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A Comparative Assessment among Iterative Linear Solvers
dealing with Electromagnetic Integral Equations in 3D

Inhomogeneous Anisotropic Media

Gabriele Franceschini, Aria Abubakar, Tarek M. Habashy, and Andrea Massa

Abstract

This paper deals with full-vectorial, three-dimensional, electromagnetic scattering
problems formulated in terms of integral scattering equations. The weak formulation
is applied in order to effectively deal with inhomogeneous anisotropic media and
the arising set of algebraic linear equations is solved through some of the most
recent and effective iterative linear solvers for allowing a detailed assessment of their

performances when facing with three-dimensional complex scenarios.

Index Terms - Electromagnetic Scattering, Forward Problem, Three-Dimensional Ge-

ometry, Anisotropic Media, Integral Equations, Weak-Formulation.



1 Introduction

Modeling electromagnetic fields in realistic three-dimensional (3D) scenarios is an ap-
pealing research topic. However, the solution of the arising electromagnetic scattering
problems is a critical issue since it requires the use of numerical procedures with a non-
negligible computational load, especially when large and complex realistic configurations
are taken into account.

As far as two-dimensional (2D) geometries and dissipative objects are concerned, Rich-
mond proposed in [1] the use of the Method of Moments (MoM). A stiffness matrix,
whose dimensions depend on the size of the investigation domain, the working frequency,
and the contrast of the dielectric objects, is generated and successively inverted. The
need of inverting such a matrix strongly limits the application of the MoM especially
when the problem size grows. In order to reduce the computational load and the required
large amount of computer memory, the so-called k-Space Method has been introduced
[2]. Such an approach combines an iterative approach and the Fast Fourier Transform
(FFT) algorithm for efficiently computing the spatial convolution operator that occurs
in the integral scattering equations [3]. A further improvement, concerned with 2D-TM
configurations, has been successfully obtained by applying the Conjugate Gradient Fast
Fourier Transform (CG-FFT) |4]|5]|6]]7](8]|9]-

Concerning 2D-TE scenarios, the problem has been addressed by Zwamborn and van den
Berg |10] developing a weak-form of the integral scattering. A successive extension to 3D
isotropic cases has been presented in [11] and further improved for allowing a more easy
and effective numerical implementation [12][13].

In this paper, the approach presented in [13| is reformulated for dealing with 3D inhomo-
geneous anisotropic media. The solution of the arising algebraic linear system is addressed
by means of a set of iterative solvers and the performances of the Conjugate Gradient
(CG) approach, the BiConjugate Gradient (BiCG) method, the Stabilized BiConjugate
Gradient (BiCGStab) technique, the Quasi Minimal Residual (QMR) method, and the
Generalized Minimal Residual (GMRES) algorithm are then compared. To the best of
authors’ knowledge, although detailed analyzes have been carried out on weak-form-based

techniques (|10][11]|12][13]|14]|15]), this is the first time that an exhaustive comparison on



iterative solvers when dealing with inhomogeneous anisotropic 3D geometries is carried
out.

The paper is organized as follows. In Section 2, the integral formulation of the three-
dimensional anisotropic problem is presented. The results of a comparative study among
effective iterative linear solvers are shown in Section 3. Some conclusions are eventually

presented in Section 4.

2 Mathematical Formulation

Let us consider a data domain R and a computational (or investigation) domain D gener-
ally composed by an inhomogeneous anisotropic medium of finite dimension and embedded
in a homogeneous isotropic background of constant permittivity &, electric conductivity
o;, and permeability £, Such a scenario is illuminated by a known electromagnetic source
defined on a support S and described through the impressed electric, J (TS), ™ €S, and
magnetic, K (TS), current densities.

By considering a Cartesian coordinate system, a time-harmonic temporal dependence,

and non-magnetic materials, the electric field satisfies the following equation
(1)

where k2 = iwuyoy, 0y = o) — iwey, and Q (F) is the contrast function describing the

anisotropic investigation domain

Ozx (F) — 0y ny (F) Oz (F)
A0=—| 0@ ou@-0 o.® | TED O
Oz (T) oy (T) 0., (T) — oy

By applying the Green’s theorem and the radiation condition at infinity, the problem

mathematically described through Eq. (1) is reformulated in integral form by writing the



following relationship

E,@=0ED|=EF-[K1+T7] A, (3)

where E (T) is the electric field in a homogeneous and unbounded background of complex

conductivity g, and permeability . I is the unit dyadic and
AM= [ ¢@T)QE) E(F)dr (4)
D

is the electric vector potential, the scalar Green function g (T,T’) being

_exp (iky |T —T'|)

g(F,7)=

(5)

Am|T — 7|

In order to numerically compute E (T), the domain D is partitioned using a uniform grid
of rectangular cells of side Az x Ay x Az where the contrast 6 is assumed to be constant.
According to the procedure described in |13], the integral operators are discretized by
applying the weakening procedure in order to cope with the singularity and the spatial
differentiation operators are calculated by using the finite difference rule. In order to
properly deal with anisotropic media, the electric vector potential A (T) is numerically-

evaluated as follows

AW (T p) = D AYAz Ty Sonimy ey 9 Conmps Tt )
Ek:x,y@ Q(hk) (fm’,n’7p') E(k) (leyn,7p,) (6)

hk=zy,zzm=1,...M;n=1,...N;p=1,..., P;

where T, ,, , identifies the generic center-point of a volumetric sub-domain belonging to
the investigation area; M, N and P are the numbers of discretizations along X, y and z,
respectively; E®) denotes the k-th component of E, and g (Timnps T ) 1s computed
as in [13|. By applying the convolution theorem of Discrete Fourier Transform (DFT), it

turns out that



AW (T,,0,) = AxAyAzDFT{DFT [g ()] B® (Fronp) }

h=xy,zzm=1,..M;n=1,...N;p=1,..., P,

where

B® (1) = DFT [L4y e Q") (B ) E®) (Frnp)|
h=xy,zz,m=1,...M;n=1,...N;p=1,...,P.

: (8)

thus allowing a computationally-efficient computation through FFT routines.

After discretization, the prediction problem is then recasts as the solution of the arising
linear system of U = 3 x M X N x P equations where the electric field of the back-
ground, Eé'i)yn (Trmnp)s Kk =2,y,2, m=1,.., M, n=1,...N,p=1,.,P, is a known
quantity because of the knowledge of the electromagnetic source. Towards this end,
because of the well-posed nature of the forward problem at hand [17|, effective linear
iterative solvers [namely, the well-known Conjugate Gradient (C'G) approach, the Bi-
Conjugate Gradient (BiC'G) method [14][18] and its stabilized version (BiC'GStab) [15],
the Quasi-Minimal Residual (QM R) approach |19], and the Generalized Minimum Resid-
ual (GMRES) method or its restarted implementation [20] (R — GM RES)| aimed at
minimizing the distance p; (i being the iteration index) between the estimated solution
and the actual one, can be profitably used thus avoiding time-consuming inversion pro-

cedures. More in detail, let us define the “residual” vector W;, an array of dimension U

whose components are given by

. , k=xy,z;m=1,.. M;

i i(k) /— k _ IR RN ) ) )

ul®) = B Fnnp) = By (Fmnp) (9)
n=1,..N;p=1,.., P,

Ez(k) (Tinnp) being computed through (3) on the basis of the trial solution estimated at
the ¢-th iteration, Ei(k) (Trnnp), of the iterative process. Then, the distance is computed

as



i 2
\/Zk =x,Y,2 Zm 1 Z =1 Zp 1 u”(lknyp‘
- . (10)

k _ 2
\/Zk T,Y,2 =1 Z =1 Z }Elg,s)yn (rm,n,p>‘

(k)

and minimized by generating a convergent sequence of trial solutions {EZ (Trnp); i =1,...

according to a suitable iterative approach.
Finally, once the distribution of E®) (¥,,,,,), k = z,y,z;m=1,...,M;n=1,...N; p =
WGPV =x,y,z,m=1,... M,n=1,... N, p=1,..., P is determined, also the scat-

tered magnetic field at T¥* € R can be easily computed through the following relationship

H ) =0,y x A (FF).
Hscatt ( ) R A ( R) (11)

3 Numerical Validation

In this section, the performances of the set of representative linear iterative solvers are
compared by considering, as a reference benchmark, the electromagnetic problem mod-
eling the system for the electromagnetic induction well logging largely used in the oil
exploration.

As far as the electromagnetic source is concerned, it is a point magnetic dipole directed
along the D-direction and represented through a null electric density (J = 0) and an
impulsive magnetic current (K (fs) =0 (FS) 7. Consequently, the electric field in the

background is given by

Epsyn (Frnnp) = =V X g (Fm,n,pa FS) v=-h (me,pa TS) X U (12)

=1,..M;n=1,..,N;p=1,...,P;

where



= =S
_ _ 9(Fmnp T°) 10 S () e g
hk) (r rS) = — L —r {1 — ik ‘r —T
m,n,p F'm,n,p _FS‘ F'm,n,p —FS| b m,n,p

(13)
k=xy,zzm=1,...M;n=1... . N;p=1..,P .

In the first test case, the probing system consists of: (@) an electromagnetic source working

at frequency fo = 1 KHz and located at ¥ = (—50,0,0)m [t° € D|, (b) N = 41

receivers located at T = |50, 0.0, 5.0 x (j — NZ_IH m, j =0,...,(N® —1). Concerning

the cubical computational domain D, it is inhomogeneous, [, = 50m in side, and it has
been partitioned into a grid of 32 x 32 x 32 cells. Two homogeneous isotropic cubic objects
loj = 12.5m-sided and characterized by a conductivity o{}) = o{)) = oY) =102 and
o) = a?%) =0 =1072£ lie in D at the locations C; = (—12.5, —12.5, —12.5) m and
Cy = (12.5,12.5,12.5) m, respectively. The isotropic background is homogeneous with a
constant conductivity equal to o, = 0.1 %

As far as the iterative process is concerned, the minimization has been stopped when the
condition (p; < 1077) was satisfied and the prediction results are shown in Fig. 1 in terms
of the values of the magnetic field components at the measurement points in R. As it can
be observed, the plots related to each solver are almost indistinguishable, but significant
differences turns out in terms of the computational load and convergence.

Figure 2 shows the behavior of the error function p; versus the iteration number j pointing
out its monotonic decreasing when the CG, GMRES and R — GMRES techniques
are used. On the other hand, the remaining approaches (and in particular the BiCG
technique) seem to be unstable with fast variations in the values of p;. However, its
should noticed that the convergence ratio of the BiCG method significantly improves
compared to the standard CG reducing ten times the number of iterations for reaching
the convergence threshold [see Table I where the average C'PU-time per iteration (i;)
together with the convergence index (/..,), the initialization time (), and the total
CPU-time (T) are given|. Moreover, with reference to Figure 3 and Table I, it turns
out that the CG, the BiC'G, and the QM R need of the same amount of C'PU-time per
iteration ¢; since their computational costs are due to the evaluations (i.e., two evaluations

at each iteration) of the operator Q and the remaining vector/scalar product operations



require a negligible amount of C' PU-time (if compared to the Q evaluation).
A significant improvement of the computational performances is obtained by using the
BiC'GStab technique since, in addition to a slight reduction of the time per iteration t;
due to the smaller number of vectorial products at each iteration, the total number of
iterations is almost halved when compared to those of the BiC'G approach. A further
improvement is achieved by the GM RES technique since it requires only one computation
of the operator €) per iteration even though the C'PU-time grows linearly with the number
of iterations because of the increasing of the dimension of the Hessenberg matrix. Such
a behavior results in the quadratic dependence of the computation time 7; as shown in
Fig. 4.
In order to avoid the drawback related to the matrix storage of the GMRES, the R —
GM RES method has been evaluated, as well, by setting I,., = 20. Although, on average,
t; decreases, such an approach presents a slower convergence ratio (Fig. 2) than the
GMRES and furthermore, an extra time is needed at each restart as shown in Figure 3.
Such an event further confirms the reliability and the computational effectiveness of the
GMRES.
In the second test case, the water-oil contact model shown in Figure 5 is considered.
In such a case, the computational domain of size 6.4 x 6.4 x 12.8m3 and discretized
into 32 x 32 x 64 cells consists of an isotropic deviated water layer with conductivity
water _ jwater _ jwater _

o = 0, = 0

e " e 5 (white color in Fig. 5) and an anisotropic water-oil

contact region (black color in Fig. 5) [09% = % = 0.333 £, 6% = 0.05 2] in a rock

background (brown color in Fig. 5) of conductivity o, = 1.0 % Both transmitter and

receivers have the same locations of the previous example, but the operating frequency is
equal to fo =263 KHz.

Figure 6 shows the behavior of the predicted magnetic field at the locations of the re-
ceivers. As expected, whatever the approach, the field behavior is faithfully estimated.
Consequently, the computational effectiveness turns out to be the index of success among
the different solution techniques.

From the computational point-of-view and with reference to Figures 7-9 and Table II,

similar conclusions to those concerned with the first test case hold true. However, despite



the greater number of discretization cells and the configuration complexity, the conver-
gence ratio is on average faster than that of the previous test case (see Fig 7), but the
C'PU-time per iteration increases (Tab. II). Thanks to the non-negligible reduction of
the required iterations (I.on,) in comparison with those of the other techniques, the total
amount of C'PU-time required by the BiC'GStab is comparable with that needed for the
GMRES method.

As far as the R — GMRES solver is concerned, I,.;, has been fixed to I,., = 5. This
is a smaller value than that in the first example, since the amount of memory used per
iteration significantly grows. Consequently, the initialization time at each restart has a
significant influence on the total C'PU-time and therefore, the R — GM RES method is
slower than its standard implementation.

Finally, it should be observed that in such an example the ratio between the computational

costs of the fastest and the slowest algorithm significantly enlarges (#2¢&— ~ 19 - Test

TaMRES
Case 2 vs. TTA ~ 8.3 - Test Case 1) because of the slower convergence of the CG
GMRES
method (IS¢, = 1556 - Test Case 1 vs. 1S9 = 110 - Test Case 2).

4 Conclusions

In this paper, a comparative assessment among iterative linear solvers when dealing with
three-dimensional inhomogeneous and anisotropic media has been carried out. As ex-
pected, the numerical results confirmed the effectiveness of the considered approaches
concerning the accuracyin the electromagnetic prediction. On the other hand, the nu-
merical study showed that the GM RES method is the fastest solver even though the
corresponding C'PU-time per iteration linearly increases. Moreover, the required amount
of memory depends on the number of iterations for reaching convergence in a propor-
tional way. Consequently, the GM RES turns out to be a suitable technique only when
a large amount of memory is available or when small-scale problems are dealt with. On
the contrary, the obtained results pointed out that it is profitable to use the BiC'GStab
algorithm when the computational domain becomes larger and larger. As a matter of fact,
such an approach presented comparable or better performances than the R — GMRES,

but avoiding those drawbacks concerned with the memory requirements.
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Figure Captions

e Figure 1. Test Case I - Real (a)(c)(e) and imaginary (b)(d)(f) part of the x
(a)(b), y (¢)(d), and z (e)(f) components of the magnetic field in the data domain
S.

e Figure 2. Test Case I - Normalized error p; versus iteration number 1.
e Figure 3. Test Case I - CPU-time per iteration (t;).
e Figure 4. Test Case I - Total C PU-time T} versus iteration number .

e Figure 5. Test Case Il - Conductivity distribution of the water-oil contact model.
On the left hand side two orthogonal volume slices of the are shown. On the right
hand side, 2D conductivity distributions at y = 0 and x = —0.1 m. Multi-component
data are collected along the vertical axis (i.e., z-axis) that coincides with the wellbore

axis.

e Figure 6. Test Case II - Real (a)(c)(e) and imaginary (b)(d)(f) part of the x
(a)(b), y (¢)(d), and z (e)(f) components of the magnetic field in the data domain
S.

e Figure 7. Test Case Il - Normalized error p; versus iteration number 1.
e Figure 8. Test Case II - C PU-time per iteration (t;).

e Figure 9. Test Case II - Total C PU-time T} versus iteration number .
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Table Captions

e Table I. Test Case I - Computational indexes.

e Table II. Test Case Il - Computational indexes.
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Method Leony to [sec|| T [sec|]| T [se(]
R—GMRES 233 4.5 3.1 736
GMRES 136 4.8 4.0 545
QMR 172 6.9 6.7 1171
BiC'GStab 106 4.8 6.2 659
BiCG 166 5.2 6.8 1133
CG 1556 4.9 6.7 10420

Tab. I - G. Franceschini et al., ”A comparative assessment ...”
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Method Leony to [sec|| T [sec]| T [sec]
R—GMRES 31 154 7.4 245
GMRES 25 15.2 6.7 183
QMR 27 15.3 13.6 382
BiC'GStab 15 15.3 13.0 210
BiCG 27 15.5 13.9 389
CG 110 15.5 13.7 1524

Tab. II - G. Franceschini et al., ”A comparative assessment, ...”
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