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A Multi-Resolution Te
hnique based onShape Optimization for the Re
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tri
 Obje
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.fr,andrea.massa�ing.unitn.itAbstra
t. In the framework of inverse s
attering te
hniques, this paper presents theintegration of a multi-resolution te
hnique and the level-set method for qualitativemi
rowave imaging. On one hand, in order to e�e
tively exploit the limited amountof information 
olle
table from s
attering measurements, the iterative multi-s
alingapproa
h (IMSA) is employed for enabling a detailed re
onstru
tion only whereneeded without in
reasing the number of unknowns. On the other hand, the a-prioriinformation on the homogeneity of the unknown obje
t is exploited by adopting ashape-based optimization and representing the support of the s
atterer via a levelset fun
tion. Reliability and e�e
tiveness of the proposed strategy are assessed bypro
essing both syntheti
 and experimental s
attering data for simple and 
omplexgeometries, as well.Key Words - Mi
rowave Imaging, Inverse S
attering, Level Sets, Iterative Multi-S
aling Approa
h, Homogeneous Diele
tri
 S
atterers.Classi�
ation Numbers (MSC) - 45Q05, 78A46, 78M50



2 M. Benedetti et al.1. Introdu
tionThe non-invasive re
onstru
tion of position and shape of unknown targets is a topi
of great interest in many appli
ations, su
h as non-destru
tive evaluation and testing(NDE/NDT) for industrial monitoring and subsurfa
e sensing [1℄. In this framework,many methodologies have been proposed based on x-rays [2℄, ultrasoni
s [3℄, andeddy 
urrents [4℄. Furthermore, mi
rowave imaging has been re
ognized as a suitablemethodology sin
e [1℄[5℄: (a) ele
tromagneti
 �elds at mi
rowave frequen
ies 
anpenetrate non-ideal 
ondu
tor materials; (b) the �eld s
attered by the target isrepresentative of its inner stru
ture and not only of its boundary; (
) mi
rowaves showa high sensibility to the water 
ontent of the stru
ture under test; (d) mi
rowave sensors
an be employed without me
hani
al 
onta
ts with the spe
imen. In addition, 
omparedto x-ray and magneti
 resonan
e, mi
rowave-based approa
hes minimize (or avoid)
ollateral e�e
ts in the spe
imen under test. Therefore, they 
an be safely employed inbiomedi
al imaging.A further advan
e in mi
rowave non-invasive inspe
tion is represented by inverses
attering approa
hes aimed at re
onstru
ting a 
omplete image of the region under test.Unfortunately, the underlying mathemati
al model is 
hara
terized by several drawba
kspreventing their massive employment in NDE/NDT appli
ations. In parti
ular, inverses
attering problems are intrinsi
ally ill-posed [6℄ as well as non-linear [7℄.Sin
e the ill-posedness is strongly related to the amount of 
olle
table informationand usually the number of independent data is lower than the dimension of the solutionspa
e, multi-view/multi-illumination systems are generally adopted. However, it iswell known that the 
olle
table information is an upper-bounded quantity [8℄-[10℄.Consequently, it is ne
essary to e�e
tively exploit the overall information 
ontainedin the s
attered �eld samples for a
hieving a satisfa
tory re
onstru
tion.Towards this end, multi-resolution strategies have been re
ently proposed. The ideais that of using an enhan
ed spatial resolution only in those regions where the unknowns
atterers are found to be lo
ated. A

ordingly, Miller et al. [11℄ proposed a statisti
ally-based method for determining the optimal resolution level, while Baussard et al. [12℄developed a strategy based on spline pyramids for sub-surfa
e imaging problems. As foran example 
on
erned with qualitative mi
rowave imaging, Li et al. [13℄ implemented amultis
ale te
hnique based on Linear Sampling Method (LSM) to e�e
tively re
onstru
tthe 
ontour of the s
atterers. Unlike [11℄-[13℄, the iterative multi-s
ale approa
h (IMSA)



A Multi-Resolution Te
hnique based on Shape Optimization 3developed by Caorsi et al. [14℄ performs a multi-step, multi-resolution inversion pro
essin whi
h the ratio between unknowns and data is kept suitably low and 
onstant at ea
hstep of the inversion pro
edure, thus redu
ing the risk of o

urren
e of lo
al minima [9℄in the arising optimization problem.On the other hand, the la
k of information a�e
ting the inverse problem has beenaddressed through the exploitation of the a-priori knowledge (when available) on thes
enario under test by means of an e�e
tive representation of the unknowns. As far asmany NDE/NDT appli
ations are 
on
erned, the unknown defe
t is 
hara
terized byknown ele
tromagneti
 properties (i.e., diele
tri
 permittivity and 
ondu
tivity) and itlies within a known host region. Under these assumptions, the imaging problem redu
esto a shape optimization problem aimed at the sear
h of lo
ation and boundary 
ontoursof the defe
t. Parametri
 te
hniques aimed at representing the unknown obje
t in termsof des
riptive parameters of referen
e shapes [15℄[16℄ and more sophisti
ated approa
hessu
h as evolutionary-
ontrolled spline 
urves [17℄[18℄, shape gradients [19℄-[21℄ or level-sets [22℄-[30℄ have then been proposed. As far as level-set-based methods are 
on
erned,the homogeneous obje
t is de�ned as the zero level of a 
ontinuous fun
tion and, unlikepixel-based or parametri
-based strategies, su
h a des
ription enables one to represent
omplex shapes in a simple way.In order to exploit both the available a-priori knowledge on the s
enario under test(e.g., the homogeneity of the s
atterer) and the information 
ontent from the s
atteringmeasurements, this paper proposes the integration of the iterative multi-s
aling strategy(IMSA) [14℄ and the level-set (LS ) representation [23℄.The paper is stru
tured as follows. The integration between IMSA and LS isdetailed in Se
t. 2 dealing with a two-dimensional geometry. In Se
tion 3, numeri
altesting and experimental validation are presented, a 
omparison with the standard LSimplementation being made. Finally, some 
on
lusions are drawn (Se
t. 4).2. Mathemati
al FormulationLet us 
onsider a 
ylindri
al homogeneous non-magneti
 obje
t with relativepermittivity ǫC and 
ondu
tivity σC that o

upies a region Υ belonging to aninvestigation domain DI . Su
h a s
atterer is probed by a set of V transverse-magneti
(TM) plane waves, with ele
tri
 �eld dire
ted along the axis of the 
ylindri
al geometry,



4 M. Benedetti et al.namely ζv(r) = ζv(r)ẑ (v = 1, . . . , V ), r = (x, y). The s
attered �eld, ξv(r) = ξv(r)ẑ, is
olle
ted at M(v), v = 1, ..., V , measurement points rm distributed in the observationdomain DO.In order to ele
tromagneti
ally des
ribe the investigation domain DI , let us de�nethe 
ontrast fun
tion τ(r) given by
τ(r) =





τC

0

r ∈ Υotherwise (1)where τC = (ǫC − 1)− j σC

2πfε0
, f being the frequen
y of operation (the time dependen
e

ej2πft being implied).The s
attering problem is des
ribed by the well-known Lippmann-S
hwinger integralequations
ξv (rm) =

(
2π

λ

)2 ∫

DI

τ (r′)Ev (r′)G2D (rm, r′) dr′, rm ∈ DO (2)
ζv (r) = Ev (r) −

(
2π

λ

)2 ∫

DI

τ (r′)Ev (r′)G2D (r, r′) dr′, r ∈ DI (3)where λ is the ba
kground wavelength, Ev is the total ele
tri
 �eld, and G2D (r, r′) =

− j

4
H

(2)
0

(
2π
λ
‖r − r′‖

) is the free-spa
e two-dimensional Green's fun
tion, H
(2)
0 being these
ond-kind, zeroth-order Hankel fun
tion.In order to retrieve the unknown position and shape of the target Υ by step-by-step enhan
ing the spatial resolution only in that region, 
alled region-of-interest (RoI),

R ∈ DI , where the s
atterer is lo
ated [14℄, the following iterative pro
edure of Smaxsteps is 
arried out.With referen
e to Fig. 1(a) and to the blo
k diagram displayed in Fig. 2, at the�rst step (s = 1, s being the step number) a trial shape Υs = Υ1, belonging to DI ,is 
hosen and the region of interest Rs [ Rs=1 = DI ℄ is partitioned into NIMSA equalsquare sub-domains, where NIMSA depends on the degrees of freedom of the problem athand and it is 
omputed a

ording to the guidelines suggested in [9℄.In addition, the level set fun
tion φs is initialized by means of a signed distan
efun
tion de�ned as follows [23℄[25℄:
φs (r) =





−minb=1,...,Bs
‖r − rb‖ if τ (r) = τCminb=1,...,Bs
‖r − rb‖ if τ (r) = 0

(4)where rb = (xb, yb) is the b-th border-
ell (b = 1, . . . , Bs) of Υs=1.Then, at ea
h step s of the pro
ess (s = 1, ..., Smax), the following optimizationpro
edure is repeated (Fig. 2):
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• Problem Unknown Representation - The 
ontrast fun
tion is represented interms of the level set fun
tion as follows

τ̃ks
(r) =

s∑

i=1

NIMSA∑

ni=1

τki
B

(
rni

)
r ∈ DI (5)where the index ks indi
ates the k-th iteration at the s-th step [ks = 1, ..., kopt

s ℄,
B

(
rni

) is a re
tangular basis fun
tion whose support is the n-th sub-domain at the
i-th resolution level [ni = 1, ..., NIMSA, i = 1, ..., s℄, and the 
oe�
ient τki

is givenby
τki

=





τC ifΨki

(
rni

)
≤ 0

0 otherwise (6)letting
Ψki

(
rni

)
=






φki

(
rni

) if i = s

φk
opt
i

(
rni

) if (i < s) and (
rni

∈ Ri

) (7)with i = 1, ..., s as in (5).
• Field Distribution Updating - On
e τ̃ks

(r) has been estimated, the ele
tri
�eld Ev
ks

(r) is numeri
ally 
omputed a

ording to a point-mat
hing version of theMethod of Moments (MoM) [31℄ as
Ẽv

ki

(
rni

)
=

∑NIMSA
pi=1 ζv

(
rpi

) [
1 − τ̃ki

(
rpi

)
G2D

(
rni

, rpi

)]−1
,

rni
, rpi

∈ DI

ni = 1, ..., NIMSA .

(8)
• Cost Fun
tion Evaluation - Starting from the total ele
tri
 �eld distribution(8), the re
onstru
ted s
attered �eld ξ̃v

ks
(rm) at the m-th measurement point,

m = 1, ..., M(v), is updated by solving the following equation
ξ̃v
ks

(rm) =
s∑

i=1

NIMSA∑

ni=1

τ̃ki

(
rni

)
Ẽv

ki

(
rni

)
G2D

(
rm, rni

) (9)and the �t between measured and re
onstru
ted data is evaluated by the multi-resolution 
ost fun
tion Θ de�ned as
Θ {φks

} =

∑V
v=1

∑M(v)
m=1

∣∣∣ξ̃v
ks

(rm) − ξv
ks

(rm)
∣∣∣
2

∑V
v=1

∑M(v)
m=1

∣∣∣ξv
ks

(rm)
∣∣∣
2 . (10)

• Minimization Stopping - The iterative pro
ess stops [i.e., kopt
s = ks and τ̃ opt

s = τ̃ks
℄when: (a) a set of 
onditions on the stability of the re
onstru
tion holds true or (b)when the maximum number of iterations is rea
hed [ks = Kmax℄ or (
) when the



6 M. Benedetti et al.value of the 
ost fun
tion is smaller than a �xed threshold γth. As far as the stabilityof the re
onstru
tion is 
on
erned [
ondition (a)℄, the �rst 
orresponding stopping
riterion is satis�ed when, for a �xed number of iterations, Kτ , the maximumnumber of pixels whi
h vary their value is smaller than a user de�ned threshold γτa

ording to the relationshipmaxj=1,...,Kτ





NIMSA∑

ns=1

|τ̃ks
(rns

) − τ̃ks−j (rns
)|

τC



 < γτ · NIMSA. (11)The se
ond 
riterion, about the stability of the re
onstru
tion, is satis�ed when the
ost fun
tion be
omes stationary within a window of KΘ iterations as follows:

1

KΘ

KΘ∑

j=1

Θ {φks
} − Θ {φks−j}

Θ {φks
}

< γΘ. (12)
KΘ being a �xed number of iterations and γΘ being user-de�ned thresholds;. Whenthe iterative pro
ess stops, the solution τ̃ opt

s at the s-th step is sele
ted as the onerepresented by the �best� level set fun
tion φopt
s de�ned as

φopt
s = arg [minh=1,...,k

opt
s

(Θ {φh})
]
. (13)

• Iteration Update - The iteration index is updated [ks → ks + 1℄;
• Level Set Update - The level set is updated a

ording to the following Hamilton-Ja
obi relationship

φks
(rns

) = φks−1 (rns
) − ∆tsVks−1 (rns

)H{φks−1 (rns
)} (14)where H{·} is the Hamiltonian operator [32℄[33℄ given as

H2 {φks
(rns

)} =





max2
{
Dx−

ks
; 0

}
+ min2

{
Dx+

ks
; 0

}
+

+max2
{
Dy−

ks
; 0

}
+ min2

{
Dy+

ks
; 0

}if Vk(s)

(
rn(s)

)
≥ 0min2

{
Dx−

ks
; 0

}
+ max2

{
Dx+

ks
; 0

}
+

+min2
{
Dy−

ks
; 0

}
+ max2

{
Dy+

ks
; 0

}otherwise
(15)

and Dx±
ks

=
±φks(xns±1,yns)∓φks(xns ,yns)

ls
, Dy±

ks
=

±φks(xns ,yns±1)∓φks (xns ,yns)

ls
. ∆ts is thetime-step 
hosen as ∆ts = ∆t1

ls
l1
with ∆t1 to be set heuristi
ally a

ording to theliterature [23℄, ls being the 
ell-side at the s-th resolution level. Vks

is the velo
ity
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tion 
omputed following the guidelines suggested in [23℄ by solving the adjointproblem of (8) in order to determine the adjoint �eld F v
ks
. A

ordingly,

Vks
(rns

) = −ℜ

{∑V

v=1
τCEv

ks
(rns)F

v
ks

(rns)∑V

v=1

∑M(v)

m=1 |ξ
v
ks

(rm)|
2

}
,

ns = 1, ..., NIMSA

(16)where ℜ stands for the real part.When the s-th minimization pro
ess terminates, the 
ontrast fun
tion is updated[τ̃ opt
s (r)= τ̃ks−1 (r), r ∈ DI (5)℄ as well as the RoI [Rs → Rs−1℄. To do so, the followingoperations are 
arried out:
• Computation of the Bary
enter of the RoI - the 
enter of Rs of 
oordinates

(x̃c
s, ỹ

c
s) is determined by 
omputing the 
enter of mass of the re
onstru
ted shapesas follows [14℄ [Fig. 1(b)℄

x̃c
s =

∫
DI

xτ̃ opt
s (r)B (r) dx dy

∫
DI

τ̃ opt
s (r)B (r) dx dy

(17)
ỹc

s =

∫
DI

yτ̃ opt
s (r)B (r) dx dy

∫
DI

τ̃ opt
s (r)B (r) dx dy

; (18)
• Estimation of the Size of the RoI - the side Ls of Rs is 
omputed by evaluatingthe maximum of the distan
e δc (r) =

√
(x − x̃c

s)
2 + (y − ỹc

s)
2 in order to en
losethe s
atterer, namely

L̃s = maxr

{
2 ×

τ̃ opt
s (r)

τC

δc (r)

}
. (19)On
e the RoI has been identi�ed, the level of resolution is enhan
ed [ks → ks−1℄ onlyin this region by dis
retizing Rs into NIMSA sub-domains [Fig. 1(
)℄ and by repeatingthe minimization pro
ess until the syntheti
 zoom be
omes stationary (s = sopt), i.e.,

{
|Qs−1 − Qs|

|Qs−1|
× 100

}
< γQ, Q = x̃c, ỹc, L̃ (20)

γQ being a threshold set as in [14℄, or until a maximum number of steps (sopt = Smax)is rea
hed.At the end of the multi-step pro
ess (s = sopt), the problem solution is obtained as
τ̃ opt

(
rni

)
= τ̃ opt

s

(
rni

), ni = 1, ..., NIMSA, i = 1, ..., sopt.



8 M. Benedetti et al.3. Numeri
al ValidationIn order to assess the e�e
tiveness of the IMSA-LS approa
h, a sele
ted set ofrepresentative results 
on
erned with both syntheti
 and experimental data is presentedherein. The performan
es a
hieved are evaluated by means of the following error �gures:
• Lo
alization Error δ

δ|p =

√(
x̃c

s|p − xc|p
)2

−
(
ỹc

s|p − yc|p
)2

λ
× 100 (21)where rc|p =

(
xc|p , yc|p

) is the 
enter of the p-th true s
atterer, p = 1, ..., P , Pbeing the number of obje
ts. The average lo
alization error < δ > is de�ned as
< δ >=

1

P

P∑

p=1

δ|p . (22)
• Area Estimation Error ∆

∆ =




I∑

i=1

1

NIMSA

NIMSA∑

ni=1

Nni


 × 100 (23)where Nni

is equal to 1 if τ̃ opt
(
rni

)
= τ

(
rni

) and 0 otherwise.As far as the numeri
al experiments are 
on
erned, the re
onstru
tions have beenperformed by blurring the s
attering data with an additive Gaussian noise 
hara
terizedby a signal-to-noise-ratio (SNR)
SNR = 10log∑V

v=1

∑M(v)
m=1 |ξv (rm)|2

∑V
v=1

∑M(v)
m=1 |µv,m|2

(24)
µv,m being a 
omplex Gaussian random variable with zero mean value.3.1. Syntheti
 Data - Cir
ular Cylinder3.1.1. Preliminary Validation In the �rst experiment, a lossless 
ir
ular o�-
entereds
atterer of known permittivity ǫC = 1.8 and radius ρ = λ/4 is lo
ated in a squareinvestigation domain of side LD = λ [23℄. V = 10 TM plane waves are impinging fromthe dire
tions θv = 2π (v − 1)/V , v = 1, ..., V , and the s
attering measurements are
olle
ted at M = 10 re
eivers uniformly distributed on a 
ir
le of radius ρO = λ.As far as the initialization of the IMSA-LS algorithm is 
on
erned, the initial trialobje
t Υ1 is a disk with radius λ/4 and 
entered in DI . The initial value of the timestep is set to ∆t1 = 10−2 as in [23℄. The RoI is dis
retized in NIMSA = 15 × 15sub-domains at ea
h step of the iterative multi-resolution pro
ess. Con
erning the
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hnique based on Shape Optimization 9stopping 
riteria, the following 
on�guration of parameters has been sele
ted a

ordingto a preliminary 
alibration dealing with simple known s
atterers and noiseless data:
Smax = 4 (maximum number of steps), γx̃c

= γ ỹc

= 0.01 and γL̃ = 0.05 (multi-step pro
ess thresholds), Kmax = 500 (maximum number of optimization iterations),
γΘ = 0.2 and γτ = 0.02 (optimization thresholds), KΘ = Kτ = 0.15 Kmax (stability
ounters), and γth = 10−5 (threshold on the 
ost fun
tion).Figure 3 shows samples of re
onstru
tions with the IMSA-LS . At the �rst step[Fig. 3(a) - s = 1℄, the s
atterer is 
orre
tly lo
ated, but its shape is only roughlyestimated. Thanks to the multi-resolution representation, the qualitative imaging of thes
atterer is improved in the next step [Fig. 3(b) - s = sopt = 2℄ as 
on�rmed by the errorindexes in Tab. 1. For 
omparison purposes, the pro�le retrieved by the single-resolutionmethod [23℄ (indi
ated in the following as Bare-LS ), when DI has been dis
retized in
NBare = 31 × 31 equal sub-domains, is shown [Fig. 3(
)℄. In general, the dis
retizationof the Bare-LS has been 
hosen in order to a
hieve in the whole investigation domaina re
onstru
tion with the same level of spatial resolution obtained by the IMSA-LS inthe RoI at s = sopt.Although the �nal re
onstru
tions [Figs. 3(b)(
)℄ a
hieved by the two approa
hesare similar and quite 
lose to the true s
atterer sampled at the spatial resolution of Bare-LS [Fig. 3(d)℄ and IMSA-LS [Fig. 3(b)℄, the IMSA-LS more faithfully retrieves thesymmetry of the a
tual obje
t, even though the re
onstru
tion error appears to be largerthan the one of the Bare-LS (Fig. 4). During the iterative pro
edure, the 
ost fun
tion
Θopt = Θ {φopt

s } is initially 
hara
terized by a monotoni
ally de
reasing behavior. Then,
Θopt⌋IMSA

be
omes stationary until the stopping 
riterion de�ned by relationships (11)and (12) is satis�ed (Fig. 4 - s = 1). Then, after the update of the �eld distributionindu
ing the error spike when s = sopt = 2 and ks = 1, Θopt⌋IMSA
settles to a value of

6.28×10−4 whi
h is of the order of the Bare-LS error (Θopt⌋Bare
= 1.42×10−4). Su
h aslight di�eren
e between Θopt⌋IMSA

and Θopt⌋Bare
depends on the di�erent dis
retization[i.e., the basis fun
tions B

(
rn(i=2)

), n(i) = 1, ..., NIMSA are not the same as those ofBare-LS ℄, but it does not a�e
t the re
onstru
tion in terms of both lo
alization andarea estimation, sin
e δ⌋IMSA−LS < δ⌋Bare−LS and ∆⌋IMSA−LS < ∆⌋Bare−LS (Tab. 1).Fig. 4 also shows that the multi-step multi-resolution strategy is 
hara
terized bya lower 
omputational burden be
ause of the smaller number of iterations for rea
hingthe 
onvergen
e (Fig. 4 - ktot⌋IMSA = 125 vs. ktot⌋Bare = 177, being ktot the totalnumber of iterations de�ned as ktot =
∑sopt

s=1 kopt
s for the IMSA-LS ), and espe
ially to the
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ed number of �oating-point operations. As a matter of fa
t, sin
e the 
omplexityof the LS -based algorithms is of the order of O (2 × η3), η = NIMSA, NBare (i.e., thesolution of two dire
t problems is ne
essary for 
omputing an estimate of the s
attered�eld and for updating the velo
ity ve
tor), the 
omputational 
ost of the IMSA-LS atea
h iteration is two orders in magnitude smaller than that of the Bare-LS .3.1.2. Noisy Data As for the stability of the proposed approa
h, Figure 5 showsthe re
onstru
tions with the IMSA-LS [Figs. 5(a)(
)(e)℄ 
ompared to those of theBare-LS [Figs. 5(b)(d)(f )℄ with di�erent levels of additive noise on the s
attereddata [SNR = 20 dB (top); SNR = 10 dB (middle); SNR = 5 dB (bottom)℄. Asexpe
ted, when the SNR de
reases, the performan
es worsen. However, as outlinedby the behavior of the error �gures in Tab. 2, blurred data and/or noisy 
onditionsa�e
t more evidently the Bare implementation than the multi-resolution approa
h. For
ompleteness, the behavior of Θopt⌋IMSA
versus the iteration index is reported in Fig.6 for di�erent levels of SNR. As it 
an be noti
ed, the value of the error at the end ofthe iterative pro
edure de
reases as the SNR in
reases.In the se
ond experiment, the same 
ir
ular s
atterer, but 
entered at a di�erentposition within a larger investigation square of side LD = 2λ (ρO = 2λ), has beenre
onstru
ted. A

ording to [9℄, M = 20; v = 1, ..., V re
eivers and V = 20 views are
onsidered and DI is dis
retized in NIMSA = 13 × 13 pixels.Figure 7(a) shows the re
onstru
tion obtained at the 
onvergen
e (sopt = 3) byIMSA-LS when SNR = 5 dB. The result rea
hed by the Bare-LS (NBARE = 47 × 47)is reported in Fig. 7(b) as well. As it 
an be noti
ed, the multi-resolution inversion is
hara
terized by a better estimation of the obje
t 
enter and shape as 
on�rmed by thevalues of δ and ∆ (δ⌋IMSA−LS = 0.59 vs. δ⌋Bare−LS = 2.72 and ∆⌋IMSA−LS = 0.48 vs.

∆⌋Bare−LS = 0.64). As for the 
omputational load, the same 
on
lusions from previousexperiments hold true.3.2. Syntheti
 Data - Re
tangular S
attererThe se
ond test 
ase deals with a more 
omplex s
attering 
on�guration. A re
tangularo�-
entered s
atterer (L = 0.27λ and W = 0.13λ) 
hara
terized by a diele
tri
permittivity ǫC = 1.8 is lo
ated within an investigation domain of LD = 3λ as indi
atedby the red dashed line in Fig. 8. In su
h a 
ase, the imaging setup is made up of V = 30sour
es and M = 30 measurement points for ea
h view v [9℄. DI is partitioned into
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NIMSA = 19 × 19 sub-domains (while NBare = 33 × 33) and ∆t1 is set to 0.06.3.2.1. Validation of the Stopping Criteria Before dis
ussing the re
onstru
tion
apabilities, let us show a result 
on
erned with the behavior of the proposed approa
hwhen varying the user-de�ned thresholds (γΘ, γτ , γx̃c , γỹc , γ

L̃
) of the stopping 
riteria.Figure 8 displays the re
onstru
tions a
hieved by using the sets of parameters given inTab. 3 [Γ1 - Fig. 8(a); Γ2 - Fig. 8(b); Γ3 - Fig. 8(
); Γ4 - Fig. 8(d)℄ while the behaviorsof the 
ost fun
tion are depi
ted in Fig. 9. As it 
an be noti
ed, the total number ofiterations ktot in
reases as the values of the thresholds γΘ and γτ de
rease. However,in spite of a larger ktot, using lower threshold values does not provide better results, asshown by the 
omparison between settings Γ2 and Γ4 [Figs. 8(b)-(d), and Fig. 9℄. Thesets of parameters 
hara
terized by γΘ = 0.2 and γτ = 0.02 provide a good trade-o�between the arising 
omputational burden and the quality of the re
onstru
tions. Asfar as the stopping 
riterion of the multi-resolution pro
edure is 
on
erned, Figure 9also shows two di�erent behaviors of the 
ost fun
tion when using Γ2 and Γ3 (letting

γΘ = 0.2 and γτ = 0.02). In parti
ular, the proposed approa
h stops at sopt = 3,instead of sopt = 4, when in
reasing by a degree of magnitude the values of γx̃c , γỹc , and
γ

L̃
. Although with a heavier 
omputational burden, the 
hoi
e γx̃c = γỹc = 0.01 and

γ
L̃

= 0.05 results more e�e
tive [see Fig. 8(b) vs. Fig. 8(
)℄.3.2.2. Noisy Data Figures 10-12 and Table 4 show the results from the 
omparativestudy 
arried out in 
orresponden
e with di�erent values of signal-to-noise ratio [SNR =

20 dB - Fig. 10(a) vs. Fig. 10(b); SNR = 10 dB - Fig. 10(
) vs. Fig. 10(d); SNR =

5 dB - Fig. 10(e) vs. Fig. 10(f )℄. They further 
on�rm the reliability and e�
ien
yof the multi-resolution strategy in terms of qualitative re
onstru
tion errors (Fig. 11),espe
ially when the noise level grows. In parti
ular, the Bare implementation does notyield either the position or the shape of the re
tangular s
atterer when SNR = 5 dB,whereas the IMSA-LS properly retrieves both the bary
enter and the 
ontour of thetarget. As for the 
omputational 
ost, it should be noti
ed that although the IMSA-LSrequires a greater number of iterations for rea
hing the 
onvergen
e (Fig. 12, Tab. 4),the total amount of 
omplex �oating-point operations, fpos = O (2 × η3) × ktot, usuallyresults smaller (Tab. 4).
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al Data - Hollow CylinderThe third test 
ase is 
on
erned with the inversion of the data s
attered by a higherpermittivity (ǫC = 2.5) o�-
entered 
ylindri
al ring, letting LD = 3λ. The externalradius of the ring is ρext = 2
3
λ, and the internal one is ρint = λ

3
. By assuming thesame arrangement of emitters and re
eivers as in Se
tion 3.2, the investigation domainis dis
retized with NIMSA = 19× 19 and NBare = 35× 35 square 
ells for the IMSA-LSand the Bare-LS , respe
tively. Moreover, ∆t1 is initialized to 0.003.As it 
an be observed from Fig. 13, where the pro�les when SNR = 20 dB [Figs.13(a)(b)℄ and SNR = 10 dB [Figs. 13(
)(d)℄ re
onstru
ted by means of the IMSA-LS[Figs. 13(a)(
)℄ and the Bare-LS [Figs. 13(b)(d)℄ are shown, the integrated strategyusually over
omes the standard one both in lo
ating the obje
t and in estimating theshape. In parti
ular, when SNR = 20 dB, the distribution in Fig. 13(a) is a faithfulestimate of the s
atterer under test (δ⌋IMSA−LS = 1.25 and ∆⌋IMSA−LS = 3.13). Onthe 
ontrary, the re
onstru
tion with the Bare-LS is very poor (δ⌋Bare−LS = 65.2 and

∆⌋Bare−LS = 34.39). Certainly, a smaller SNR value impairs the inversion as shownin Fig. 13(
) [
ompared to Fig. 13(a)℄. However, in this 
ase, the IMSA-LS is able toproperly lo
ate the obje
t (δ⌋IMSA−LS = 1.7 vs. δ⌋Bare−LS = 65.9) giving rough butuseful indi
ations about its shape (∆⌋IMSA−LS = 7.6 vs. ∆⌋Bare−LS = 34.55).3.4. Syntheti
 Data - Multiple S
atterersThe last syntheti
 test 
ase is aimed at illustrating the behavior of the IMSA-LS whendealing with P = 3 s
atterers (ǫC = 2.0) distan
ed from one another. The test geometryis 
hara
terized by an ellipti
 o�-
entered 
ylinder, a 
ir
ular o�-
entered s
atterer, anda square o�-
entered obje
t lo
ated in a square investigation domain 
hara
terized by
LD = 3λ. By adopting the same arrangement of emitters and re
eivers as in Se
tion3.3, the investigation domain is dis
retized with NIMSA = 23× 23 and NBare = 31× 31square 
ells for the IMSA-LS and the Bare-LS , respe
tively. Moreover, ∆t1 is set to
0.03.Figures 14 and 15 show the results from the 
omparative study 
arried outin 
orresponden
e with di�erent values of signal-to-noise ratio. As shown by there
onstru
tions (Fig. 14) and as expe
ted, the multi-resolution approa
h provides morea

urate results and appears to be more reliable than the Bare-LS espe
ially with low
SNR. This 
on
lusion is further 
on�rmed by the behavior of the re
onstru
tion errors
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h the IMSA-LS a
hieves a lower lo
alization error as well as a lowerarea error than those of Bare-LS, espe
ially for SNR = 5 dB. On the other hand,both algorithms provide good estimates of the s
atterer under test when inverting dataa�e
ted by low noise [SNR = 20 dB - Fig. 14(a) vs. Fig. 14(b); Fig. 15(a) and (b)℄.3.5. Laboratory-Controlled DataIn order to further assess the e�e
tiveness of the IMSA-LS also in dealingwith experimental data, the multiple-frequen
y angular-diversity bi-stati
 ben
hmarkprovided by Institut Fresnel in Marseille (Fran
e) has been 
onsidered. With referen
eto the experimental setup des
ribed in [34℄, the dataset �dielTM_de
8f.exp� has beenpro
essed. The �eld samples [M = 49, V = 36℄ are related to an o�-
enteredhomogeneous 
ir
ular 
ylinder ρ = 15mm in diameter, 
hara
terized by a nominalvalue of the obje
t fun
tion equal to τ(r) = 2.0 ± 0.3, and lo
ated at xc = 0.0,
yc = −30mm within an investigation domain assumed in the following of squaregeometry and extension 20 × 20 
m2.By setting ǫC = 3.0, the re
onstru
tions a
hieved are shown in Fig. 16 (left 
olumn)
ompared to those from the standard LS (right 
olumn) at F = 4 di�erent operationfrequen
ies. Whatever the frequen
y, the unknown s
atterer is a

urately lo
alized andboth algorithms yield, at 
onvergen
e, stru
tures that o

upy a large subset of the trueobje
t. Su
h a similarity of performan
es, usually veri�ed in syntheti
 experiments whenthe value of SNR is greater than 20 dB, seems to 
on�rm the hypothesis of a low-noiseenvironment as already eviden
ed in [35℄.Finally, also in dealing with experimental datasets, the IMSA-LS proves itse�
ien
y sin
e the overall amount of 
omplex �oating point operations still remainstwo orders in magnitude lower than the one of the Bare-LS (Tab. 5 - Fig. 17).4. Con
lusionsIn this paper, a multi-resolution approa
h for qualitative imaging purposes based onshape optimization has been presented. The proposed approa
h integrates the multi-s
ale strategy and the level set representation of the problem unknowns in order topro�tably exploit the amount of information 
olle
table from the s
attering experimentsas well as the available a-priori information on the s
atterer under test.The main key features of su
h a te
hnique 
an be summarized as follows:
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• innovative multi-level representation of the problem unknowns in the shape-deformation-based re
onstru
tion te
hnique;
• e�e
tive exploitation of the s
attering data through the iterative multi-stepstrategy;
• limitation of the risk of being trapped in false solutions thanks to the redu
ed ratiobetween data and unknowns;
• useful exploitation of the a-priori information (i.e., obje
t homogeneity) about thes
enario under test;
• enhan
ed spatial resolution limited to the region of interest.From the validation 
on
erned with di�erent s
enarios and both syntheti
 andexperimental data, the following 
on
lusions 
an be drawn:
• the IMSA-LS usually proved more e�e
tive than the single-resolution implementa-tion, espe
ially when dealing with 
orrupted data s
attered from simple as well as
omplex geometries 
hara
terized by one or several obje
ts;
• the integrated strategy appeared less 
omputationally-expensive than the standardapproa
h in rea
hing a re
onstru
tion with the same level of spatial resolutionwithin the support of the obje
t.
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IMSA − LS Bare − LS

s = 1 s = 2

δ 6.58× 10−6 2.19 × 10−6 5.21 × 10−1

∆ 2.36 0.48 0.64

Table 1. Numeri
al Data. Cir
ular 
ylinder (ǫC = 1.8, Noiseless Case). Error �gures.
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SNR = 20 dB SNR = 10 dB SNR = 5 dB

IMSA − LS Bare − LS IMSA − LS Bare − LS IMSA − LS Bare − LS

δ 5.91 × 10−1 2.72 2.28 2.45 6.78 × 10−1 1.63

∆ 0.98 1.28 1.07 1.80 1.50 2.07

Table2.Numeri
alData.Cir
ular
ylinder(ǫ
C

=
1.8,NoisyCase).Valuesofthe

errorindexesfordi�erentvaluesof
S
N

R.
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Set of Parameters γΘ γτ γx̃c, γỹc γ

L̃

Γ1 0.5 0.05 0.01 0.05

Γ2 0.2 0.02 0.01 0.05

Γ3 0.2 0.02 0.1 0.5

Γ4 0.02 0.002 0.01 0.05

Table 3. Numeri
al Data. Re
tangular 
ylinder (ǫC = 1.8, LD = 3λ, Noiseless Case).Di�erent settings for the parameters of the stopping 
riteria.
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SNR = 20 dB SNR = 10 dB SNR = 5 dB

IMSA − LS Bare − LS IMSA − LS Bare − LS IMSA − LS Bare − LS

ktot 1089 41 393 53 410 28

N 361 1089 361 1089 361 1089

fpos 1.02 × 1011 1.02 × 1011 3.70 × 1010 1.37 × 1011 3.86 × 1010 7.23 × 1010

Table4.Numeri
alData.Re
tangular
ylinder(ǫ
C

=
1.8,

L
D

=
3λ,NoisyCase).

Computationalindexesfordi�erentvaluesof
S
N

R.
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f = 1 GHz f = 2 GHz

IMSA − LS Bare − LS IMSA − LS Bare − LS

ktot 506 69 532 200

fpos 4.88 × 109 1.22 × 1011 5.14 × 109 3.55 × 1011

f = 3 GHz f = 4 GHz

IMSA − LS Bare − LS IMSA − LS Bare − LS

ktot 678 198 621 200

fpos 6.55 × 109 3.51 × 1011 5.99 × 109 3.55 × 1011

Table 5. Experimental Data (Dataset �Marseille� [34℄). Cir
ular 
ylinder(�dielTM_de
8f.exp�). Computational indexes.


