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Abstract

In this paper, a multi-scaling strategy for full-vectorial three-dimensional inverse
scattering problems is presented. The approach is fully iterative and it avoids solving
any forward problem at each step. Thanks to the adaptive multi-resolution model,
which offers considerable flexibility for the inclusion of the a-priori knowledge and
of the knowledge acquired during the iterative steps of the multi-scaling process, the
overall computational burden as well as the dimension of the search-space is con-
siderably reduced. This allows to balance effectively the trade-off between compu-
tational costs and achievable resolution accuracy. The effectiveness of the proposed
approach is demonstrated through a selected set of preliminary experiments using

homogeneous dielectric scatterers in a noisy synthetic environment.
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1 Introduction

In the framework of microwave imaging, large efforts have been devoted in the last years
to develop reliable inverse scattering techniques (for an overview, see [1] and the references
cited therein). However, several contributions are concerned with tomographic configu-
rations and a limited literature is available for three-dimensional (3D) imaging due to its
computational complexity.

The use of the two-dimensional (2D) approximation simplifies the computations since

in such a case the problem is generally reduced from vectorial to scalar and the dimension
of the solution-space significantly reduces. Despite the approximation, the 2D hypothesis
is appropriate in many cases and in several working conditions. However, a general
treatment is not amenable to a 2D formalism and a full-vectorial 3D formulation is needed,
although there are good examples of good 2D imaging algorithms which have proven to
be useful in practice, including phantom and even clinical imaging experiments.
It is well known that the main limitation of 3D imaging is the intractable nature of the
problem when a high spatial resolution is required. On the other hand, several applica-
tions ranging from biomedical diagnostics to subsurface sensing generally require detailed
reconstructions. In order to faithfully solve such a problem allowing a good trade-off
between reconstruction accuracy and computational burden, some attempts have been
carried out.

In [2] and [3], Born and Rayleigh approximations are used to develop linearized space-
domain inversion methods able to effectively deal with three-dimensional weak scatterers.
Moreover, concerning imaging of dielectric targets embedded in a lossy half-space at
radar frequencies, a modified form of the extended Born forward model in concert with
the iterative Born method is analyzed in [4].

As far as nonlinear approaches are concerned, Harada et al. [5] extended a 2D gradient-
based optimization method to three-dimensional configurations by assuming an a-prior:

knowledge on outer boundaries of the scatterers to facilitate the retrieval process.



On the other hand, an extension of the contrast source inversion (CSI) method for
handling the full-vector complex 3D cross-well induction logging problem is considered in
[6]. In that paper, the cost functional of the CSI method has been modified including a
preconditioning operator obtained by using the concept of the extended Born approxima-
tion, which accelerates the convergence and allows the reconstruction of large contrasts.

In order to model strong 3D multiple scattering effects in biomedical imaging applica-
tions, Zhang and Liu [7] developed a nonlinear inverse scattering approach based on an
improved version of the CSI method. To accelerate the reconstruction process, the fast
Fourier transform algorithm is adopted.

In this paper, a different methodological approach is proposed by extending the it-
erative multi-scaling approach (IMSA) for the 2D case [8]. Neither approximations nor
acceleration techniques are used. The original problem is iteratively solved by consider-
ing a succession of reconstructions aimed at defining a finer spatial resolution in a limited
region of the investigation domain. The result turns out to be a reliable numerical inver-
sion procedure able to limit the computational burden as well as the computer memory
requirements.

The paper is organized as follows. In Section 2, the mathematical model and the
geometry of the 3D full-vectorial inverse scattering problem are described. A suitable
full-vectorial three-dimensional strategy based on an iterative multi-resolution process
is then presented in Section 3. The results of a selected set of numerical experiments
are shown in Section 4 to validate the proposed strategy pointing out potentialities and

current limitations. Conclusions follow (Sect. 5).

2 Problem Formulation

Let us consider a dielectric scatterer characterized by an object function 7(r) = [, (r) — 1]—

J % (e-(r) and o(r) being the relative dielectric permittivity and the electric conduc-

tivity, respectively) and contained inside a space region called investigation domain D;,4



(Fig. 1). Such a region is illuminated by a monochromatic (f being the working fre-
quency) incident electromagnetic wave whose space-dependent part is characterized by
a known electric field vector E™(r), v being the view index since a multi-illumination
system is used [9]. For each illumination (v = 1,...,V), the scattered field E;**(r,,, )

is collected at discrete observation points r. € Dyss, my = 1,..., M (v) (D,ss being the

M(v)
observation domain external to the investigation domain, Dyss & Dipng)-
According to [10] and omitting the time-dependence factor e/2™/* the arising scattering

phenomena are mathematically described through the following integral equations:

B t,) = I TEVEST) - G (i,

E(r) = E,(r) = Jp,, T)E,(") -G (r| ) dr' 7€ Dipg v=1,...,V  (2)

where G (r|1') is the dyadic Green’s function for free space given by

G (r|r) = & [L+ vV ezt o

lr—r']

k being the free-space wavenumber. To numerically manage the inverse problem, Egs.

(1)-(2) are discretized according to the moment method [11]

Zn)]} ﬁm(v) S Doss 1= x,Y,z
(4)
Eztlzc(fn) = Ev,i(fn) - Zévzl {Zh:z,y,z [T (fq) Ev,h (fq) Ghi <fn| fq)]} Tn € Dind (5)
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where N indicates the number of discretization subdomains of D;,q and Gp; (zn| fq) is
computed as in [12].

Because of the ill-conditioning of the arising algebraic system (4)-(5), a minimum
least-square solution is looked for by defining a suitable cost function to be minimized by
means of an optimization technique. However, in forming a detailed image of the scenario

under test, the main drawback of such a “bare” approach (already pointed out in two-



dimensional applications, but certainly sharpened when three-dimensional configurations
are dealt with) is the arising computational complexity in terms of dimension of the
solution space [proportional to U = (3V + 1) x N] as well as the convergence rate (which
strictly depends on U) making the 3D inversion intractable.

As highlighted in the reference literature concerned with two-dimensional inversion
problems [13][14][15][8][16], an adequate trade-off between computational burden and spa-
tial resolution accuracy can be obtained by resorting to suitable multi-resolution strate-
gies. In the following, an extension of the multi-scaling multi-resolution approach [8] will

be proposed for the full-vectorial three-dimensional case in hand.

3 Reconstruction Strategy

It is well known that multi-resolution representations are very effective for describing
the information content of an image or of a complex scenario, since the structures to
be recognized have different sizes. Moreover, it is not possible or too expensive from a
computational point-of-view to define a-prior: an optimal resolution for such an analysis.
Therefore, especially in a three-dimensional framework, it could be profitable to process
inverse scattering data by reorganizing the unknown image into a set of details appearing
at different resolutions to be determined according to an iterative multi-scaling strategy.
As a matter of fact, such a progressive coarse-to-fine representation of the scenario pro-
vides a simple hierarchical method for interpreting the reconstructed-profile formation.
In general, different resolutions characterize different physical structures of the scenario
under test. At a coarse resolution, the details of the image describe larger structures
(e.g., the homogeneous background), which provide the so-called “image context”. Thus,
it is quite natural to firstly analyze the details at a coarse resolution and then gradually
to increase the resolution taking into account the information on the scenario under test
previously gained and corresponding to a rough representation.

Mathematically, such an iterative multi-scaling analysis of the investigation domain



can be implemented by defining, at each step s, a three-dimensional multi-resolution cost
function to be minimized and by determining the so-called Region-of-Interest (Rol), D),
(i.e., the region of D;,q where the scatter is supposed to be located) according to its

descriptors. More in detail, the cost function assumes the following form
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R being the finest resolution level at the s-th step (R = s) and N,y the number of cubic
sub-domains related to the r-th resolution level.
Moreover, the Rol’s descriptors are its center whose coordinates are computed as

follows

28 = . IZ;(T) 1{“(” ("(r))}; y& = Yo zNiv((:)) 1{y"<T>T(Z"<r>)}
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Png.ye T\TL
R Ny (r)¢(s—1) ( n 'r))
r=1 E {

(
nr)=1 mal‘n(r):l,--,N(r){7—(2"(7'))} } (11)

R «No T(“(r))
2ir=1 Xngy=1 {
mazn(r)zl,..,N(r) {T(zn(r))}

The multi-scaling process is iterated (s — s+ 1) until a “stationariness” condition

LE™D =2

holds (s = Sypt)

u(s+1) _ uﬁs)

o)

X 100} <My u=2x,9,%2, L (12)

where n,, u =z, ,y, z, L are fixed thresholds.

4 Numerical Assessment

In this section, the results of a selected set of numerical simulations will be shown mainly
to explore the feasibility of the iterative three-dimensional multi-scaling strategy and to
preliminarily assess its effectiveness in reconstructing dielectric scatterers.

As regards to the numerical experiments, let us refer to the schematic view of the
three-dimensional multi-illumination /multi-view measurement setup in Fig. 1. The inves-
tigation domain L;,q = 1.2 A-sided has been successively (v = 1,...,V, V = 4) illuminated
by means of a plane wave impinging from the direction 2" = I and ¢ = (v —1)Z.
In such a configuration, the incident electric field vector is inclined of 7 clockwise with
respect to the z-axis. The point like receivers (M,) = 21), which operate simultaneously
and measure three vector components, have been located in G = 3 rings at the posi-
tions pp,,, = 2.93 A, gpf,f?g = @i 4 27 (my) — 1)%, and zy;, = (1 — {WUZGD 2oV
(20 = 0.06 A) m(yy = 1,..., M(,) [17]. As far as the inverse scattering data are concerned
(i.e., Ezcatt(zm(v)) and E™(r)), they have been generated by solving the direct problem

through the method of moments with an uniform discretization of the investigation do-

main, N = 25 x 25 x 25. To simulate a real environment, such data have been corrupted

(1) Please note that | | indicates the integer part of the argument.



by adding a gaussian noise with a fixed signal-to-noise ratio, SN R.

Concerning the IMSA, the Rol has been discretized into Nz = 5 X 5 X 5 subdomains
and, in such a preliminary implementation, a deterministic minimization procedure has
been adopted [18] (K = 2000, s = 1, ..., Sopt, K5 being the maximum number of iterations
for the minimization). Even though a deterministic optimizer strongly depends on the ini-
tialization and suffers from the local minima problem, the use of an iterative multi-scaling
approach reduces such a drawback imposing a convenient ratio between data and prob-
lem unknowns [19]. Certainly, the local minima problem would be completely eliminated
by integrating the IMSA together a stochastic minimization technique. In such a frame-
work, more recent optimization approaches to standard 2D inverse scattering problems
developed at the ELEDIALab have been described elsewhere [20] and their integration
into the full-vectorial 3D-IMSA will be a key-issue of future researches. Moreover, the
stationariness thresholds have been heuristically fixed to the following values: 7, = 2%,
u=2x,9, 2z and gy = 5%. The initial guess for the unknowns is that of the free-space
(7(r) = 0.0 and E,(r) = E}*(r), I € Djna).

The first test case deals with a centered dielectric scatterer with an object function 7 =
3.0 whose volume is 0.3 A x 0.3 A x 0.3 A. As an example, let us consider the reconstruction
at the final step (s = S, = 3) when a noise characterized by a SNR = 30 dB has been
superimposed to the data. As can be observed in Fig. 2, where two orthogonal volume
slices of the reconstructed profile are shown, the proposed approach is able to correctly
locate the scatterer as well as to estimate its dimensions as confirmed by the values the
error figures at the convergence (p(%rt) = 8.41 x 107® and A(5e»t) = 3.83 x 1072). These

values are reported in Tab. I and they have been computed as follows

O P e A

Lo — LG

A =
L¢




Furthermore, in order to give an idea of the quantitative imaging, also the following error

figures have been computed

Ry NG [ r,) — TlEn,)

r=11VGy ney=1 £n(r)

where j = tot when (z, y) € Djng, j = int when the considered region lies inside the
actual volume of the scatterer, and j = ext otherwise. As can be noticed, the 3D-IMSA

demonstrates good capabilities in avoiding artifacts as pointed out by the value of the

(Sopt)

external quantitative error, 7,,;"° = 0.26. On the other hand, the reconstruction of the
scatterer-domain is not so accurate (7,?3;”) = 21.09) since the resolution in the vertical

direction is worse than those in the transversal plane. This is due to the limited number
of illuminations and of receivers in the vertical direction.

The second experiments is aimed at assessing the robustness of the 3D-IMSA on the
level of noise. Towards this end, the SINR has been varied from 30dB up to 10dB and
the reconstruction process has been repeated twenty times for a fixed data combination
to take into account the statistical nature of the noise generation.

As expected, when the noise level grows the minimization of (6) turns out to be more
difficult and more steps are needed to achieve the convergence or the stationariness con-
dition on the retrieved profile (Fig. 3)(2). Probably, such limitations are due to the
capabilities of the gradient-based minimization technique in sampling the solution space.
Therefore, more efficient stochastic minimization tools should be used in order to increase
the performance in heavy noisy conditions. The difficulties of the deterministic method
in the cost function minimization cause a deterioration of the reconstruction accuracy as
pointed out from the behaviors of the error figures shown in Fig. 4. More in detail, the
localization error p increases of about 4 order in magnitude |Fig. 4(a)] because of the

presence of a retrieval noise diffused over the external background (Yegt|syp_10a5 = 4.0

VS. Yewt) snroz0as = 0-26).

(?)The spikes in the cost function occur when the investigation area is scaled and the supports of the
basis functions are redefined. In such points, the minimization of the functional starts with an higher
level of resolution.
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To further assess the potentialities and current limitations of the 3D-IMSA, the sec-
ond example deals with an off-centered location (zc = yc = z¢ = 0.15 ) of the same
scatterer of the previous example. For comparison purposes, the plots of the error figures
concerned with such a geometry are reported in Fig. 4 together with those of the centered
configuration.

The behaviors of the error figures clearly show that the reconstructions are worse in
terms of p [Fig. 4(a)| and i [Fig. 4(c)], while similar performance are yielded for the
other error indexes [Figs. 4(b)-(c)].

As an example, to have more details on the localization process, Fig. 5 shows the
evolution of the contour plot during the multi-step procedure (SNR = 30dB). As can
be observed, starting from an incorrect shaping of the scatterer (s = 1), the 3D-IMSA is
able to refine the estimation of the scatterer perimeter and, at the end of the multi-step
process (s = Sopt = 3), the contour of the object is faithfully determined.

Concerning the assessment of the proposed approach when dimensions of the unknown
object become comparable to the wavelength of the incident wave, another experiment
has been carried out varying the side of the off-centered object from 0.15A up to 1.0 A
(SNR = 20dB). The results of such an analysis are reported in Fig. 6 in terms of
qualitative [Fig. 6(a)| as well as quantitative [Fig. 6(b)| error figures. Whatever the
scatterer dimension, the capabilities both in locating and dimensioning the object are
keep almost unaltered (p < 1.5x 107! and 1.0x 107! < A < 4.0x 107!). On the contrary,
the quantitative imaging gets worse. The total and external error figures (Y and “ez)
increase for larger scatterers, even though the reconstruction error concerned with the
scatterer domain (7;,; = 30) is constant.

As far as the reconstruction of the scatterer-domain is concerned, the same behavior of
the previous example verifies when the object function is varied in the range 7 € [1.0, 5.0]
(Fig. 7). As for the centered object, the accuracy index of the quantitative scatterer-
domain retrieval, v;,;, is not negligible and greater than the other errors |Fig. 7(b)],

Consequently, the quantitative imaging is not that accurate in all the cases, but once

11



again 7;,; turns out to be almost insensitive to the object function value in the range
T € [2.0, 5.0].

In order to verify whether an increasing of the number of illuminations improves the
situation, different illumination configurations have been considered. For this purpose,
various geometries of the imaging system have been taken into account. Firstly, the

number of views of the cylindrical system has been increased from V = 4 up to V =

8. Successively, a spherical geometry has been used where 0" = [QV”J oy =g,

v=20,..,V — 1. In such a case, the M) = 21 measurement points have been located

2Gw —

s scatt inc
My -1 M) =

at the angular coordinates 6;:¢ = 07" + mg,) Moy 10 Pryy = P T )

0,..., My — 1, on a sphere 7 = 2.93 A in radius. As expected, for both the geometrical
arrangements, the reconstruction indexes improve when a greater number of illuminations
is considered (Tab. II). In particular, v;,; reduces by about % when V is extended from 4
to 8.

For comparison purposes, by considering the spherical arrangement with V = 8 il-
luminations, the reconstructions obtained with different methods using approximations
have been analyzed. In more detail, the scattering process has been carried out using
the first-order Born approximation [2|, the second-order Born approximation, and the
Rayleigh approximation [3]. Furthermore, the iterative Born method (BIM) [21] has been
used as well as the “bare” (i.e., without the iterative multi-scaling process and the same
level of spatial resolution in the overall investigation domain) CG-approach. The obtained
results are reported in Tab. III in terms of computation time (7 being the CPU-time
needed for each iteration of the reconstruction process), discretization of the investigation
domain (or Rol) N, total number of iterations K,,, and reconstruction accuracy both
qualitatively (p and A) and quantitatively (Yint, Vest, and 7). Whatever the approx-
imation approach used, the localization error turns out to be two orders of magnitude
greater than that of the IMSA-3D method. Similar conclusions hold for the error figure
related to the extension of the scatterer domain A. The enhancement in the reconstruc-

tion accuracy can be also noticed concerning the quantitative indexes. However, such

12



an improvement causes an increase in the computational costs (i.e., the total number of

iterations K, = Zfl”f k) k() being the number of iterations needed to achieve the
“convergence” at the sth step of the multi-scaling process) even though, as expected, such

an overhead turns out to be significantly smaller than that of the “bare” CG approach
(#ﬁim &~ 29).

Finally, a structure more complex in shape has been considered to further validate the
proposed approach. The unknown scatterer is an off-centered (z¢c = yo = z¢ = —0.075 \)
cross-shaped dielectric object (7 = 3.0). Considering an arrangement similar to the
previous experiment in terms of noisy conditions (SNR = 20dB), the reconstructed
profile turns out to be accurate as indicated by the volume slices at z = —0.075 A [Fig.

8(a)] and z = —0.075 X |Fig. 8(b)] and confirmed by the values of the error figures
(p=1.32x103, A =128 % 10", Yins = 21.53, Yeur = 0.58, and 7, = 0.79).

5 Conclusions

An iterative multi-scaling strategy, based on an integral-equation formalism, has been
presented for the solution of a full-vectorial three-dimensional inverse scattering problem.
The approach considers an iterative multi-resolution process to fully exploit the available
a-priori knowledge and to obtain a good trade-off between the computational complexity
and the achievable spatial-resolution.

Reported numerical results, although preliminary, seem to indicate the feasibility of the
proposed approach and the possibility of a qualitative as well as quantitative microwave
imaging of three-dimensional dielectric profiles. Of course, due to the complexity of
the full-vectorial 3D inverse scattering problem, several crucial points should be still
addressed and solved. In such a framework, this paper constitutes only a first attempt
to be further investigated. Towards this end, future works will be aimed at improving
the method efficiency in terms of solution-space sampling as well as resolution accuracy

by integrating more appropriate optimization algorithms. In particular, a computer code

13



based on a customized particle swarm optimizer (PSO) is currently under test. Moreover,
it will be very important to obtain experimental data to verify the robustness of the

proposed approach.
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Figure Captions

e Figure 1. Schematic of the three-dimensional geometry. Multi-illumination /multi-

view arrangement.

e Figure 2. Reconstruction of a centered cube (z¢ = yo = z¢ = 0.0, £ = 0.3\,
7 =3.0) - SNR = 30dB. Volume slices of the reconstructed dielectric distributions:

(a) plane z = 0.0 and (b) plane z = 0.0,

e Figure 3. Reconstruction of a centered cube (z¢ = yo = z¢ = 0.0, £ = 0.3\,
7 = 3.0). Behavior of the optimal value of the cost function during the optimization

process.

e Figure 4. Reconstruction of a cube (£ = 0.3\, 7 = 3.0). Dependence of the error

figures on the SNRs: (a) p, (b) A, (¢) Viot, Vext, and iz (centered cube - continuous

line ; off-centered cube - dashed line ---------- ).

e Figure 5. Reconstruction of an off-centered cube (z¢ = yo = 2¢ = 0.15 ), £ =
0.3\, 7 = 3.0) - SNR = 30dB. Evolution of the 3D contours the reconstructed

profiles at successive steps of the iterative multi-scaling procedure.

e Figure 6. Reconstruction of an off-centered cube (z¢c = yo = z¢ = 0.15\, 7 = 3.0)
- SNR = 20dB. Dependence of the error figures on the object dimensions (£): (a)

qualitative error figures and (b) quantitative error figures.

e Figure 7. Reconstruction of an off-centered cube (z¢ = yo = 2¢ = 0.15 ), £ =
0.3)) - SNR = 20dB. Dependence of the error figures on the object function (7):

(a) qualitative error figures and (b) quantitative error figures.

e Figure 8. Reconstruction of an off-centered cross-shaped scatterer (z¢ = yo =
zc = —0.075 X and 7 = 3.0) - SNR = 20dB. Volume slices of the reconstructed

dielectric distributions: (a) plane z = —0.075 A and (b) plane x = —0.075 \.

(2) Please note that the dashed line indicates the region occupied by the actual scatterer.
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Table Captions

e Table I. Reconstruction of a centered cube (xc = yo = 26 = 0.0, £ = 0.3\, 7 = 3.0)

- SNR = 30dB. Error figures.

e Table II. Reconstruction of an off-centered cube (¢ = yo = 2z = 0.15 )\, £ = 0.3 )\,

7 =3.0) - SNR = 20dB. Error figures for different illumination conditions.

e Table III. Reconstruction of an off-centered cube (x¢ = yo = zc = 0.15 ),
£ =03\ 7=23.0)- SNR = 20dB. Comparative assessment: error figures and

computational costs.
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