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AComparative Assessment among Iterative Linear Solversdealing with Ele
tromagneti
 Integral Equations in 3DInhomogeneous Anisotropi
 Media
Gabriele Fran
es
hini, Aria Abubakar, Tarek M. Habashy, and Andrea Massa

Abstra
tThis paper deals with full-ve
torial, three-dimensional, ele
tromagneti
 s
atteringproblems formulated in terms of integral s
attering equations. The weak formulationis applied in order to e�e
tively deal with inhomogeneous anisotropi
 media andthe arising set of algebrai
 linear equations is solved through some of the mostre
ent and e�e
tive iterative linear solvers for allowing a detailed assessment of theirperforman
es when fa
ing with three-dimensional 
omplex s
enarios.

Index Terms - Ele
tromagneti
 S
attering, Forward Problem, Three-Dimensional Ge-ometry, Anisotropi
 Media, Integral Equations, Weak-Formulation.2



1 Introdu
tionModeling ele
tromagneti
 �elds in realisti
 three-dimensional (3D) s
enarios is an ap-pealing resear
h topi
. However, the solution of the arising ele
tromagneti
 s
atteringproblems is a 
riti
al issue sin
e it requires the use of numeri
al pro
edures with a non-negligible 
omputational load, espe
ially when large and 
omplex realisti
 
on�gurationsare taken into a

ount.As far as two-dimensional (2D) geometries and dissipative obje
ts are 
on
erned, Ri
h-mond proposed in [1℄ the use of the Method of Moments (MoM ). A sti�ness matrix,whose dimensions depend on the size of the investigation domain, the working frequen
y,and the 
ontrast of the diele
tri
 obje
ts, is generated and su

essively inverted. Theneed of inverting su
h a matrix strongly limits the appli
ation of the MoM espe
iallywhen the problem size grows. In order to redu
e the 
omputational load and the requiredlarge amount of 
omputer memory, the so-
alled k-Spa
e Method has been introdu
ed[2℄. Su
h an approa
h 
ombines an iterative approa
h and the Fast Fourier Transform(FFT ) algorithm for e�
iently 
omputing the spatial 
onvolution operator that o

ursin the integral s
attering equations [3℄. A further improvement, 
on
erned with 2D-TM
on�gurations, has been su

essfully obtained by applying the Conjugate Gradient FastFourier Transform (CG-FFT ) [4℄[5℄[6℄[7℄[8℄[9℄.Con
erning 2D-TE s
enarios, the problem has been addressed by Zwamborn and van denBerg [10℄ developing a weak-form of the integral s
attering. A su

essive extension to 3Disotropi
 
ases has been presented in [11℄ and further improved for allowing a more easyand e�e
tive numeri
al implementation [12℄[13℄.In this paper, the approa
h presented in [13℄ is reformulated for dealing with 3D inhomo-geneous anisotropi
 media. The solution of the arising algebrai
 linear system is addressedby means of a set of iterative solvers and the performan
es of the Conjugate Gradient(CG) approa
h, the BiConjugate Gradient (BiCG) method, the Stabilized BiConjugateGradient (BiCGStab) te
hnique, the Quasi Minimal Residual (QMR) method, and theGeneralized Minimal Residual (GMRES ) algorithm are then 
ompared. To the best ofauthors' knowledge, although detailed analyzes have been 
arried out on weak-form-basedte
hniques ([10℄[11℄[12℄[13℄[14℄[15℄), this is the �rst time that an exhaustive 
omparison on3



iterative solvers when dealing with inhomogeneous anisotropi
 3D geometries is 
arriedout.The paper is organized as follows. In Se
tion 2, the integral formulation of the three-dimensional anisotropi
 problem is presented. The results of a 
omparative study amonge�e
tive iterative linear solvers are shown in Se
tion 3. Some 
on
lusions are eventuallypresented in Se
tion 4.2 Mathemati
al FormulationLet us 
onsider a data domain R and a 
omputational (or investigation) domain D gener-ally 
omposed by an inhomogeneous anisotropi
 medium of �nite dimension and embeddedin a homogeneous isotropi
 ba
kground of 
onstant permittivity εb, ele
tri
 
ondu
tivity
σ′

b, and permeability µb. Su
h a s
enario is illuminated by a known ele
tromagneti
 sour
ede�ned on a support S and des
ribed through the impressed ele
tri
, J (
rS

), rS ∈ S, andmagneti
, K (
rS

), 
urrent densities.By 
onsidering a Cartesian 
oordinate system, a time-harmoni
 temporal dependen
e,and non-magneti
 materials, the ele
tri
 �eld satis�es the following equation
▽×▽×E (r) − k2

bE (r) =

k2
bQ (r) · E (r) + iωµbJ

(
rS

)
−▽× K

(
rS

)
,

(1)where k2
b = iωµbσb, σb = σ′

b − iωεb, and Q (r) is the 
ontrast fun
tion des
ribing theanisotropi
 investigation domain
Q (r) =

1

σb





σxx (r) − σb σxy (r) σxz (r)

σxy (r) σyy (r) − σb σyz (r)

σxz (r) σyz (r) σzz (r) − σb




, r ∈ D (2)

By applying the Green's theorem and the radiation 
ondition at in�nity, the problemmathemati
ally des
ribed through Eq. (1) is reformulated in integral form by writing the
4



following relationship
Eb (r) = Ω

[
E (r)

]
= E (r) −

[
k2

b I + ▽▽
]
· A (r) , (3)where Eb (r) is the ele
tri
 �eld in a homogeneous and unbounded ba
kground of 
omplex
ondu
tivity σb and permeability µb, I is the unit dyadi
 and

A (r) =
∫

D
g (r, r′)Q (r′) · E (r′) dr′ (4)is the ele
tri
 ve
tor potential, the s
alar Green fun
tion g (r, r′) being

g (r, r′) =
exp (ikb |r − r′|)

4π |r − r′|
. (5)In order to numeri
ally 
ompute E (r), the domain D is partitioned using a uniform gridof re
tangular 
ells of side ∆x×∆y×∆z where the 
ontrast Q is assumed to be 
onstant.A

ording to the pro
edure des
ribed in [13℄, the integral operators are dis
retized byapplying the weakening pro
edure in order to 
ope with the singularity and the spatialdi�erentiation operators are 
al
ulated by using the �nite di�eren
e rule. In order toproperly deal with anisotropi
 media, the ele
tri
 ve
tor potential A (r) is numeri
ally-evaluated as follows

A(h) (rm,n,p) = ∆x∆y∆z
∑M

m′=1

∑N
n′=1

∑P
p′=1 g (rm,n,p, rm′,n′,p′)

∑
k=x,y,z Q(h,k) (rm′,n′,p′)E(k) (rm′,n′,p′)

h, k = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P ;

(6)
where rm,n,p identi�es the generi
 
enter-point of a volumetri
 sub-domain belonging tothe investigation area; M , N and P are the numbers of dis
retizations along x̂, ŷ and ẑ,respe
tively; E(k) denotes the k-th 
omponent of E, and g (rm,n,p, rm′,n′,p′) is 
omputedas in [13℄. By applying the 
onvolution theorem of Dis
rete Fourier Transform (DFT ), itturns out that 5



A(h) (rm,n,p) = ∆x∆y∆zDFT−1
{
DFT [g (rm,n,p)] B

(h) (rm,n,p)
}

h = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P ;
(7)

where
B(h) (rm,n,p) = DFT

[∑
k=x,y,z Q(h,k) (rm,n,p) E(k) (rm,n,p)

]

h = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P.
, (8)thus allowing a 
omputationally-e�
ient 
omputation through FFT routines.After dis
retization, the predi
tion problem is then re
asts as the solution of the arisinglinear system of U = 3 × M × N × P equations where the ele
tri
 �eld of the ba
k-ground, E

(k)
b,syn (rm,n,p), k = x, y, z, m = 1, ..., M , n = 1, ..., N , p = 1, ..., P , is a knownquantity be
ause of the knowledge of the ele
tromagneti
 sour
e. Towards this end,be
ause of the well-posed nature of the forward problem at hand [17℄, e�e
tive lineariterative solvers [namely, the well-known Conjugate Gradient (CG) approa
h, the Bi-Conjugate Gradient (BiCG) method [14℄[18℄ and its stabilized version (BiCGStab) [15℄,the Quasi-Minimal Residual (QMR) approa
h [19℄, and the Generalized Minimum Resid-ual (GMRES) method or its restarted implementation [20℄ (R − GMRES)℄ aimed atminimizing the distan
e ρi (i being the iteration index) between the estimated solutionand the a
tual one, 
an be pro�tably used thus avoiding time-
onsuming inversion pro-
edures. More in detail, let us de�ne the �residual � ve
tor ui, an array of dimension Uwhose 
omponents are given by
ui(k)

m,n,p = E
i(k)
b (rm,n,p) − E

(k)
b,syn (rm,n,p)

k = x, y, z; m = 1, ..., M ;

n = 1, ..., N ; p = 1, ..., P,
(9)

E
i(k)
b (rm,n,p) being 
omputed through (3) on the basis of the trial solution estimated atthe i-th iteration, E

(k)
i (rm,n,p), of the iterative pro
ess. Then, the distan
e is 
omputedas

6



ρi =

√
∑

k=x,y,z

∑M
m=1

∑N
n=1

∑P
p=1

∣∣∣ui(k)
m,n,p

∣∣∣
2

√
∑

k=x,y,z

∑M
m=1

∑N
n=1

∑P
p=1

∣∣∣E(k)
b,syn (rm,n,p)

∣∣∣
2
. (10)

and minimized by generating a 
onvergent sequen
e of trial solutions {
E

(k)
i (rm,n,p) ; i = 1, ..., I

}a

ording to a suitable iterative approa
h.Finally, on
e the distribution of E(k) (rm,n,p), k = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p =

1, ..., P ; ∀k = x, y, z, m = 1, ..., M, n = 1, ..., N, p = 1, ..., P is determined, also the s
at-tered magneti
 �eld at rR ∈ R 
an be easily 
omputed through the following relationship
H

scatt
(
rR

)
= σb▽

R
×A

(
rR

)
. (11)

3 Numeri
al ValidationIn this se
tion, the performan
es of the set of representative linear iterative solvers are
ompared by 
onsidering, as a referen
e ben
hmark, the ele
tromagneti
 problem mod-eling the system for the ele
tromagneti
 indu
tion well logging largely used in the oilexploration.As far as the ele
tromagneti
 sour
e is 
on
erned, it is a point magneti
 dipole dire
tedalong the ν-dire
tion and represented through a null ele
tri
 density (J = 0) and animpulsive magneti
 
urrent (K (
rS

)
= δ

(
rS

)
ν. Consequently, the ele
tri
 �eld in theba
kground is given by

Eb,syn (rm,n,p) = −▽× g
(
rm,n,p, rS

)
ν = −h

(
rm,n,p, rS

)
× ν

m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P ;
(12)

where 7



h(k)
(
rm,n,p, rS

)
= −

g(rm,n,p, rS)
|rm,n,p−r

S|
r(k)

−rS (k)

|rm,n,p−r
S|

[
1 − ikb

∣∣∣rm,n,p − rS
∣∣∣
]

k = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P .

(13)In the �rst test 
ase, the probing system 
onsists of: (a) an ele
tromagneti
 sour
e workingat frequen
y f0 = 1 KHz and lo
ated at rS = (−50, 0, 0) m [rS ∈ D℄, (b) NR = 41re
eivers lo
ated at rR
j =

[
50, 0.0, 5.0 ×

(
j − NR

−1
2

)]
m, j = 0, ..., (NR − 1). Con
erningthe 
ubi
al 
omputational domain D, it is inhomogeneous, lD = 50 m in side, and it hasbeen partitioned into a grid of 32×32×32 
ells. Two homogeneous isotropi
 
ubi
 obje
ts

lobj = 12.5 m-sided and 
hara
terized by a 
ondu
tivity σ(1)
xx = σ(1)

yy = σ(1)
zz = 10 S

m
and

σ(2)
xx = σ(2)

yy = σ(2)
zz = 10−2 S

m
lie in D at the lo
ations C1 = (−12.5,−12.5,−12.5) m and

C2 = (12.5, 12.5, 12.5) m, respe
tively. The isotropi
 ba
kground is homogeneous with a
onstant 
ondu
tivity equal to σb = 0.1 S
m
.As far as the iterative pro
ess is 
on
erned, the minimization has been stopped when the
ondition (ρi < 10−7) was satis�ed and the predi
tion results are shown in Fig. 1 in termsof the values of the magneti
 �eld 
omponents at the measurement points in R. As it 
anbe observed, the plots related to ea
h solver are almost indistinguishable, but signi�
antdi�eren
es turns out in terms of the 
omputational load and 
onvergen
e.Figure 2 shows the behavior of the error fun
tion ρi versus the iteration number j pointingout its monotoni
 de
reasing when the CG, GMRES and R − GMRES te
hniquesare used. On the other hand, the remaining approa
hes (and in parti
ular the BiCGte
hnique) seem to be unstable with fast variations in the values of ρi. However, itsshould noti
ed that the 
onvergen
e ratio of the BiCG method signi�
antly improves
ompared to the standard CG redu
ing ten times the number of iterations for rea
hingthe 
onvergen
e threshold [see Table I where the average CPU-time per iteration (ti)together with the 
onvergen
e index (Iconv), the initialization time (t0), and the total

CPU-time (T ) are given℄. Moreover, with referen
e to Figure 3 and Table I, it turnsout that the CG, the BiCG, and the QMR need of the same amount of CPU-time periteration ti sin
e their 
omputational 
osts are due to the evaluations (i.e., two evaluationsat ea
h iteration) of the operator Ω and the remaining ve
tor/s
alar produ
t operations8



require a negligible amount of CPU-time (if 
ompared to the Ω evaluation).A signi�
ant improvement of the 
omputational performan
es is obtained by using the
BiCGStab te
hnique sin
e, in addition to a slight redu
tion of the time per iteration tidue to the smaller number of ve
torial produ
ts at ea
h iteration, the total number ofiterations is almost halved when 
ompared to those of the BiCG approa
h. A furtherimprovement is a
hieved by the GMRES te
hnique sin
e it requires only one 
omputationof the operator Ω per iteration even though the CPU-time grows linearly with the numberof iterations be
ause of the in
reasing of the dimension of the Hessenberg matrix. Su
ha behavior results in the quadrati
 dependen
e of the 
omputation time Ti as shown inFig. 4.In order to avoid the drawba
k related to the matrix storage of the GMRES, the R −

GMRES method has been evaluated, as well, by setting Ires = 20. Although, on average,
ti de
reases, su
h an approa
h presents a slower 
onvergen
e ratio (Fig. 2) than the
GMRES and furthermore, an extra time is needed at ea
h restart as shown in Figure 3.Su
h an event further 
on�rms the reliability and the 
omputational e�e
tiveness of the
GMRES.In the se
ond test 
ase, the water-oil 
onta
t model shown in Figure 5 is 
onsidered.In su
h a 
ase, the 
omputational domain of size 6.4 × 6.4 × 12.8 m3 and dis
retizedinto 32 × 32 × 64 
ells 
onsists of an isotropi
 deviated water layer with 
ondu
tivity
σwater

xx = σwater
yy = σwater

zz = 5 S
m

(white 
olor in Fig. 5) and an anisotropi
 water-oil
onta
t region (bla
k 
olor in Fig. 5) [σoil
xx = σoil

yy = 0.333 S
m
, σoil

zz = 0.05 S
m
℄ in a ro
kba
kground (brown 
olor in Fig. 5) of 
ondu
tivity σr = 1.0 S

m
. Both transmitter andre
eivers have the same lo
ations of the previous example, but the operating frequen
y isequal to f0 = 26.3 KHz.Figure 6 shows the behavior of the predi
ted magneti
 �eld at the lo
ations of the re-
eivers. As expe
ted, whatever the approa
h, the �eld behavior is faithfully estimated.Consequently, the 
omputational e�e
tiveness turns out to be the index of su

ess amongthe di�erent solution te
hniques.From the 
omputational point-of-view and with referen
e to Figures 7-9 and Table II,similar 
on
lusions to those 
on
erned with the �rst test 
ase hold true. However, despite9



the greater number of dis
retization 
ells and the 
on�guration 
omplexity, the 
onver-gen
e ratio is on average faster than that of the previous test 
ase (see Fig 7), but the
CPU-time per iteration in
reases (Tab. II). Thanks to the non-negligible redu
tion ofthe required iterations (Iconv) in 
omparison with those of the other te
hniques, the totalamount of CPU-time required by the BiCGStab is 
omparable with that needed for the
GMRES method.As far as the R − GMRES solver is 
on
erned, Ires has been �xed to Ires = 5. Thisis a smaller value than that in the �rst example, sin
e the amount of memory used periteration signi�
antly grows. Consequently, the initialization time at ea
h restart has asigni�
ant in�uen
e on the total CPU-time and therefore, the R − GMRES method isslower than its standard implementation.Finally, it should be observed that in su
h an example the ratio between the 
omputational
osts of the fastest and the slowest algorithm signi�
antly enlarges ( TCG

TGMRES
≃ 19 - TestCase 2 vs. TCG

TGMRES
≃ 8.3 - Test Case 1) be
ause of the slower 
onvergen
e of the CGmethod (ICG

conv = 1556 - Test Case 1 vs. ICG
conv = 110 - Test Case 2).4 Con
lusionsIn this paper, a 
omparative assessment among iterative linear solvers when dealing withthree-dimensional inhomogeneous and anisotropi
 media has been 
arried out. As ex-pe
ted, the numeri
al results 
on�rmed the e�e
tiveness of the 
onsidered approa
hes
on
erning the a

ura
yin the ele
tromagneti
 predi
tion. On the other hand, the nu-meri
al study showed that the GMRES method is the fastest solver even though the
orresponding CPU-time per iteration linearly in
reases. Moreover, the required amountof memory depends on the number of iterations for rea
hing 
onvergen
e in a propor-tional way. Consequently, the GMRES turns out to be a suitable te
hnique only whena large amount of memory is available or when small-s
ale problems are dealt with. Onthe 
ontrary, the obtained results pointed out that it is pro�table to use the BiCGStabalgorithm when the 
omputational domain be
omes larger and larger. As a matter of fa
t,su
h an approa
h presented 
omparable or better performan
es than the R − GMRES,but avoiding those drawba
ks 
on
erned with the memory requirements.10
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Figure Captions
• Figure 1. Test Case I - Real (a)(
)(e) and imaginary (b)(d)(f ) part of the x(a)(b), y (
)(d), and z (e)(f ) 
omponents of the magneti
 �eld in the data domain

S.
• Figure 2. Test Case I - Normalized error ρi versus iteration number i.
• Figure 3. Test Case I - CPU-time per iteration (ti).
• Figure 4. Test Case I - Total CPU-time Ti versus iteration number i.
• Figure 5. Test Case II - Condu
tivity distribution of the water-oil 
onta
t model.On the left hand side two orthogonal volume sli
es of the are shown. On the righthand side, 2D 
ondu
tivity distributions at y = 0 and x = −0.1 m. Multi-
omponentdata are 
olle
ted along the verti
al axis (i.e., z-axis) that 
oin
ides with the wellboreaxis.
• Figure 6. Test Case II - Real (a)(
)(e) and imaginary (b)(d)(f ) part of the x(a)(b), y (
)(d), and z (e)(f ) 
omponents of the magneti
 �eld in the data domain

S.
• Figure 7. Test Case II - Normalized error ρi versus iteration number i.
• Figure 8. Test Case II - CPU-time per iteration (ti).
• Figure 9. Test Case II - Total CPU-time Ti versus iteration number i.
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Table Captions
• Table I. Test Case I - Computational indexes.
• Table II. Test Case II - Computational indexes.
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Method Iconv t0 [sec] ti [sec] T [sec]

R − GMRES 233 4.5 3.1 736

GMRES 136 4.8 4.0 545

QMR 172 6.9 6.7 1171

BiCGStab 106 4.8 6.2 659

BiCG 166 5.2 6.8 1133

CG 1556 4.9 6.7 10420

Tab. I - G. Fran
es
hini et al., �A 
omparative assessment ...�24



Method Iconv t0 [sec] ti [sec] T [sec]

R − GMRES 31 15.4 7.4 245

GMRES 25 15.2 6.7 183

QMR 27 15.3 13.6 382

BiCGStab 15 15.3 13.0 210

BiCG 27 15.5 13.9 389

CG 110 15.5 13.7 1524

Tab. II - G. Fran
es
hini et al., �A 
omparative assessment ...�25


