA ideal for 
optimizing a cost function arising from an inverse 
scattering problem where the unknowns (i.e., all the 
parameters or a part of the complete set of unknowns) 
can only assume a finite number of values. However, if 
a parameter is continuous, then it could be quantized 
[24]. The BGA works with the binary encodings, but 
generally in microwave imaging problems the cost 
function requires continuous parameters. Then, 
whenever the cost function is evaluated, the 
chromosome, )( p

kc , must be firstly decoded. Moreover, 
if the number of binary-encoded parameters is large (as 
when an accurate discretization for the investigation 
domain is used) and if each parameter requires many 
bits to fully represent it, the size of the chromosome 
grows very quickly. On the other hand, BGA operators 
do not assure that the chromosomes of the next 
generation are admissible solutions. If acceptable 
solutions have to belong to some domains of the 
solution space (e.g., when constraints are imposed), 
monitoring this property under the action of the genetic 
operators can be laborious, and time-consuming (also in 
this case a decoding should be performed) and the 
convergence may therefore be slowed.  

However, the binary encoding is not the only way to 
represent a parameter. Consequently, for microwave 
imaging applications, the BGA is only used when the 
unknowns are naturally quantized. 

 
2. REAL GA-BASED INVERSION PROCEDURE (RGA) 

When the parameters of the unknown array, f , are 
continuous variable, it is more logical to represent them 
by means of a real representation [37]. For RGA-based 
inversion procedures, a gene is the unknown itself and 
then 
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p
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Consequently, suitable genetic operators have to be 
defined in order to obtain admissible solutions and 
possibly enhance the convergence process. Of course, 
the design of variation operators has to obey the 
mathematical properties of the chosen representation, 
but there are still many degrees of freedom. However, 
also for inverse scattering problems, mutation must 



remain a mean for a population to explore the 
parameter space randomizing the selected solutions and 
crossover must constitute a way to (randomly) mix the 
good characteristics of two chromosomes.  

According to the evolutionary architecture proposed 
in [25], customized (to microwave imaging 
applications) genetic operators are then defined. As far 
as the RGA selection operation is concerned, a two step 
procedure is considered. Firstly, the new trial solutions, 

)(
1
p

kf + , not belonging to a physically reasonable space, 
are changed by recurring to the a-priori knowledge 
about the scenario under test (e.g., by imposing that 

( ){ } 0,Re )( ≥τ nn
p

k yx  and ( ){ } 0,Im )( ≤τ nn
p

k yx ). Then a 
standard tournament selection [38] works. This method 
gained increasing popularity because it is easy to 
implement, computationally efficient, and allows for 
fine-tuning the selective pressure [39] when inverse 
scattering problems are addressed. 

Then the arithmetical crossover is performed. 
Arithmetical crossover is defined as a linear 
combination of two arrays. If )( 1p

kf  and )( 2p
kf  are two 

selected solutions to be crossed, the resulting offspring 
are 
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being r a random variable uniformly distributed in the 
range [0, 1]. Finally, the RGA mutation is applied as 
follows 
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being 
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where if  is the ith component of the unknown array 
f , and { } { }( )ii ff max,min  is its acceptance domain. 

 
3. HYBRID-CODED GA-BASED INVERSION PROCEDURE 

(HGA) 
Sometimes in inverse scattering problems the a-priori 

knowledge about the scenario under test allows a 
parameterization of a subset of the unknown parameters 
by means of a small numbers of discrete parameters: 
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where I is the number of unknown parameters, 
{ }Iiff i ,...,1; == , and { }Jjj ,...,1; =l  is the set of 

discrete “equivalent” parameters. For those cases, a 
suitable encoding procedure must be defined in order to 
provide a one-to-one mapping between the parameter 
space and the chromosomes, but at the same time, 
exploiting the features of the unknown parameter set. 
To this end, in [40], a hybrid-encoding has been 
proposed. Integer-valued equivalent parameters, 
{ }Jjj ,...,1; =l , are binary coded and a floating-point 
representation is used for real unknowns, 

( ){ }ILtf t ,...,1; += . Then each unknown array, f , 
results in an hybrid-coded individual obtained 
concatenating the code of each parameter. 

As far as the genetic operators are concerned, 
tournament selection and double point crossover [41] 
are used for selection and crossover, respectively. The 
mutation consists in perturbing, according to an 
assigned probability function bmP , only one element of 
the chromosome. If the element is a bit, it is changed 
from 0 to 1 or vice-versa. Otherwise, the following 
mutation rule is considered 
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where 1r  is a value generated by a pseudo-random 
number generator. In order to reduce the selection 
pressure and to keep the population diversity, when the 
difference between the fittest and the weakest 
individuals of the population is below a specified 
threshold, a refresh procedure is performed [42]. 

From the point of view of efficiency and 
effectiveness, the parameterization of a subset of the 
unknowns with a reduced number of representative 
parameters must be chosen in an effective way. The 
search space of the HGA-based inverse scattering 
procedure should be as small as possible without 
loosing the ability to express accurately, by means of 
the equivalent parameters, the original unknowns. If the 
parameterization function, ℜ , does not allow an 
accurate representation of the original unknown set, 
then it is impossible to retrieve it. With a correct 
parameterization, it is possible to add specific 
knowledge, about the addressed problem, to the GA-
based inversion procedure, and effectively limit the 
search space (reducing the computational efforts) 
without limiting the accuracy of the reconstruction 
process. Furthermore, the parameterization method 



should as effectively as possible prevent the creation of 
physically not admissible unknown arrays. A high 
number of invalid arrays among the reproduced 
individuals does not only mean wasted computation 
time, but it can severely disturb the mechanism of 
evolutionary search and cause a slow convergence rate. 
 
4. HYBRIDIZED GA-BASED INVERSION PROCEDURES 

Evolutionary algorithms are known as robust 
optimization techniques able to effectively explore very 
large nonlinear parameter spaces (the solution space of 
an inverse scattering problem is certainly very large – if 
an adequate resolution level is required – and highly 
nonlinear). As far as microwave imaging is concerned, 
GA-based procedures generally require a very high 
number of evaluations of the fitness function, thus 
offering poor performances in term of computational 
efficiency, especially when compared to deterministic 
optimization techniques. However, if the evaluation of 
the fitness function is computationally fast, 
evolutionary inverse scattering methods are very good 
candidates for a successful solution of the problem 
especially if the cost function is non-convex.  

Different approaches to make GA-based procedures 
competitive with deterministic methods (while 
maintaining their favorable features) dealing with 
inverse scattering problems can be used. Certainly 
suitable encodings (Sect. 1, 2, 3) will reduce the 
solution space avoiding the search in some not-
admissible regions. On the other hand, in order to save 
computational resources and to increase the rate of the 
convergence of the iterative approach, an effective 
strategy is the hybridization. Gradient-based 
minimization methods [43] usually converge very fast 
and yield very good reconstructions. However, in 
highly nonlinear problems, they can be trapped in local 
minima. In order to exploit complementary advantages 
of deterministic and stochastic approaches, GA-based 
procedures are coupled with a deterministic method. 
Two different methodologies can be adopted 

 
• the RGA/CG-based approach; 
 
• the approach based on the Memetic Algorithm 

(MA). 
 
4.1. RGA/CG-BASED APPROACH (RGA/CG) 

The simplest and more general way to realize a 
hybridized version of the inversion procedure is that of  
considering a two-stage optimization. Firstly, the 
reconstruction is performed with a GA (or a 
deterministic procedure), and subsequently switches to 
a deterministic procedure (or the GA). Different 

strategies have been considered. In [44], a micro-GA 
has been coupled with a deterministic method 
proposing a communication criterion for stopping the 
stochastic algorithm and invoking the deterministic 
optimizer. Moreover, Ra et al. [45] proposed a hybrid 
optimization method combining the GA and the 
Levenberg-Marquardt algorithm (LMA) [46]. In this 
technique, the LMA is used to localize a minimum and 
then the minimization procedure switches to the GA in 
order to climb local minima. The procedure is repeated 
iteratively until the global minimum of the cost 
function is found.  

On the contrary, following the idea preliminary 
presented in [25, 47], the proposed approach 
(RGA/CG) applies a GA and then a deterministic 
procedure, based on a conjugate-gradient algorithm, 
searches for the global optimum by virtue of its 
capacity of effectively refining and improving existing 
solutions [48]. In more details, the inversion procedure 
operates as a real-coded GA in order to locate the 
attraction basin of the global optimum. At each 
iteration, the “order of closeness“ to the global 
minimum [49] is evaluated and when a fixed threshold 
is achieved ( CGkk = ), the following sequence of steps 
is performed: 
� the best trial solution obtained up to now ( )( opt

CG

p
kf ) 

is chosen as the initial estimate for a sequence of 
successive approximations generated according to 
a modified version of the standard Polak-Ribière 
conjugate gradient algorithm [43]; 

� if the convergence threshold, δ , is not reached 
during the deterministic minimization, the RGA 
restarts by considering a population whose 
individuals are randomly generated around the 
current trial solution. 

Selected numerical results, preliminary shown in 
[25], and some test cases, described in Sect. V, 
demonstrate the reliability and the effectiveness of this 
methodology.  
 
4.2. MA-BASED APPROACH (MA) 

However, in the author’s opinion a closer coupling 
between stochastic and deterministic optimizers (than 
the coupling offered from the two-stage procedure) 
could provide better reconstruction results. In this 
framework, the coupling could be obtained by 
introducing a genetic operator which performs a 
gradient-like based minimization (e.g., “hill-climbing” 
operator [48], G-Bit improvement [35], etc...). Another 
solution is the use of a class of GA-based hierarchical 
strategies. The general structure of a hierarchical 
strategy consists of two main levels 



� Basic level: 
this level is responsible for the generation of new 
configurations. 
 

� Control level: 
this level guides the basic level toward a global 
optimum solution. 
 

In other words, the basic level performs a local 
optimization that is controlled by the control level in 
order to obtain an overall global behavior. 

The MA is a hierarchical algorithm based on the 
concept of meme [50]. A meme is a unit of information 
that can be transmitted when people exchange ideas. 
Every idea is a trial solution, f  (individual). Because 
of the ideas are processed before propagating them, 
each individual can be assumed as a local minima of 
the cost function. From an algorithmic point of view, 
the processing of an idea is simulated by means of a 
deterministic procedure and its propagation and/or 
evolution with a statistical GA-based technique. 
However, the main drawback of this methodology is 
that, if the number of unknowns is very large, the 
computational load is too heavy [51]. Nevertheless, 
some inverse scattering problems involve a limited 
number of unknowns. For these cases, the trade-off 
between computational burden and increase of the 
converge rate results again favorable and the MA-based 
approach outperforms other optimization techniques. 
 
 

IV.   NUMERICAL ASSESSMENT 
 
The effectiveness and the capabilities, but also 

current limitations, of the class of the proposed inverse 
scattering techniques is assessed by means of many 
numerical simulations. Different fields of application 
will be considered in order to point out the large 
spectrum of the applications for the GA-based 
techniques, but also that an adequate customization is 
necessary in order to allow good performances and to 
achieve accurate reconstructions [52]. 
 
A. MICROWAVE IMAGING 

Let us consider the geometry shown in Fig. 1. 
Microwave Imaging (MI) aims at retrieving the 
dielectric constant profile (i.e., the object function 
distribution) inside the investigation domain from a 
series of electric field measurements performed outside 
the region under test. For this application, RGA-based 
approaches demonstrated their effectiveness. Three 
examples have been selected to illustrate the present 
state of the art.  

• Single Homogeneous Lossy Cylinder 
As a first example, a lossy circular cylinder, 

( 0325.0 λ=a  in radius, being 0λ  the free-space 
wavelength) characterized by a constant object function 

( ) jyx obj 85.12.1, −=τ=τ , is enclosed in a square 
investigation domain 0125.1 λ=L  in side. The 
investigation domain is partitioned into N = 81 sub-
domains of equal size. 4=V  unit TM plane waves 
successively illuminates the investigation domain. For 

each illumination (being θ ν π νν = − =( ) , ,...,1
2

1 V the 

incident angle), the scattered electric field is collected 
at M = 40 measurement points lying on a circle of 
radius 0125.1 λ=ρm  and uniformly distributed around 
the investigation domain. As far as the input scattered 
data are concerned, they are analytically available. The 
initial values of the object function for the inverse 
scattering procedure are always taken equal to the 
background value and the starting guess for the field 
distribution is chosen to be equal to the incident field. 
The assumed parameters for the GA-based procedures 
are: P = 81, 6.0=cP , 6.0=mP , δ = −10 4  and 410=K . 
The real part and the imaginary part of the true object 
function are presented in Fig. 2(a). Fig. 2(b) and 2(c), 
show the final convergent solution when the RGA and 
the RGA/CG are applied, respectively. It can be seen 
that the reconstruction obtained by the hybridized 
optimization algorithm is more accurate than the one 
provided by the RGA-based procedure, especially as far 
as the imaginary part is concerned. In order to 
quantitatively evaluate the reconstruction, the following 
error figures have been defined 
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where the zoneN  can range over the investigation 
domain ( NN zone = ), or over the cells belonging to the 
scatterer ( intNN zone = ), or over the cells of the 
background ( outzone NN = ). Table I summarizes the 
obtained results showing also the error figures when a 
deterministic minimization (a standard CG algorithm) 
is performed.  
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Figure 2. Reconstruction of a lossy circular cylinder. (a) Original cross-section. Reconstruction obtained with (b) 

RGA-based procedure and (c) RGA/CG-based procedure. 



Procedure εΞ tot  εΞout  εΞ int  σΞ int  
CG 11.31 7.59 16.35 12.34 

RGA 2.99 0.31 10.66 5.67 
RGA/CG 1.22 0.17 4.2 1.78 

Table I. Reconstruction of a lossy circular cylinder. 
Error Figures. 

 
• Multiple Scatterers 
In the second test case, three separated homogeneous 
cylindrical objects (Figure 3(a)) have been considered. 
The first square cylinder, centered at 

0325.0
11

λ=−= cc xy , has an object function value 
equal to 0.21 =τ  and it is 0 26 0. λ -sided; the second 
square cylinder is centered at 0325.0

22
λ== cc xy  with 

0.12 =τ ; the rectangular cylinder (0 26 0 390 0. .λ λ× ) 

is centered at 013.0
33

λ=−= cc yx  with 0.33 =τ . 
Concerning the input scattered data, they are synthetic 
data numerically computed by means of the 
Richmond’s procedure [53]. For the reconstruction 
process, we assumed that the variations in τ  ranged 
between 0.0 and 4.0. Table II gives the error figures 
corresponding to the reconstructions shown in Fig. 3.  
 
 

Procedure εΞ tot  εΞout  εΞ int  
CG 11.12 12.38 5.10 

RGA 0.50 0.29 1.49 
RGA/CG 0.12 0.07 0.37 

Table II. Reconstruction of dielectric multiple 
scatterers. Error Figures. 
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(c) (d) 
Figure 3. Reconstruction of dielectric multiple scatterers. (a) Original cross-section. Reconstruction obtained with (b) 

CG-based approach, (c) RGA-based procedure and (d) RGA/CG-based procedure. 



Also the case of lossy scatterers has been taken into 
account. The values of the object function of the three 
cylinders was j36.00.11 −=τ , j25.16.02 −=τ , and 

j9.03.03 −=τ . Figures 4, 5, and Tab. III confirms that 
GA-based inverse scattering procedures outperform 
standard deterministic CG-based methodologies. 
 

Procedure εΞ tot  εΞout  εΞ int  σΞ int  
CG 8.36 6.94 10.37 12.19 

RGA 1.30 0.49 5.16 8.84 
RGA/CG 0.19 0.05 0.87 4.50 

Table III. Reconstruction of dissipative multiple 
scatterers. Errors figures. 
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(d) 

Figure 4. Reconstruction of the object function for dissipative multiple scatterers – Real part. (a) Original cross-
section. Reconstruction obtained with (b) CG-based approach, (c) RGA-based procedure and (d) 
RGA/CG-based procedure. 

 
It should be pointed out that, in order to avoid the 
possibility that errors in the forward and inverse 
solutions may to cancel out, different discretization 
method have been considered to generate the synthetic 
scattered data and in the reconstruction algorithms. In 

more detail, scattered data have been computed by 
considering a number of square domains equal to 

2020 ×  corresponding to a discretization cell 
05625.0 λ=∆l -sided.  
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Figure 5. Reconstruction of the object function for dissipative multiple scatterers – Imaginary part. (a) Original 

cross-section. Reconstruction obtained with (b) CG-based approach, (c) RGA-based procedure and (d) 
RGA/CG-based procedure. 

 
Moreover, in order to assess the robustness of the 

proposed algorithms, the effect of the noise has been 
investigated. Numerically, the measurement noise has 
been simulated by adding to the scattered data a 
complex Gaussian random value with zero mean value 
and a standard deviation given by 

( )N
SMV

yxE
M

m

V

mmscatt

2

),(
1 1

∑∑
= =ν

ν

=χ                    (18) 

being ( )N
S  the signal-to-noise ratio. Table IV gives 

the errors figures computed at the end of the 
reconstruction process performed with the RGA/CG-
based method. 

(S/N) εΞ tot  εΞout  εΞ int  σΞ int  
15 3.08 1.28 11.47 20.50 
10 3.14 1.45 10.71 30.82 
5 5.27 2.54 18.33 46.25 

Table IV. Reconstruction of dissipative multiple 
scatterers - Gaussian Noise. Errors figures. 

 
It can be observed that the retrieval results quite 
accurate for the permittivity profile. On the contrary, 
the quality of the reconstruction of the imaginary part 
of the object function strongly reduced when the signal-
to-noise ratio decreases. As an example, Figure 6 shows 
the reconstructed image of the object function in 
correspondence with ( ) dBN

S 10= . 
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Figure 6. Reconstruction of the object function for dissipative multiple scatterers – Noisy case ( ( ) dBN
S 10= ). 

 
 
 
• Osterreich Configuration 

Finally, a more complex environment, consisting of a 
modified version of the so-called “Osterreich” 
configuration, has been considered. Three different 
homogeneous scatterers, belonging to an investigation 
domain ( 00.1 λ=L -sided), are imaged by considering 

80=M  input data collected in a circular measurement 
domain, Lm =ρ  in radius. The permittivities of the 
scatterers are: 0.21 =εR , 5.32 =εR , and 0.33 =εR , 
respectively.  

Figure 7 shows the object function distributions 
achieved at the end of the minimization process when 
different optimization strategies are considered. Table 
V gives some indications about the effectiveness of the 
hybrid optimization approach. In this case, the error 
figures do not result greater than 8%. 

For completeness, in order to show the accuracy of 
the complete approach to predict the total electric field, 
Figure 8 gives color-level images of the amplitudes of 
the electric field inside the investigation domain and for 
the third view (ν = 3; °=θν 270 ). 

 
Procedure 

 

 
εΞ tot  

 
εΞout  

 
εΞ int  

 
CG 

 

 
32.82 

 
41.66 

 
15.92 

 
RGA 

 

 
14.23 

 
12.83 

 
16.91 

 
RGA/CG 

 

 
6.82 

 
7.32 

 
5.18 

 
Table V. Reconstruction of dielectric multiple 

scatterers (Osterreich Configuration). 
Error Figures. 

 
 

Reconstructed values (interpolated on a grid of 36 ×  
36 points) and actual values (computed by the 
Richmond’s procedure) show an excellent agreement. 
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(c) (d) 
Figure 7. Reconstruction of dielectric multiple scatterers (Osterreich configuration). (a) Original cross-section. 

Reconstruction obtained with (b) CG-based approach, (c) RGA-based procedure and (d) RGA/CG-based 
procedure. 
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Figure 8. Reconstruction of dielectric multiple scatterers (Osterreich configuration). Electric field amplitude ( 3=ν ): 

(a) Actual distribution. Predicted amplitude achieved with the (b) RGA/CG-based procedure. 



B. MICROWAVE NDT 
In order to illustrate the behavior of GA-based 

techniques for microwave NDT, let us consider a 
typical test case sketched in Fig. 9. An unknown defect 
(yellow area) is inside a known host medium (red area). 
Even if this scenario does not directly concerns material 
processing, it easy to imagine how it could be extended 
to such situations. The test sample (formally the 
investigation domain) is assumed to be cylindrical, as 
in the case of product conveyed in tubes, vessels or 
pipes. The sample is surrounded by a circular array of 
antennas forming a microwave scanner.  
 

 
 

Figure 9. NDT problem geometry. 
 

 
Starting from the knowledge of the scattered field due 

the presence of the defect, it would be possible to give a 
complete image of the scatterer. However, in 
NDE/NDT area a detailed imaging may often constitute 
a redundant information and faster computation or a 
simplified processing would be often preferred. The 
location and the shaping of the crack could be sufficient 
for an industrial monitoring of large-scale products. To 
this end, the inverse scattering procedure looks for the 
position, dimensions and orientation of the defect 
approximated by a void fixed shape. Then, by including 
the a-priori information about the scatterer under test, 
the crack-identification problem is that of finding the 
equivalent parameters of the crack 
 

{ } { }00 ,,,,5,...,1; yxWLj crackcrackcrackj α≡=l      (19) 
 

(as shown in Fig. 9) and the electric field distribution 
for the flaw configuration. The discretization of the 
investigation domain in square sub-domains suggests 
the assumption that the equivalent parameters belong to 
finite set of values. Consequently, a hybrid encoding 
(i.e., a binary representation has been used for discrete 
parameters and a real-valued representation has been 
adopted for the electric field unknowns) is assumed and 
suitable genetic operators have been defined (Sec. 3).  
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Figure 10. Errors in the crack reconstruction for 
different areas of the crack.. 

 
The effectiveness of the proposed approach (HGA), 

has been assessed by considering various operating 
conditions. In the first example, let us consider a square 
investigation domain ( )5/4 0λ -sided. Firstly, the area, 



A∆ , of a void crack centered at point 
( )10/000 λ== yx  is changed in the range between 

0.1% and 10% of A (being A the area of the 
investigation domain) (Fig. 10). Then a crack having 
area equal to 0.04A has been moved along the diagonal 
of the investigation domain (Fig. 11). The measurement 
noise has been also taken into account and the signal-
to-noise has been varied between 5 dB and 25 dB.  
 

 -0.56                        D∆                        0.56 
5 
 
 
 
 
 
 

SNR  
 
 
 
 
 

25 
 

 
 50                              cξ                           0 

(a) 
 

 -0.56                        D∆                        0.56 
5 
 
 
 
 
 
 

SNR  
 
 
 
 
 

25 
 

 
 100                          Aξ                           0 

(b) 
 

Figure 11. Errors in the crack reconstruction for 
different positions of the crack. 

 
Figures 10(a) and 11(a) give an idea of the 

effectiveness of the HGA-based procedure in locating 
the crack (being cξ  the percentage error in locating the 
crack). On the other hand, Figs. 10(b) and 11(b) 

confirm also the capabilities of the method in shaping 
the crack (being Aξ  the percentage error in estimating 
the crack area). 
 
C. MICROWAVE NDE  

Let us consider the problem of determining the 
thickness of the layers of known (or partially known) 
materials deposed on a known specimen. This is an 
example of a typical problem arising in industrial NDE 
applications. In this case, the characteristic parameters 
of the scatterer (a multi-layer elliptic cylinder in Fig. 9) 
are almost completely known, however it is necessary 
to exactly estimate their value in order to certificate (or 
not) the quality of the product under evaluation.  
 

 

 
 

Figure 12. NDE problem geometry. 
 

 
By a mathematical point of view, the amount of a-

priori information is very large and only a few 
parameters must be determined starting from the 
knowledge of the scattered electric field measured in 
the external observation domain. 

As far as the elliptical geometry is concerned, the set 
of unknown equivalent parameters is 
 

{ }
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         (20) 

 
being S the number of layers, ( )00 , yx  the center of the 
cylinder, d the focal distance of the elliptic cross-



section and where sa , sτ , are the semi-major axis and 
value of the object function of the s-th elliptic layer, 
respectively. Moreover, the scattered electric field can 
be analytically computed as follows 
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(21) 
where )4(

qΨ , )4(
qς , and qΩ , qϕ  are the radial and the 

angular Mathieu functions, respectively; 1+S
qe  and 1+S

qo  
are scalar coefficients computed by means of a 
recursive procedure [54]; um and vm indicates the 
coordinates of the m-th measurement point in an 
elliptic coordinate system.. 

Then the original inverse scattering problem (“to 
determine the object function in the overall 
investigation domain”) is recast to the minimization of 
the following cost function 
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being { }0011 ,,,,...,,,...,, yxdaaSf SS ττℜ= .  

Because of the low-dimensionality of  the solution 
space, it is expedient to apply the MA-based procedure. 
The proposed numerical implementation considers a 
conjugate-gradient method and a RGA as local and 
global minimizer, respectively. The iterative procedure 
performs the following tasks: 
 
1. Initialize a starting population by creating a set of 

ideas, { }Ppf p ,...,1;)(
0 = ; 

 
2. Perform P local minimizations. Every current ideas 

is the starting point for a local minimization. 
 
3. Perform selection, crossover and mutation 

according to the RGA-based procedure in order to 
produce the individuals of the next generation 
{ }Ppf p

k ,...,1;)(
1 =+ ; 

 
4. Evaluate and assign the cost values to current ideas, 

( ){ }Ppf p
k ,...,1;)(

1 =Φ + ; 

 
5. Iteratively repeat starting from task (2.) until 

( ) δ≤Φ )( optp
kf . 

 
In order to assess the effectiveness of the MA-based 

procedure, preliminary tests have been carried out. A 
three-layer elliptical cylinder ( 0.11 =τ  - internal layer, 

0.42 =τ  and 5.23 =τ  - external layer) illuminated by 
a line source placed at )0.0,( 0λ−  has been considered. 
The scattered electric field has been collected at 

21=M  measurement points located along a probing 
line parallel to the y-axis, 0λ  on the right of the 
scatterer. The following geometrical and dielectric 
characteristics have been considered: 3=S , 

01 3.0 λ=a , 02 4.0 λ=a , 03 49.0 λ=a , 0.000 == yx , 
and 0048.0 λ=d . Table VI summarizes the results 
obtained from the reconstruction process. In order to 
reach the stopping threshold 510−=δ , only two 
iterations are necessary. 
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2.199 
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71016.3 −×  

 
1.0 

 
3.996 

 
2.503 

 
Table VI. MA-based inverse scattering procedure. 

Reconstruction of a dielectric multi-layer 
cylinder. 

 
 

V.   FINAL DISCUSSION AND CONCLUSIONS 
 
In this paper, a number of methods based on a 

Genetic Algorithm has been reviewed. These 
approaches, developed in the spatial-domain, aim at 
solving the nonlinear inverse scattering problem of 
reconstructing the constitutive properties of bounded 
two-dimensional objects from values of the scattered 
fields on a surface entirely exterior to the scatterer 
under test, when the object is successively illuminated 
by known single-frequency incident fields originating 



in different points of the exterior domain. All of the 
discussed methods involve minimizing the discrepancy 
between the actual measurements and a representation 
of the scattered field on the surface of measurements. In 
order to regularize the ill-posedness of the arising 
problem, a term proportional to the incident field in the 
investigation domain has been considered.  

The difference in how the unknown object function is 
treated and how suitable GA-based procedures are 
implemented, is what distinguishes the various 
approaches. In developing these microwave imaging 
methodologies, it is clear that the following key issues 
must be addressed: 

 
• A suitable representation and corresponding 

operators need to be developed when canonical 
representation is different from binary strings 
(BGA); 

 
• Various constraints need to be taken into account 

by means of suitable method (ranging from penalty 
functions to repair the algorithms, constraint-
preserving operators, etc...); 

 
• A-priori knowledge about the scenario under test 

needs to be incorporated into the representation and 
the genetic operators in order to guide the search 
process and increase its convergence rate; 

 
• A cost function needs to be developed which allows 

that its global minimum be the physical solution of 
the addressed inverse scattering problem; 

 
• The parameters of the GA-based procedure need to 

be set (or tuned) and the feasibility of the approach 
needs to be assessed by comparing the solutions 
obtained by other deterministic and/or statistical 
microwave imaging procedures. 

 
As far as the status-of-the-art of the application of 

GA-based microwave techniques to real-world 
problems is concerned, firstly it should be pointed out 
that evolutionary techniques in general and genetic 
algorithms in particular have had a relatively short 
history in the computational electromagnetics. 
However, it is a history that progressed rapidly. 
Actually, GA-based microwave imaging methods can 
not yet be considered as completely matured techniques 
(as well as other nonlinear methodologies in the 
framework of microwave imaging) if compared with 
well established imaging modalities such as ultrasound, 
infrared, X or gamma techniques. Several basic 

questions have still to be answered before obtaining the 
degree of reliability required in industrial applications.  

By a theoretical point of view, the questions of 
convergence and uniqueness of the solution needs some 
explanations. The theoretical foundations of GA-based 
methodologies are to some extent still weak. “We know 
that they work in microwave imaging, but we do not 
know precisely when the optimal solution will be 
achieved”: this is the typical idea of an user when a 
very complex problem is addressed and only a long 
heuristic training allow us to state some rules of thumb. 
Generally speaking this is not a constructive approach 
and it results as a limitation for real-world 
implementations. Moreover, the statistical nature of the 
GA operations is an effective characteristic, but on the 
contrary, a randomness in the definition of the 
evolutionary strategy represents an obstacle to 
industrial applications. Demystifying the optimal 
choice of  GA parameters would be a great 
accomplishment. Adaptive parameters settings may be 
the solution [24], but much work is needed in this 
framework. 

By a numerical point of view, severe limitations of 
the nonlinear inverse scattering methodologies are the 
computational load, the memory requirements and the 
rapidity of the reconstruction process. Certainly, the 
search space and the number of iterations of the 
minimization process evidently reduce in 
correspondence with an increase of the a-priori 
information. Indeed, if the initial guess profile is quite 
close to the actual contrast, the inverse scattering 
problem can be considered as quasi-linear allowing an 
increase of the convergence rate. However, a serious 
factor limiting the effectiveness of traditional 
deterministic approaches is their serial nature. On the 
other hand, GAs already possess an intrinsic parallel 
architecture and no extra efforts (as for deterministic 
procedures [55]) are required to construct a parallel 
computational framework. The GA-based methods can 
be fully exploited in their parallel structure to gain the 
required speed for industrial processing [56-58]. 
However, the use of parallel genetic techniques (PGT) 
is no different than other parallel systems, in which the 
computation performances are largely dependent upon 
the design of the system topology and communication 
links. Consequently, it is mandatory to take into 
account these factors in order to maximize the 
effectiveness of the GA-based microwave imaging 
approaches. 

Nevertheless, even if further theoretical, numerical 
and experimental developments are still required for 
fully operational microwave imaging systems, existing 
equipments and known-how can be already suitably 



used for preliminary practical applications (e.g., the 
“off-line” characterization of materials in laboratory or 
the “on-line” detection of defects in a specimen). 
Moreover, the flexibility of the proposed 
methodologies and the expected impact of such 
tomographic techniques largely justifies to devote a 
large research effort to develop GA-based tools 
dedicated to specific applications in the framework of 
microwave imaging and NDE/NDT applications.  
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