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Abstract

In this paper, a new on-line inverse scattering methodolsgyroposed. The original problem is recast into
a regression estimation one and successively solved bysvefam support vector machine (SVM). Although the
approach can be applied to various inverse scattering cgians, it results very suitable to deal with the buried
object detection. The application of SVMs to the solutionsath kind of problems is firstly illustrated. Then,
some examples, concerning the localization of a given olfjecn scattered field data acquired at a number of
measurement points, are presented. The effectivenese @M method is evaluated also in comparison with
classical neural networks (NNs) based approaches.

Index Terms

Buried objects, real-time detection, support vector mae$j inverse scattering problems.

I. INTRODUCTION

The solution of inverse scattering problems is usually \diffjcult due to their inherent non linear nature and
ill-posedness. Now-a-day, the leading way to face them iset@ast the original problem into an optimization
one, which is successively solved by means of a minimizatémmnique (see for example [1], [2], [3] and
the reference therein). Unfortunately, the use of itemfivocedures often makes the reconstruction process
computationally expensive. As a consequence, serial imghtations of optimization techniques cannot be
generally used for real-time applications.

Therefore, the development of alternative strategies,dreline reconstructions are required (i.e, industrial
process control, leak detection, materials charactéoizaduring manufacturing and while in use, landmine
detection, etc...), is mandatory. Recently, a great atteritas been devoted to inverse scattering methodologies
based on neural networks. Methods based on both multilsgteeptron (MLP) [4][5] and radial basis function
(RBF) [6] NNs have been successfully proposed.

However, in spite of their success, NN-based approachderdudém typical problems of neural networks
(e.g., the over-fitting, etc...) which make the method aacurhighly training dependent. A solution to these
problems is the use of RBF-based techniques trained witloganal least squares [7].

In this paper, the effectiveness of an alternative proogchased on a support vector machine [8], is presented.
SVMs are built on a solid theoretical framework, the stat@tlearning theory (SLT) [9]. Similarly to NNs, (after
the training phase) the SVM allows to obtain reconstructiesults in quasi-real time (few tenth of seconds),
with a percentage of time saved with respect to iterativehodst greater thafi0% [10][11]. Moreover, SVM-
based procedures allow the control of the generalizatiocnracy of the approximating function. More in detail,
the arising optimization problem is aimed at finding the keastle-off between the capability of the SVM to
learn from the given set of examples and a measure of the exitplof the model itself. Since the model
complexity has a straightforward consequence on the gkregian accuracy [9], this leads to the determination
of models that outperform standard NNs.

In the following, a brief description of the electromagegbroblem and of the basic theory of the support
vector machine will be presented (Section 2 and Section shemively). In Section 4, the performances of
the proposed SVM-based inverse scattering technique wikigsessed and compared with those obtained with
a NN-based approach by considering the localization probla particular, the attention will be focused on
the localization of a cylindrical geometry with circulaross-section. This problem is largely encountered in
practical applications as, for example, the detection afeolipipes, tubes, or cables in urban environments.
Finally some conclusions and final remarks will be provided.

Il. MATHEMATICAL FORMULATION

Let us consider the two-dimensional half-space problemvsho Figure 1. A homogeneous pipe is buried in a
lossy region with relative dielectric parameters, gergriahomogeneous;;, (x,y) andoy, (z,y). The unknown
homogeneous scatterer is characterized by constant pigityits,., and conductivitys, values. The geometric
characteristics (position, shape, and size) of the seatsge defined by the center coordinates, ), and by
the parametric description
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Fig. 1. Problem Geometry.
of its cross-section given by
x =z + pcosh, y=yo+ psind, 0<6<2rm (1)

For computational purposes, let us assume a square inygstigdomain D) large enough I-sided) so that
the scatterer lies iD. Multiple illuminating sources and measurement pointslacated above or on the air-
ground interface at the same height € y,.). When the electric source is a line source, locatetaty;) and
radiating a monochromatic electromagnetic field, the eledield scattered by buried targets and collected at
the observation pointsz,.,y..), r = 1, ..., R, is expressed as

Escatt(xr’ yr|xta yt) = Egcatt(xr’ yT|xt’ yt)+
+k2 fD Eb(x7y|xtayt) (2)
G(xTa y77 Z‘, y)O {(Z‘, y)|$0, yO; pa 67’) U} dxdy

where Ese'* and E;*'* are the scattered electric fields at the measurement poimés whe reconstruction
domain contains or not the unknown scatterer, respectivglyis the electric field inside the reconstruction
domain filled with the background mediur@; is the Green’s function of the inhomogeneous medium [124 an
O(z,y) is the relative dielectric profile defined as follows

.o—op(z,y)

er — e, y) — 17507

O(z,y) = if \/(a: — xo)Q + (x — y0)2 <p 3)

otherwise



Inverse scattering procedures aim at retrieving the looatthe shape and the dielectric properties of the
scatterer starting from the knowledge Bf<** (x,., y,|x+, y;). Mathematically, the problem reduces to determine
the following relation

X ) {Escatt} (4)

wherey is the scatterer array(= [x:;i = 1, ..., P] = [0, v0, p, &, 0] being P the number of parameters which

completely describe the scatterer) aftf*!! is the data array defined &°**t = [E*** (z,., y, |z, y); 7 = 1,..., Ry t = 1,..

This problem can be reformulated asegression problem, where the unknown function®) must be approxi-
mated from the knowledge of a number of known input-outpirspat vectors{ (X)n , (ESC“”)”} in=1,...,N.

1. SVM-BASED INVERSE SCATTERING PROCEDURE

Generally speaking, a regression problem is the procesaghrwhich an unknown functiod, : R2*7 — R,
is approximated by means of a functiénon the basis of some sampl¢®,,,e,)},,_; 5 , beingy, an input
pattern ane,, the corresponding target( = ® {v,, }). As far as buried-object detection problems are concerned
the location g, y0), the dimension), and the complex permittivitys(, o) of the scatterer must be retrieved
and each unknown parameter is dealt with separately. Caesély, v, = (E*°*'"), ande, = (x;),,-

Usually, a problem is formulated as a regression one when ftassible to observe and to measure the
input/output signals of the system under test, but the systgnamic is unknown (i.e., an analytic expression
for ® is not available). SVMs are a new paradigm that have beemtlggeroposed for the solution of pattern
recognition and function approximation tasks. Briefly (deader can refer to [8] for more details), the SVM-
based procedure aims at finding a smooth functiohaving at most deviation from the targets, for all
samples. The functio® is given by

N
® ()= (an—ap) k(v,v) +b (5)

wherek is a kernel function while functional parameteis, «*,b) and structural parameters (e,C, 02) are
unknown quantities. The parametér measures the trade-off between the capability@o{fi) to approximate
the input samples and the error on the new samples [8] wifiles the variance of the kernel function, when
Gaussian functions are taken into account. It is importantdte that expression (5) has the same form as for
RBF approaches. As a matter of fact, Gaussian SVMs can beaseavspecial case of standard RBF networks
[13] whose centers and weights are computed following adfit procedure, as detailed later on.

The arraysy anda™* in (5) are computed by solving the following constraineddyagic programming problem

(CQP)
mmﬁ{%gTQ B8 +ng} (6)

subjected to the constraints< 3, < C,Vn =1,...,2N andg% = 0, being

()

and ki; = kji = k(v;, v;), & = €, Vi; dim (Q) = 2N x 2N; dim (B) = dim (r) = dim (t) = 2N. The
structure of the optimization problem (6) is a key point o€ throposed approach. Its solution is the global
minimum of the arising cost function and the local minimalpem, which affects classical back-propagation
algorithms, is completely avoided. In order to solve (6aditional optimization techniques [14] can be used.
To this end, a very effective procedure, described in [1Sgdopted in this work.

The threshold is computed by means of the Karush-Kuhn-Tucker (KKT) coodg of the CQP at optimality
[14] while the hyperparameters of the problem are determined according to a model selegioness (namely,
the bootstrap procedure [16]) aimed at minimizing the cadnparameterh, given by

h = R2 Z (an - O‘;) (am - O‘;kn) k (ZWJZ) (8)

being R the radius of the smaller hyper-sphere containing all th@ing data [9].

.
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Fig. 2. Test case.

IV. NUMERICAL RESULTS

In order to assess the effectiveness of the proposed agpmamerical simulations and comparisons with a
MLP NN-based procedure [17] have been performed.

The geometry under test is illuminated by means of an eteditie source Ioca’ted\@.—0 above the air-soll
interface. This source model avoids the drawbacks arisomg the modeling of complex electromagnetic sources.
Consequently, the attention is focused on the assessmdém piroposed procedure. Moreover, the electric line
source is a simplified model of realistic antennas when 2bleras are addressed. A buried lossless= 5.0)
circular (p = ) cylinder lies into the domairD. The dielectric parameters characterizing the sub-sarfac
region aree;, = 20.0 and o, = 1072 % and represent a worse case with respect to the realistic[E@jl
The investigation area is a square regibr= \o-sided, being\, the wavelength in the upper region and also
the order of magnitude of the skin depth [19]. The scatteraeh it each measurement point are synthetically
computed by using a finite-element code and a PML trunca#gohrtique [20]. For an accurate representation
of the scattered electric field [18], sixteen equally- smia(@é) measurement points are arranged on a line placed
in region 1 aty; =y, = )\0 (Fig. 1).

Let us consider the Iocalization problem. For comparisaippse, a two-layers MLP, characterized by 32 input,
32 hidden and 2 output neurons (previously proposed andseden [17]), is firstly trained by considering a
standard back-propagation algorithm. In the “learninggatiaa data set of 700 examples, sinthetically computed
by uniformly varying the position of the scatterer insibg(z, +rqin = —%—i—nAx, n=20,1,...9, Az = 0.112),
Yn,train = —% +mAy, m=0,1,...7, Ay = 0.167 ), is considered. As shown in [17], 700 equally distributed
examples define a suitable set to train NN for the solutiorooélization problems. Input data for the NN are
the real and the imaginary parts of the scattered field deltbat the measurement line. The center coordinated,
xo andyg are the NN’'s outputs.

In order to compare NN and SVM performances under the sameditions”, the same training set has been
considered during the SVM learning phase. However, sinc&SWave been developed to solve one-output
learning problems (see [9] for further details), two difat SVMs, one for each coordinate of the target, are
trained by using the CQP algorithm. Gaussian functions ansidered as kernel functions due to their capability
to work as universal approximator [13]. After the bootst@pcedure, the values of the
hyperparameters resulf®) == 0.12, (¢*) = 0.1, (C),, = 1280, (C),, = 5120, ande = 0.001.

The performances of the Classical NN and SVM- based proeeaherillustrated and compared in the following
by firstly considering a noiseless test set made up6of examples. These examples are synthetically obtained
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Fig. 4. NN-based approach. Estimated versus real scateoperties. &) AO and p) { yo

by randomly varying the position of the cylinder inside The cylinder locations are different from those of
the training set (Fig. 2). Figure 3 and 4 show the estimatedusgethe actual scatterer properties when the
SVM-based and the NN-based approaches are taken into daccesjrectively. Both actual and estimated values
are normalized to the maximum admissible erfo(set equal to the investigation domain side= \). Let
us observe that, as far as the scatterer depth estimatiantemed, SVM greatly reduces the error of the NN
and the correlation coefficienf), = £2<<t  where the subscriptect andest indicate the actual and estimated
values, respectively) results much more closd t&uch an improvement is mainly due to the definition of the
kernel deviatiore that guarantees targets to deviate at meofirm the function itself. Moreover, larger errors
occur when the targets are positioned just below the aiggldnterface. This is probably due to the interaction
between the object and the interface and it is more evideeinwhrgets are positioned near the left and right
side of the investigation domain.

In order to quantitatively evaluate the localization aeayy let us define some error figures:

|J30 act — xO.est|

gy = et~ oot (©)

|y0,a,ct - yO,est|
=" (10)

Figure 5 shows the mean value and the variance for both tlee gures when the NN and the SVM are
used. As expected, SVM enhances the performances achidtledhe standard NN approach due to optimal
generalization properties guaranteed from the SLT.

In order to analyze the robustness of the proposed apprtarget objects of circular cross-section, with radii
and dielectric permittivities different from those of th&ining set, have also been taken into account. Firstly,
different locations of the target i) have been considered( = 0, yo € [0; 028)g] ). In correspondence
with radius variations, the mean values of the error figures<a&, >gv = 0.022, < & >gyn= 0.12 and
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< & >nn= 0.095, < & >nn= 0.31, respectively. Similar results have been obtained alsonwthe SVM
approach is adopted for localizing objects with differeatues of permittivity. The values of the average error
are equal to< &, >gv = 0.017 and < &, >gvp= 0.10. For the same test set, the results achieved by using
the NN-technique are £, >y = 0.045 and < &, >nyn= 0.14.

Moreover, the dependence of the localization accuracyugetise target shape has been analyzed. To this
aim, the target is a cylinder with square cross-section. ditea of the cylinder is the same of the reference
circular cylinder used in the training phase. The achiewetage localization errors<( ¢, >gsy = 0.021 and
< & >svm= 0.09) confirm the generalization capability of the SVM and theeefiveness of the proposed
approach with respect to the NN-technique d, >nyny= 0.12 and < &, >y n= 0.39).

Finally, a noisy environment has been considered. Noisy ldate been obtained by adding a uniform Gaussian
noise to simulated measurement data. The obtained resaltgiaen in Table I.

TABLE |
NOISY MEASUREMENT DATA. AVERAGE VALUES: () &z AND (b) £, FOR DIFFERENT SIGNAL-TO-NOISE RATIOS(SNRS).

[SNRTdBI] 50 | 35 | 20 [ 10 | 5 |
SVM__ [ 0.017] 0.019 | 0.036 | 0.080 | 0.130
NN 0.035 | 0.053 | 0.110 | 0.210 | 0.270

@

[SNR[@B]| 50 [ 35 | 20 | 10 [ 5 |
SVM__ ] 0.058 | 0.060 | 0.070 | 0.130] 0.170
NN 0.100 | 0.110 | 0.220 | 0.350 | 0.350

(b)

V. CONCLUSIONS

In this paper, an innovative on-line inverse scatteringhodblogy, based on the implementation of a support
vector machine, has been presented and applied to theidate€buried objects. The training of SVM requires
the solution of a constrained quadratic optimization peofl This is a key point of the proposed approach and
it represents the main advantage of the method (with redpellLP NN-based procedures). It avoids typical
drawbacks as over-fitting or local minima occurrence.

The effectiveness of the proposed approach has been chiegkehsidering the localization of a given target.
An exhaustive numerical analysis has been performed amdttedl numerical results (statistically significant)
have been presented in order to assess the robustness oéthednThe obtained results clearly demonstrated
significant improvements in the quasi real time localizatad pipes buried in inaccessible domains. Moreover,



the generalization capability of the SVM procedure has balso pointed out. Future works, currently under
development, will be devoted to further assess the methddaintroduce, in a convenient way, soragriori
information into the retrieval procedure.
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