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Abstract

An approach based on a stochastic optimization technique is proposed for med-
ical microwave imaging. The approach is based on the integral equations of the
electromagnetic inverse scattering. After discretization of the continuous model, the
problem solution is recast as a global optimization problem. A functional is con-
structed on the basis of a Markov random field model and minimized by a genetic
algorithm. In order to reduce the computational load, a model of the cross section
of the biological body is considered. In this way, the investigation area is limited
by separating the scattering contribution of a fixed region under test from those of
other parts of the model. Some preliminary results concerning a two-dimensional
model of a human thorax are reported. Such a biological structure is inspected by
the proposed tomographic approach in order to detect and localize the presence of

an "object" modeling a tumor.
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1 Introduction

When the pioneering work by Larsen and Jacobi appeared in 1986 [1], it seemed that
techniques based on interrogating microwaves would have provided new and powerful
tools for medical diagnostics. However, one should compare the related developments
with those of the computerized tomography (CT) in the medical field. In the 70s, the
Radon transform was re-discovered and a new era in diagnostic radiology was heralded
[2][3]- In fact, few years later, tomographs were already available in several advanced
diagnostic units of important hospitals, and, about ten years later, CT has become a
routine diagnostic method.

On the contrary, microwave medical imaging is still considered an "emerging" technique
and effective dielectric reconstructions are very difficult to be obtained. However, some
quite interesting results, including clinical experimentations, have been recently obtained
in the case of breast diagnosis by using focusing techniques [4]-[10]. In the authors’
opinion, some of the factors that have limited the real capability of microwave medical
imaging tend now to reduce their impact on the development of imaging systems. The first
aspect concerns the design and realization of efficient illumination /measurement systems.
Several equipments have been recently developed, which are based both on arrays of
probes [11] and on measurement cameras with advanced sensor matrices [12][13]. The
modulated scattering technique [14] has been efficiently applied as well. Consequently,
the fast and accurate acquisition of samples of the scattered electromagnetic field is now
a feasible task.

Furthermore, as far as the other critical point is concerned, that is the development of
effective and accurate inversion procedures, significant advances can be registered. Be-
side the aforementioned focused approaches, which so far have achieved the best results
for breast cancers, other inversion procedures are now sufficiently tested to be consid-
ered as potential tools in medical applications. Among them, in the present paper, the

authors consider global optimization procedures [15]-[18]. The immediate advantage of



these techniques is related to their capabilities of finding the global minimum of a given
functional. Since the inverse scattering problem (which represents the basis theory of
microwave imaging techniques) is usually very ill-conditioned and highly nonlinear, the
global minimum corresponds to the "exact" solution, whereas a local minimum is related
to a "false" solution or an "artifact".

The price to be paid for having the global solution is, as it is well known, a higher compu-
tational load. However, in the authors’ opinion, modern computers and future computing
structures with suitable designed software tools, will make it possible a quasi real time
imaging, also in the case in which the usually considered time-consuming optimization
techniques are applied. In order to achieve this result, the key points are: (1) hybridiza-
tion of the stochastic procedure with fast deterministic techniques and (2) capability of
inserting a-priori information into the model.

In this paper, a stochastic optimization technique is proposed. The approach is based on a
hybrid genetic algorithm. In order to reduce the computational load, the method is aimed
at separating the scattering effect of the region under consideration (which is usually a
limited region of the whole body) from the surrounding tissues. It requires an off-line
computation of the Green’s matrix and the solution of a forward scattering problem for
each reference-tissues distribution. Then a reduced investigation region (which represents
the difference between the actual biological structure and the reference-tissues profile) can
be considered for a very fast biomedical diagnostics.

The proposed approach, developed for a two-dimensional cross section under transverse
magnetic illumination conditions, recasts the inverse problem as an optimization one
where a cost function is defined and successively minimized. The cost function is not
arbitrarily constructed. Following an approach previously developed in [22], it is obtained
by modeling the unknown structure with a Markov random field.

The paper is organized as following. In Section 2, the mathematical formulation of the
inverse scattering problem is described, including the separation of the scattering con-

tributions and the construction of the cost function. In Section 3, the hybrid procedure



based on a customized hybrid-coded genetic algorithm is briefly described. Section 4

presents some preliminary results and final conclusions follow (Section 5).

2 Mathematical Formulation

Let us consider Figure 1(a). The cross section of a biological body S, belonging to a square
region S;, is represented by the distributions of the dielectric parameters (e.g., relative
dielectric permittivity, €., and electric conductivity, o [S/m]). Biological tissues are non-
magnetic, so that u = o everywhere. When inspected by microwaves, an incident field
(transverse-magnetic polarized) is generated and propagated toward the body. Unlike the
z-rays, microwaves do not propagate with rectilinear paths. On the contrary, they are
scattered in a complex way. If focusing techniques [4]-[10][23] are not used, the whole
cross section should be discretized. A large discretization cannot be used due to the high
computational load. Moreover, it would require a CPU time not yet compatible with
times reasonably expected for real diagnoses in medical applications. It has been shown
in [23] that some regions of the body cross section, which are far from the investigated
zone, can be neglected. But, it is quite difficult to define the negligible zone and evaluate
the errors on the reconstructed values introduced by this strong approximation.

However, a different approach is followed here. Let us consider: S; = UM, S,, where
S, indicates the area of the n-th partition of S; where the dielectric characteristics are
assumed to be constant as well as the field values. Let s, = (z, y,) be the center of
the n-th partition whose side length is chosen according to the criterion defined in [21].
Moreover, let us assume that only the first /N subdomains belong to the investigation area,
Sind = U,]:[:l Syn. Such an area may exhibit dielectric parameters that represent variations

of arbitrary fixed values:



where &7 denotes an arbitrary dielectric value (related to reference biological tissues).
Moreover, the other subdomains belonging to the scatterer cross-section S are charac-
terized by &% (z,,y,) n = (N +1),...,N;. In the above formulas, complex dielectric
permittivities are used (i.e., & (z,y) = &, (z,y) — ]gffffg)

For the "object" constituted by A& (zn,ys), n = 1,..., N, the propagation medium is an

inhomogeneous medium (Fig. 1(b)) characterized by a complex permittivity 2 (x,, y,)

given by
éT(xn,yn) (xnayn) es, n=1,...,.N
7 (xn,yn) = &7 (@nyUn) (Tnyyn) €S, n=(N+1),.., NV (2)
gO (xmyn) (:r,y) ¢ Sa (a:,y) € SI

Consequently, the samples of the scattered electric field measured at M locations outside
Sty (T Ym) € Soss, m = 1,..., M, can be related to A& (x,,y,) by means of the following

scalar Fredholm equation [19]

N
\IISCGtt xmaym Z{[Ag xnayn ]_]// \IItOt .’E y)r($m,ym|$ y)dxdy} (3)

=1

where Wseatt — ot _ ine gtot  and U¢ denote the scattered, total and background

fields, respectively; I' (z, y |2’ , y') is the solution of the integral equation [20] below

U (z, yla', ¢') =Tz, yl2', ¢ +//S )= 1T (@, y" |2/, y)TO (2, y|2", y") da” dy’
I
(4)

where I'? is the two-dimensional Green’s function for free space. Since I does not depend

on Ag, for any different reference scenario (i.e., without the “object”), it can be computed



once off-line by means of the Richmond’s procedure [24] (as in the present approach) or
alternatively by using other numerical procedures. Moreover, it should be noted that
such a computation is essentially that of a forward scattering problem, for which fast and
efficient direct numerical methods [25] exist.

Once I' is known, it possible to take into account also the EFIE for the internal field

U ) = 9 (5 4) =2 {182 ) = 1] [ [ 9 )T 2. ) ey (3 € S
6)

From Egs. (3) and (5), an optimization process can be defined in order to overcome the
ill-conditioning (already reduced by the limited discretization). Usually, the cost function
to be minimized is arbitrarily chosen. In this paper, the cost function is defined according
to a Bayesian approach where the analytical counterparts of AZ and ¥ are assumed to
be the results of spatial stochastic processes. Then, the problem is that of maximizing
the a-posteriori probability, Pr {U" (z,, y,) , AZ (T, Yn) | O (T0, Ym) » O (Tons Ym) },
n=1..,N,m=1,.. M. By the Bayes theorem, the a-posterior: probability can be

related to the a-priori probability as follows

Pr {qltOt (x'fla yn) , AE (xna yn) | yseatt (xma ym) ) gine (xma ym)} =

Pr{\pscatt(wm,ym),\pinc(wm,ym)‘ \PtOt(xnayn)vAg(wnyyn) }Pr{\I}tOt(wn,yn)7Ag(wn 7?/71)}
Pr{@scatt(z, ym), ¥ "(zm ym)}

(6)

Since Pr { ¥ (z,.. Ym) , ¥ (T, Ym) } does not contribute to the maximization process,
suitable models for AZ (z,,,y,) and ¥* (z,,v,), n = 1, ..., N are needed. Following the
approach proposed in [22][26] and assuming that A& (x,, y,) and V" (z,,y,), n =1,..., N
be described by means of discrete Markov random fields, the maximization of (6) requires

to minimize the cost function (also called “energy function”)



U{AZ (20, Yn) , U (20, 9);n=1,..,N} =aX), z}']le \AE (T, yn) — AE (24, yjn)|2 +
. _ 2
BN U (20, Yn) = U (@, yn) — Tply {[AE (29, 4p) — 1] Js, O (2,9) T (20, 4 | 7, y) dady}| +

SN | (1, ) — SN {[AE (@) = 1S S, O (2, 9) T @y | 7, ) dady )|
(7)

where the summation over j, extends to the neighborhood subdomains of the n-th sub-

domain; & = v Zj;jzl\?(zi,yn)—?mn,ymf’ B = S g Y = S
In this way, the cost function is defined according to an assumption on the model and
it is not arbitrarily constructed. It should be noted that the procedure for obtaining (7)
is the same as proposed in [22], although the integral equations are completely different
and customized for the problem at hand. Moreover, Eq. (7) is solved here by means

of an evolutionary algorithm, which is much more efficient that a stochastic single-agent

procedure (as the "sequential" simulated annealing) used in [22].

3 Optimization Procedure

3.1 “Object” Parameterization

In order to further reduce the computational load of the optimization process, by limiting
the search space of the minimization, the investigation area S;,; is approximated by a
homogeneous square of side Lc and centered at (z¢,yc). Under this hypothesis, the

dielectric differential permittivities of the domains belonging to the investigation area are

given by
Agi'rLd X’ Y e _AQaAQ
AE (T yn) = %] 8)
0 otherwise

where X = (2, — z¢) cosO + (yn — yc) sind, Y = (xc — xy) sind + (y, — yc) cosh, 0 being
the “object” orientation. Consequently, the reconstruction process is aimed at searching

for the unknown array Q = {z¢, ye, Lc, 0, A&ing; Y (T4, yn) n = 1,..., N} minimizing



(7) by considering the parameterization rule defined in (8).
To this end, a suitable Genetic Algorithm (GA) is used to define a sequence of trial
configurations, Q®) k = 1, ..., K,naz, (k being the iteration number), which converges to

an extreme of the cost function.

3.2 Optimization Procedure

GAs [15]-[17] are efficient optimization techniques that mathematically reproduce the
genetic evolution occurring in natural processes. A standard implementation of a GA
considers a set of trial solutions Q% = {Qg’“), qg=1, ...,Q} (called population) coded
with a suitable representation ¢y{¥) = C {ng)}, g = 1,...,Q and ranked according to
their fitness (i.e., the corresponding value of the scalar cost function) Uék) =U {Qg’“)},
qg=1,...,Q. Iteratively, the population evolves generating new chromosomes, 1/75’“) (called
offspring), by means of crossover and mutation [16]. According to a generational strat-
egy [17], the current population is replaced by the newly generated group of offspring,

_ (k) =(k)
Q%) = Q" where Q

= {Qg’“), g=1,.., Q} . The iterative process terminates either
if a maximum number of generations elapses (k = K,,.;) or a fixed value of the cost
function is reached Uo(;g*) = miny {U,gK*)} < 7n, n being the convergence threshold and
k = K* the convergence iteration.

The first step in adapting a standard GA optimizer to the problem at hand is to choose
a suitable coding, or mapping C, of the unknown parameters into genes. Due to the
variable dimension of the “object” and the discretization of the investigation domain
in square sub-domains (¢-sided), the most natural chromosome structure is a two-part
variable-length string where each trial solution €2 is coded by using a concatenated multi-
parameter scheme 1 = {ty,%,; b=1,...,B; r =1,..., N}. The first part of the chromo-
some, {¢p; b=1,..., B}, is related to the “object” characteristics, z¢, yo, Lc, 6, and
Ag;nqg which are coded in fixed-length binary strings. On the contrary, a real-valued

variable-length representation, {1,; r = 1,..., N}, is used for the electric field unknowns,

U (1,,,y,). The use of a variable-length structure is necessary due to the variable num-
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ber of sub-domains N (determined by L) occupied by the “object” where the unknown
field should be computed.

As far as the genetic operators are concerned, unlike selection (a proportionate selection
[17] is adopted) crossover and mutation operates directly on the chromosome themselves.
Consequently, it is therefore mandatory to design genetic operators able to fully exploit

the adopted representation.
e Mutation

The mutation operator provides a mean for exploring portions of the solution
space that are not represented in the genetic complement. If the mutation
position lies in the binary part of the chromosome, then the selected bit is
changed from zero to one or vice-versa, 1% = not {1»}. Otherwise, mutation is
performed by perturbing the randomly chosen allele, 1., by an amount A,

chosen from a uniform distribution with zero mean and deviation chosen as

10 % of the gene’s range (¢, = ¥, + Aty).
o Crossover

The crossover operations are aimed at rearranging the genetic complement of
a population to produce better combinations of genes and more fit solutions.
Let us consider two parents (1), and (1), selected for the crossover and assume

that a single-point-crossover [17] be used.

If the cross-position lies into the binary part of the chromosome and the “ob-

ject” of the produced offspring occupies a number of sub-domains equal to

or smaller than that occupied by one of their parents ((m < mazx; {N;},
3

i,j = a, b), then

{\Tjtot (Zn, yn)}a _ T{\I/tot(l‘n,Zl]n)}a'f'(;*T){\I/tot(:z;n,yn)}b, n=1 .. (N/)a o

{qjtot (33n, y")}b _ (1—1“){\Iltot(l‘n:yn)}2a+7'{qltot(Z‘n;yn)}b’ n=1,.., (mb
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3

(=) |\
where (N) = Sint |~ and r € [0, 1] is a random number. Otherwise,

if (]V) > max; {N;}, i,j =a, b, then

{ U (@n,yn) }, = € (@n4m) , 1= (maz; {N;} +1),...,(N), i,i=a,b
(10)

£t being the electric field for the configuration without the “object”.

Finally, when the cross-position lies into the real part of the chromosome, the
alleles are combined to sensibly hybridize population members according to

the rule proposed in [27] (pp. 43-44).

4 Numerical Assessment

In order to preliminary assess the potentialities and current limitations of the proposed
stochastic optimization technique, let us consider, as a test case, a schematized model of
a human thorax where the “object”, to be detected and localized (if it exists), models a
homogeneous malignant tissue.

The biological phantom is the same as used by Caorsi et al. for the evaluation of a
focused medical imaging [23]. The biological structure, whose dielectric parameters are

shown in Fig. 2, is placed in a homogeneous non-dissipative medium and is illuminated by

27
Vo

a set of unit TM plane waves impinging from V' = 4 different directions (6 = (v — 1)
v=1,..,V) at a frequency f =433 M Hz.

The samples of the scattered electric field at the measurement points are obtained by a
forward scattering computation with the Richmond’s method [24], which has been found
to be accurate for the 2D-TM scattering (in most complex cases, other approaches of
the computational electromagnetics should be used; e. g., the finite element method

or the finite difference method). Moreover, in order to take into account more realistic

operation conditions, the simulated scattered data have been corrupted by adding an
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additive Gaussian noise with zero mean value and signal-to-noise ratio equal to SNR =
30dB.

As far as the “object”, modeling a tumor, is concerned, three different geometries (Fig. 3)
are considered. Moreover, for this preliminary assessment, the dielectric properties of the
tumor are assumed to be known. The side of the object is assumed to be Lo = 0.021 A.
The object is located at the position z¢ = 0.047 A and yo = —0.018 A\(Fig. 3(a)), z¢ =
—0.097 X and yc = 0.105 X (Fig. 3(b)), and z¢ = 0.119 X and yo = —0.033 X (Fig. 3(¢))
in the scenario “kidney”, “liver” and “muscle”, respectively. The dielectric properties of the
malignant tissues are assumed equal to that reported in [29][28]: g%y = 58.5 — j34.87
(eTkidney — 62.0 — 537.36), £ver = 58.0 — j31.96 (ET!ver = 52.5 — j26.15), and gm™vsele =
54.4 — j31.13 (Tmuscle = 52 6 — j28.22).

4.1 Error Figures

In order to give a quantitative indication on the localization accuracy of the proposed

approach, the following object-localization error, dc, is defined:

\/(CUC —2c)* + (ye — ¥c)”

dmaw

S =

x 100 (11)

where dy,0; = V2Ls (Lg being the side of the square region S) is the maximum error in
defining the crack center when it belongs to the host background and where the superscript

~differentiates the reconstructed quantities from actual values.

4.2 Preliminary Results

The first example is aimed at evaluating the detection capabilities of the approach for
different dimensions of the schematized tumor with respect to the reference scenarios
shown in Fig. 3. The “object” dimensions are changed between (%)2 =4.9x 107% and
(LTC)Q = 12.25 x 107" and the plots of the localization errors are shown in Figure 4(a). As

can be observed, ¢ is almost constant and equal to about 20 for the case of liver-tumor.
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Also the plot related to the “object” inside the muscle tissue presents a similar behavior,
but with a large increase of the percentage error (about 25), which produces a very poor
localization. As far as the “kidney” scenario is concerned, dc shows a monotonic increase
in the range between 12 and 38 corresponding to an increasing of the “object” dimensions.
An idea about the detection accuracy during the iterative process can be drawn (for
d¢ = 22) from Fig. 4(b), which shows an image of the evolution of tumor center estimation
(K* = 101 being the convergence iteration) when the “liver” scenario is considered and
for a tumor dimension equal to (LTC)Q =0.5x 107

In the second example, to test the dependence of the localization accuracy on tumor dielec-
tric characteristics, let us consider some variations in the permittivity and conductivity
of the “object” ranging from —30% to 30 % of the reference value ({éﬁ)}, =20 4£0.380,
i = kidney, liver, muscle). Figure 5 shows the achieved results (in term of localization er-
rors) when only the dielectric permittivity of the object (Fig. 5(a) - {57@}1 =e®+0.3¢0)
and {00} = 6) or its conductivity (Fig. 5(b) - {0} = 00300 and {0} = )
is changed. As can be seen, the “object” location is almost independent of its dielectric
permittivity for the “muscle” scenario with an average error equal to av {dc} = 16.5. The
average error slightly increases for the “kidney” scenario (av{dc} = 20.0) with values
ranging between min {0c} = 11.9 and max {dc} = 25.9. On the contrary, large oscil-
lations can be observed in the plot related to the “liver” scenario with a wider range of
variations 24.7 < §¢ < 51.4. This seems to indicate: (1) a good robustness of the method
in localizing the “object” for the “muscle” scenario; (2) satisfactory performances for the
“kidney” test-case, but increasing difficulties for the case of “liver” scenario when the di-
electric permittivity of the tumor strongly differs from the reference value (egi””) = 58.0).
As far as conductivity variations of the malignant tissue are concerned, different observa-
tions can be carried out. For this example, a more consistent dynamic on d¢ is shown in
the “muscle” scenario (24.4 < §¢ < 54.4) with respect to the variations occurring for the

“kidney” (9.0 < d¢ < 23.5) and “liver” scenarios (24.4 < ¢ < 37.6) .

For completeness, the influence of variations on the host-tissue is also analyzed. As for
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the tumor variations, the localization accuracy is evaluated for different values of the
host-tissue relative permittivity or conductivity, as shown in Fig. 6(a) ({sf(i)}’ =T 4
0367 and {o7®} = 670)) and Fig. 6(b) ({o7®} = o7 +0.367® and {70} =
eF®) respectively. It turns out to be that the localization error is lower than 29% for the
“kidney” scenario (10.8 < 6¢ ({ef(kid"ey)}l) < 28.5 and 5.9 < 6¢ ({GT(kidney)}l) < 20.1).

Its maximum value increases to 43% for the “liver” scenario (23.4 < ¢ ({sf(li””)} ) <

43.0 and 26.3 < ¢ ({JT(“””)} ) < 38.9). The threshold value (6¢ = 62.0) is achieved for
the “muscle” scenario (23.0 < ¢ ({5Z(m“5016)} ) < 49.0 and 23.6 < 0 ({UT(muSClE)} ) <

62.5).

5 Conclusions

In this paper an inverse-scattering-based procedure has been proposed for microwave
imaging in the biomedical framework. The approach is based on an evolutionary algorithm
able to solve the optimization problem arising from the inverse scattering formulation. By
separating the scattering contributions of the investigation region and of the remaining
part of the biological scatterer cross section, the computational load is strongly reduced.
After an off-line forward computation, the imaging process is timely carried out due to
the limited discretization. The use of the global optimization procedure still guarantees
the global solution, avoiding artifacts and false solution. Moreover, the approach resorts
to a model description in terms of Markov random fields, which allows the definition of
the cost function to be minimized without arbitrary assumptions.

Preliminary numerical results seems to confirm the effectiveness but also current limita-
tions of the proposed approach. They suggest to consider more extensive investigations
in order to define the operating conditions for an accurate imaging (e.g., different work-
ing frequencies as well as various illumination conditions). Moreover, since the proposed
approach is able to deal with the monitoring of physiological features of the “object”, the

assessment will be completed by considering not only the localization problem but also

14



the quantitative reconstruction of the region under test.

On the other hand, the extension of the method to a full three-dimensional configuration
represents an important objective of current research activities of the authors’ team. The
main difficulties are of course related to the computational load. In order to overcome this
drawback, a customized parallel implementation of the GA-based procedure is currently

under development.
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FIGURE CAPTIONS

e Higure 1.

Problem geometry: (a) actual scenario and (b) background medium.

o Higure 2.
Schematized human thorax. Color-level representation for (a) permittivity, €,, and

(b) conductivity, o [S/m], distributions.

e Figure 3.
Schematized test-case scenarios. Color-level representation of the dielectric param-
eters distribution for (a) scenario “kidney”, (a) scenario “liver”, and (a) scenario

“muscle”.

o Higure 4.
Object detection and location - (a) Localization error versus “object” area for dif-
ferent scenarios. (b) Iterative approximation of the “object” location during the

stochastic optimization process.

e Figure 5.
Object detection and location - Localization error versus (a) dielectric permittivity
(0.7e0 < {Eﬁi)} < 1.3, {a(i)} = 0®) and (b) conductivity (0.70® < {a(i)} <

1.30; {57@} = &) of the "object” and for different scenarios.

e Higure 6.
Object detection and location - Localization error versus (a) dielectric permittivity
(0.7e70) < {E,T(i)} < 1370, {O'T(i)} = oT®) and (b) conductivity (0.707® <

{O'T(i)} < 1.3070); {6,T(i)} = ¢7®) of the "host-tissue” and for different scenarios.
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