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Abstract
Several studies have shown that evolutionary-based approaches are efficient, effec-
tive, and robust optimization methods for microwave imaging. However, the conver-
gence rate of such techniques still does not meet all the requirements for on-line real
applications and attempting to speed up the optimization is needed. In this paper,
a new local search operator, the fitness-based parabolic crossover, is proposed and
embedded into a real-coded genetic algorithm. Such a modification enables the imag-
ing method to achieve a better trade-off between convergence rate and robustness to
false solutions. By exploiting the relationship between the crossover operation and
the local quadratic behavior of the functional, it is possible to increase the conver-
gence rate of the genetic algorithm and thereby to obtain an acceptable solution with
a smaller number of fitness function evaluations. The effectiveness of the modified
genetic-algorithm-based imaging method is assessed by considering some synthetic
test cases different in dimensions and noisy conditions. The obtained numerical re-
sults provide an empirical evidence of the efficiency and reliability of the proposed

modified evolutionary algorithm.

Index Terms - Microwave imaging, inverse scattering, genetic algorithms, evolutionary

operators



1 Introduction

Evolutionary algorithms (EAs) are a class of nonlinear optimization approaches based
on the natural selection and on the principle of the “survival of the fittest”. The robust-
ness, the flexibility, the intrinsic parallelism, and the global search capability are typical
features, which make EAs applicable and very attractive within a large framework of en-
gineering disciplines. The Genetic Algorithm (GA) developed by Holland [1] and deeply
studied by Goldberg [2]| some years ago, is one of the most promising and diffuse EAs.
Such an approach has been demonstrated to be an efficient, effective, and robust op-
timization method in several area and in particular for microwave imaging applications
[3][4][5][6][7]- Since GAs (as well as all EAs) are multiple-agent techniques, they work with
a population of solutions rather than a single solution and a high number of trial solutions
are evaluated during the optimization. Evaluating a candidate solution is not very diffi-
cult, but unfortunately it is time-consuming and, in some cases, the overall computational
burden needed to find the global optimum could be unacceptable. Therefore, it is obvious
that further studies on suitable strategies able to “locally” speed up the convergence are
still an interesting and important topic. As a matter of fact, such an acceleration may
allow better solutions to be obtained within the limited amount of CPU-time available
for optimization in industrial processes.

As far as the reduction of the computational burden of GAs is concerned, different strate-
gies can be adopted. Taking into account that the CPU-time, needed to reach a feasible
solution of the problem at hand, is due to the time spent at each iteration and to the total
number of iterations, suitable countermeasures can be adopted. Neglecting the reduction
of the CPU-time for one iteration (addressed in [8] through a parallel implementation),
a possibility is to implement a suitable modification of the searching procedure to reduce
the total number of iterations. Such a result can be achieved by defining suitable genetic
operators able to construct more promising offspring on the basis of two or more parents,

then allowing an improvement in the convergence towards the global optimum. Let us



consider the crossover. The construction of a crossover operator depends on different
aspects: the coding procedure and the implicit hypothesis on such a function around the
selected parents.

By considering a real-coding, many effective crossover operators have been proposed (see
[9] for an overview) ranging from simplest methods, which choose one or more points in the
coded-solution (i.e., the chromosome) to mark the crossover points, to the arithmetical
crossover [10], where the offspring are a linear combination of their parents, and the
geometrical crossover [11]. On the other hand, by not assuming a linear but a parabolic
model of the cost function surface, Stidsen et al. proposed in [12] a new recombination
operator that suitably links the crossover to the a-priori knowledge on the behavior of
the cost function.

In the same framework, this paper is aimed at presenting a new GA method based on
a fitness-based crossover (GAPC) to fully exploit some a-priori knowledge on the local
behavior of cost function in hand. It is well known that in nonlinear inverse scattering
problems the cost function presents several minima. This is certainly a drawback, but such
an information can be conveniently exploited in designing an evolutionary operator. A
minimum defines an attraction basin where certainly the cost function shows a quadratic
behavior. Therefore, even though the cost function is not exactly known, a quadratic
model can be assumed as a good approximation of the local behavior of the function.
The paper is organized as follows. In Section 2, the mathematical model of an inverse
scattering problem is briefly described by defining the nonlinear optimization problem to
be solved. With reference to a known real-coded version of the genetic algorithm, the
evolution strategy based on the innovative fitness-based crossover is presented in Section
3. Selected results from numerical experiments are presented in Section 4 to validate the

proposed approach. Some brief conclusions follows (Sect. 5).



2 The Mathematical Model

In many applications, an optimization procedure searching for the global minimum of a
suitably-defined cost function is the leading way to solve the problem in hand. Concerning
microwave imaging, optimization algorithms demonstrated to work properly. Generally
speaking, a microwave imaging problem formulated in terms of inverse scattering equa-
tions involves the retrieval of an unknown scenario illuminated by a set of V' incident
fields (EY, v =1, ..., V) staring from the knowledge of the scattered field F§ measured in
a region external to the investigation domain D;,,; where the scatterer is supposed to be
located. According to the well-known inverse scattering equations, the problem can be

mathematically described as follows [4]:

E{ = GSTE]  (Data Equation) (1)

E} = E] — GiTE] (State Equation) (2)

where GY and G% are the internal and external Green’s functions [13|, respectively; 7 is
the unknown object function describing the dielectric distribution in D;,4 and EY is the
electric field in the investigation domain concerning the v-th illumination.

Because of the ill-conditioning and the nonlinearity of the problem, caused by the multiple
scattering effects and the limited amount of information of the data, the solution of the

problem is cast as the minimization of the following cost function:

S |BY — GewTEL|P SV |EY — By + Gt B2
v 1B v 1By

F(r, Er) = (3)

characterized by a large number of local minima corresponding to false solutions of the
inverse problem. To minimize such a function, a global optimization procedure able to

avoid local minima is generally used. A technique widely used is based on a GA [1].



3 The Optimization Procedure

With reference to the Real-Coded Genetic Algorithm (RGA) presented in [4], let us con-
sider the chromosome z which is the floating point representation of the problem unknowns
(z = {r, E}; v=1,..,V}). The optimizer works iteratively on a set of chromosomes
called population, P, = {zg); l=1,.., L}, L being the dimension of the population and
k the iteration index. According to an evolutionary strategy, every solution is ranked
according to its fitness value, Fk(l) =F (@fcl)), and a new population Py is determined
through the application of the genetic operators. Their computational role is to intro-
duce diversity into the population, by probing new regions unexplored by the selection
operator [14]. The mutation operator inserts variability in the population by modifying
the value of one or more positions (or genes) in a selected chromosome. The crossover
performs parents’ reproduction and it generates a new individual @&1 by crossing two
selected parents of the current population. Standard floating-point crossover operators as

well as that used in [4] produce an offspring @&1 as the linear combination of its parents

2 and 2’ (4, j € [1, L]; i # )

gy =tz + (1 - )z ()
t being a random real number. In order to show the behavior of such an arithmetical
operation, let us consider the simple mono-dimensional sketch shown in Fig. 1. As can be
inferred, the operator does not consider the shape of the function to define the offspring
and the new solution could lie in another attraction basin, even though its parents belong
to that of the global minimum. This event certainly slows the convergence rate of the
minimization process by increasing the computational cost and the overall CPU-time.

To limit such a drawback, a new version of the floating-point crossover for inverse scat-
tering problems has been designed by taking advantage of the locally-quadratic behavior
of the cost function. Referring to Fig. 2, let us define the trial chromosome z;, =

@S) + (1 - t)g,(cj), t = ¢, between @S) and @,(Cj) by choosing the random value %, in the



range 0 < ¢, < 1 and satisfying the following relationship
Fe,) < (P (@)~ F ()} 1, 1 P (o) 6

Then the new chromosome is obtained as the vertex of the parabola passing through @,(f),

(4)
xy’, and

f(t) =at> + bt +c (6)
(1—tn)F (2 ) +tr-F (2 )~ F (z,, Pz, )-F (2 ) +24 (2 ) - (2
where a = (k)t,u_t,()k) (t),b= (&) (k)t,u_{t,)(k) (k)},andc:
F (gg)) Accordingly, the offspring turns out to be
0 (9 () b
Ly = toZy + (I —=ty)zy’, t,= "% (7)

The proposed “parabolic crossover” similarly to that proposed in [12] acts as both explo-
ration and exploitation operator, and is a multi-parent operator. However, the number
of parents does not depend on the dimensionality of the problem. Only three parents are
needed to determine an offspring and not O (P?) (P being the number of unknowns
or dimensionality proportional to the problem size N(! through such a relationship
P =2xN x(V + 1)), since the new recombination operator acts in the mono-dimensional

solution space (sampled by ¢) and not in the unknowns space (whose dimension is P).

4 Numerical Validation

In this section, selected numerical results from a large computational assessment are shown
to give some indications on the effectiveness of the improved GA-based procedure. As a
reference test case, a synthetic two-dimensional scenario has been considered consisting
of a homogeneous (1 = 7(z, y) = 1.5) square cylinder 0.225 A-sided centered at z, =
Y. = 0.3\ in an investigations domain of side Lp, , = 1.125A. The unknown object is

illuminated by a set of V' = 4 TM-polarized plane waves and the scattered field is collected

(1) According to the Richmond’s procedure [16], Egs. (1)-(2) have been discretized by considering N
equal partitions of D;,q where both the dielectric characteristics and the induced field are assumed to be
constant.



by means of a multi-illumination/multi-view system |15] in M = 10 measurement points
located on a circle R = 1.125 A in radius. According to the Richmond’s procedure [16],
the investigation domain has been partitioned in N = 16 x 16 equal subdomains, thus
P = 2048.

As far as the GAs parameters are concerned, they have been chosen according to the values
suggested in the reference literature on this subject [17][14]: L = 200, P, = 0.8 (crossover
probability), P, = 5x 1072 (mutation probability), Py, = 1x1073 (single-gene mutation),
and K = 2 x 10* (maximum number of iterations). The initial population P, has been
randomly generated around the free-space trial solution (@81) = {m, E};v=1,..,V},
7o = 0.0) in the following ranges defined according to the available a-priori information
on the scenario under test: 0.0 < Re{7(z, y)} < 2.0, —1.5 < Re{FE¥(z, y)} < 1.5, and
—1.5 < Im{E¥%(z,y)} < 1.5.

For comparison purposes, to point out the effectiveness of the improved approach in
minimizing (3), Fig. 3 shows the behavior of the fitness of the optimal solution (i.e.,
Fk(om) = Minp=1,. k {minl [F (gg))] }) during the iterative process. As can be noticed, at
the end of the process, the optimal value of the cost function is reduced of about 4 orders
in magnitude when the GAPC is used, while the decreasing is about of only two orders
with the RGA-based method.

Such a behavior causes an improvement in the reconstruction accuracy of the scenario

under test as quantitatively confirmed by the values of the error figures defined as follows

g, = {/Dj T(opt)(:c%égx)’;)?(x,y)dxdy} « 100 (8)

7(Pt) and 7 are the retrieved and the actual object function, respectively; D; indicates
the whole investigations domain (j = tot), or the area where the actual scatterer is
located (j = int), or the background belonging to the investigation domain (j = ext).
More in detail, the average values of 10 repeated independent realizations of the imaging

process turn out to be =y | (GAPC) — .60 vs. St ] (RGA) _ 3.93, Zint] (GAPC) _ 1145 vs.



Zine | B = 36.07, and Segy] CAT) = 0.15 vs. Zp| B = 2.50.

Moreover, to assess also the robustness of the new approach against the noise, different
noisy conditions have been taken into account by adding to the inverse data a gaussian
noise characterized by various signal-to-noise ratios (SN Rs). Figure 4 shows the plots of
E; versus the SNR. Once again, the values of the error figures achieved with the GAPC
are lower than those of the RGA.

From a computational point of view, the parabolic crossover is expected to be more time
consuming than the standard arithmetic crossover [4] then it could be interesting to eval-
uate the trade-off between the improvement in the reconstruction accuracy and the incre-
ment of the overall computational load. Towards this end, an exhaustive computational
analysis has been carried out by considering different sizes of the problem ranging from
N =2x2to N =16 x 16. As expected, the CPU-time needed to complete an iteration
increases with N and the GAPC is slightly more expensive that the RGA [Fig. 5(a)], but
the parabolic crossover, thanks to the local search capabilities, requires a smaller number
of iterations to achieve the convergence [Fig. 5(b)]. Such a behavior is also confirmed by

varying the SN R as shown in Fig. 6 dealing with a dimensionality of P = 2048.

5 Conclusions

A new recombination strategy, the parabolic crossover has been proposed and integrated
into a real-coded genetic algorithm for microwave imaging purposes. Since the parabolic
crossover performs a local sampling of the solution space in a global hill-climbing search,
it allows to implicitly balance the convergence rate and robustness against local minima
or false solutions.

The improved strategy has been assessed by considering noiseless as well noisy data and
various problem dimensions. Moreover, a comparative study has been carried out to
evaluate the improvement over the original approach. The numerical results have demon-

strated that the reconstruction accuracy of the retrieval process could be enhanced as well



as the convergence rate of the optimization.
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Figure Captions

e Figure 1. Example of the behavior of the fitness for the individuals involved in a

standard RGA-crossover operation.
e Figure 2. Pictorial description of the action of the parabolic crossover.

e Figure 3. Analysis of the Optimizer Effectiveness - Behavior of cost function versus

the iteration number k.

e Figure 4. Analysis of the Reconstruction Capabilities - Behavior of the error figures

versus SNR: (a) Zior, (b) Zint, and (¢) Zegs-

e Figure 5. Analysis of the Computational Burden - Comparison between the RGA-
based approach and the GAPC-procedure: (a) normalized CPU iteration time and

b) percentage of iterations needed to achieve a fixed threshold F, (opt) n,n=10"2
k

e Figure 6. Analysis of the Computational Burden - Percentage of iterations needed
to reach the convergence versus SNR by using the RGA-based procedure and
GAPC-based approach.
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