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Abstract −−−− A new inverse scattering method is assessed against some of the real input data 

measured by the Institut Fresnel, Marseille, France. The method is based on the application of an 

Inexact-Newton method to the Lippmann-Schwinger integral equation of the inverse scattering 

problem within the second-order Born approximation. The regularization properties of the approach 

are evaluated by considering the reconstruction of multiple dielectric cylinders.  

 

 

1. Introduction 

 

In the last years, the inverse scattering problem has been addressed by using several different 

approaches in order to face the various well-known problematic aspects (e.g., nonlinearity, ill-

posedness, ill-conditioning, etc.).  

Several inversion methods are now available [1]-[11], especially for two-dimensional 

configurations. They can be grouped into two main categories. The first one includes deterministic 

and stochastic methods aimed at facing the nonlinear equations of the inverse scattering problem 

without approximations different from the numerical ones. The second category includes simplified 

methods based on some kind of approximation. 

The aim of the present paper is to assess (by using the new real data collected by the Institut 

Fresnel, Marseille, France) the reconstruction capabilities of a new inverse method, which combines 



a regularization Inexact-Newton method with the inverse-scattering formulation developed in the 

framework of the second-order Born approximation. 

Although accurate reconstructions could be expected only for weakly scattering objects, the new 

approach has been proven (through numerical simulations [12]) to be very efficient in regularizing 

the ill-posed inverse problem, particularly robust against the noise on the input data, and 

computationally efficient, since the internal distribution of the total electric field (or related 

quantities), which changes for each illumination, is not to be retrieved. 

The results shown in the present paper represent the first validation of the approach against real 

experimental data.  

The paper is organized as follows. In section 2, the inversion method is briefly outlined, whereas 

the results of the dielectric reconstructions of some sets of real input data are reported in Section 3. 

Finally, Section 4 draws some conclusions. 

 

 

2. Mathematical Formulation 

 

The dielectric properties of the investigation area (which includes the cross sections of the scatterers 

and is denoted by Ωinv) are represented by means of the complex contrast function χ(r), r ∈ Ωinv, 

which is defined as   

1)()( −= rr rεχ ,       (1) 

where εr(r) is the complex relative dielectric permittivity at point r ∈ Ωinv. 

Omitting the e
jωt
 time dependence, the 2D-TM inverse scattering problem can be expressed by the 

following integral formulation 
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where ( )r)(v

totu  denotes the unknown total electric field, superscript v indicates that the relative 

quantities are related to the v-th view, being V the total number of views, k is the free-space 

wavenumber given by 00µεω=k , and ( )rr ′,g  is the free-space Green’s function [13]. 

The electromagnetic inverse scattering problem consists in retrieving (a good approximation of) the 

complex contrast function χ, starting from the knowledge of the total electric fields ( )r)(v

measu , for v = 

1,…,V, in a region of observation Ωobs located outside the investigation domain Ωinv. This inverse 

problem leads to the following nonlinear equation with respect to the unknown χ 
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where ( )r)(v

incu , r ∈ Ωobs, is the known incident electric field in the observation region related to the 

v-th illumination.  

In this paper, the second-order Born approximation is exploited, i. e., 
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The solution of equation (3) is then recasted as the solution of the following equation 
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It is worth noting that, although equation (5) is still nonlinear, now the nonlinearity is limited to the 

contrast function. Furthermore, )()(
r

v

totu , r ∈ Ωinv, is not needed, leading to a significant reduction in 

the computational load. In our approach, equation (5) is solved by using an iterative regularization 

method based on an Inexact-Newton scheme: At any step, equation (5) is first linearized (outer 

iteration), and the generalized solution of such a linear equation is approximated and regularized by 

using the iterative Landweber method [14] [15] for linear operators (inner iteration).  

From (4), we can write that 
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where '
~ )(vFχ  is the Fréchet  derivative of the operator )(~ vF   at the point χ , defined as follows 
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and )(

1

vF  denotes the first order Born approximation  
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Linearization (6) leads to the Newton method as follows. Let 0χ  be a complex contrast used as 

initial guess. For j = 0,1,... , compute jjj h+=+ χχ 1 , where Xh j ∈  solves the linear problem 
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and repeat until some pre-specified stopping rule holds true. 

Since (4) involves Fredholm integral operators of the first kind onto the infinite dimensional space 

of all the contrast functions χ , equation (5) gives rise to an ill-posed inverse problem. It follows 

that any Newton step (equation (9)) can be ill-posed, too, since it is a linear approximation of the ill-

posed equation (5) under linearization (6) [16].  

 



Under these arguments, instead of solving (9) directly, we search for a regularized solution of the 

normal, or least square, equation  
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where as usual *)( '
~ v

j
Fχ  denotes the adjoint operator of the Fréchet  derivative '

~ )(v

j
Fχ . As already 

mentioned, in the present paper we use the Landweber iterative regularization method. In this 

method, the number of iterations plays the role of a regularization parameter. Indeed, in the case of 

noisy data, it can be easily proven that the first iterations provide noise filtering, while the 

subsequent ones restore from components with higher noise, and then the iterative solution becomes 

more and more inaccurate [14]. Besides its easy implementation, it is known that this method 

presents very good regularization and robustness features (some recent applications can be found in 

[2][17]-[19]).  

In order to apply the Landweber method to equation (10), let 00, ≡jh  be the initial guess and let 

maxk  be a pre-assigned total number of iterations. Compute, for a fixed convergence parameter 
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then update 1: += kk  and repeat until 
max

kk = . In this way, the last Landweber iteration 
max,kjh  is a 

regularized solution of the Gauss normal equation (10), that is, 
max,kjh  is a regularized approximation 

of the exact solution jh  of (10). It should be noticed that the proposed (two-steps) Newton-

Landweber method is a (much faster) generalization of the classical (single-step) Landweber 

iterative method for nonlinear operators [15][16].  In particular, if maxk  = 1, the proposed iterative 

scheme (9)-(11) and the Landweber iterative method for nonlinear operators are equivalent. 

 

 

4. Numerical Results 

 

In this section, some of the real input data measured by the Institut Fresnel, Marseille, France, are 

used to assess the proposed method. In particular, we consider the following configurations (TM 

wave scattering): 



(a) A “foam” circular cylinder with contrast function value of 45.01 =objχ . Inside the “foam” there 

is another circular dielectric cylinder of 22 =objχ  (FoamDielIntTM); 

(b) Same as in (a), with the dielectric cylinder of contrast function 22 =objχ  located outside the 

“foam”; 

(c) A combination of (a) and (b) (FoamTwinDielTM). 

 

The investigation domain, Ωinv, is a square area of side l = 0.2 m, which is discretized by using a 

grid of 40 × 40 square subdomains.  

Since the approximation used in this work is mainly valid for weak scatterers, only the data 

collected at f ≤  4 GHz are used in the reconstruction process. The accuracy of the reconstruction is 

evaluated by means of two following error parameters 
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where χ  and objχ  are respectively the reconstructed and true contrast functions, )(v

totu  is the total 

measured electric field related to the v-th view, and  )(~ v

totu  is the correspondent electric field 

computed on the basis of the reconstructed contrast function χ . Here  
invΩ

•  and 
obsΩ

•  denote the 

classical discrete 2-norm in the investigation area and observation area, respectively. The first error 

parameter γ  is the relative error on the dielectric reconstruction, while the second error parameter 

κ  is the discrepancy between actual and computed electric fields. 

 

4.1 Configuration (a) (FoamDielInt) 

 

As previously stated, the object under test is composed by a circular cylinder (with contrast function 

45.01 =objχ ) with embedded a second homogeneous circular cylinder with contrast function 

22 =objχ . The two cross sections have diameters m 08.01 =objd  and m 03.02 =objd , and are centered 

at m )0.0,0.0(1 =objr  and m )0.0,005.0(2 −=objr , respectively. 

The best values of the parameters kmax and jmax have been empirically determined by means of 

several simulations. For the present application, it has been found that the values kmax = 5 and      



jmax = 20 result in quite good solutions. It is worth noting that, in all cases, the initial guess 0χ  of 

contrast-function distribution for the outer iteration (9) corresponds to a completely empty 

investigation domain. 

The results obtained by using these data are reported in Figure 1. As can be seen from this figure, 

the proposed method is able to obtain quite good results for the considered frequencies, especially 

for f = 2 GHz and f = 3 GHz.  
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(c) 

Figure 1 – Reconstructed distributions of the contrast function χ for different values of the 

frequency. (a) f = 2 GHz; (b) f = 3 GHz; (c) f = 4 GHz. 

 

The samples of the electric field, both measured and computed on the basis of the reconstructed 

distribution of the contrast function, are reported in Figure 2 for the first view. In these graphs, the 

calculated values are very close to the measured ones in all cases. We remark that such a fitting of 

the input data is very important when dealing with iterative inverse scattering methods.  
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(c) 

Figure 2 – Original and reconstructed electric fields (amplitude) at the measurement points for the 

first view. (a) f = 2 GHz; (b) f = 3 GHz; (c) f = 4 GHz. 

 

Finally, the behaviors of the errors parameters γ  and κ  versus the outer iteration number are 

reported in Figure 3.  
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Figure 3 – Behavior of the error parameters (a) γ  and (b) κ  versus the outer iteration number and 

for different values of the frequency, fq = (q + 1)10
9
 Hz. 

 



 

We point out that, for this first configuration, the data collected at frequency f = 5 GHz have been 

considered, too. The reconstructed distribution of the contrast function and the corresponding values 

of the electric field at the measurement points are reported in Figure 4. As expected, although there 

is a good agreement with the electric field data and the shape of the object is accurately determined, 

the overall reconstruction is rather poor. 
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(a)       (b) 

Figure 4 – (a) Reconstructed distribution of the constrast function and (b) corresponding values of 

the electric field at the measurement points for the first view. f = 5 GHz. 

 

 

 

4.2 Configuration (b) (FoamDielExt) 

 

In this configuration, two circular cylinders are centered at m )0.0,0.0(1 =objr  and 

m )0.0,055.0(2 −=objr , respectively. The contrast functions of the two objects are 45.01 =objχ  and 

22 =objχ , and the two cross sections have diameters m 08.01 =objd  and m 03.02 =objd , respectively. 

In these reconstructions, too, the initial guess for the contrast function distribution is a void 

investigation domain.  
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(c) 

Figure 5 – Reconstructed distributions of the contrast function χ for different values of the 

frequency. (a) f = 2 GHz; (b) f = 3 GHz; (c) f = 4 GHz. 

 

The results related to these data are reported in Figure 5. We notice that, even in this more complex 

configuration, the proposed simple method is able to obtain a quite good location and shaping of the 

two cylinders, at least for the three frequencies considered. Although a certain smoothing effect is 

present, it is worth noting that in all the three cases, the approach is quite able to correctly separate 

the cylinders. 

For completeness, Figure 6 gives the electric fields (measured and calculated values) at the 

measurement points for the first view and Figure 7 shows the error parameters γ and κ . 
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(c) 

Figure 6 – Original and reconstructed electric fields (amplitude) at the measurement points for the 

first view. (a) f = 2 GHz; (b) f = 3 GHz; (c) f = 4 GHz. 
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Figure 7 – Behavior of the error parameters γ  (a) and κ  (b) versus the outer iteration number, for 

different values of the frequency, fq = (q + 1)10
9
 Hz. 

 

4.3 Configuration (c) (FoamTwinDiel) 

 

In the last considered case, the target object is a combination of the ones of the previous two 

configurations. There are two circular cylinders, and the first one ( 45.01 =objχ ) includes another 



homogeneous circular cylinder with contrast function 22 =objχ . The two cross sections have 

diameters m 08.01 =objd  and m 03.02 =objd , respectively, and they are centered in 

m )0.0,0.0(1 =objr and m )0.0,005.0(2 −=objr . The second cylinder, which is characterized by a 

diameter m 03.03 =objd  and by a contrast function  23 =objχ , is located at m )0.0,055.0(3 −=objr . 

Figure 8 shows the recostructions obtained by using the proposed method. We can state that the 

results are good, although the accuracy in the shaping is worse than in the previous cases of 

configurations (a) and (b). 
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(c) 

Figure 8 – Reconstructed distributions of the contrast function χ for different values of the 

frequency. (a) f = 2 GHz; (b) f = 3 GHz; (c) f = 4 GHz. 

 

For this example, the values of the measured and reconstructed electric fields at the measurement 

points (first view) are reported in Figure 9. The figure shows that, for this configuration, only when 

f = 2 GHz and f = 3 GHz the proposed approach is able to approximate with good accuracy the 



measured data. For f = 4 GHz, the fitting of the data is not as good as for the considered lower 

frequencies. 
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(c) 

Figure 9 – Original and reconstructed electric fields (amplitude) at the measurement point for the 

first view. (a) f = 2 GHz; (b) f = 3 GHz; (c) f = 4 GHz. 

 

This fact is also confirmed by Figure 10, which shows the error parameters γ  and κ . For  f = 4 GHz 

(q = 3), both the error on the reconstruction and the residual on the electric field data are higher than 

the ones obtained by using the lower frequencies. However, it should be noted that, for these 

"successful" lower frequencies, very few iterations are required to obtain a good solution with real 

input data starting from an empty domain. 
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Figure 10 – Behavior of the error parameters (a) γ and (b) κ versus the outer iteration number, for 

different values of the frequency,  fq = (q + 1)10
9
 Hz. 



 

4. Conclusions 

 

In this paper, a new method for the reconstruction of dielectric cylinders has been validated by 

using experimental data. The approach is based on a two-step Inexact-Newton method applied to 

the Lippmann-Schwinger integral equation of the inverse scattering problem in the framework of 

the second-order Born approximation. Starting by initial solutions corresponding to completely 

empty test areas, the approach has shown excellent regularization capabilities in reconstructing 

separate and inhomogeneous dielectric cylinders. Although more sophisticated approaches can be 

applied, which are computationally much more expensive, in the authors' opinion the obtained 

reconstructions are quite interesting. In fact, despite a certain smoothing effects, the localization of 

the scatters is good and also the separation is acceptable for almost the considered configurations. In 

addition, the algorithm is simple to be implemented and seems to provide very good regularization 

and robustness features. 
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