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ADS-based Array Design for 2D and 3D Ultrasound Imaging

G. Oliveri and A. Massa

Abstract

This paper describes a class of non-overlapping layouts based on Almost Difference Sets for

ultrasound applications. Thanks to the mathematical properties of ADSs, such arrays pro-

vide good radiation properties with far-field peak sidelobelevels belonging to ana-priori

predictable set of analytically-derived bounds. An extensive numerical analysis, including

near-field simulations, is provided to assess the reliability and the features of the proposed

design methodology for both linear and planar arrays.

Key words: Array Antennas, Interleaved Arrays, Almost Difference Sets, Sidelobe Control,

Pulse-Echo Pattern, Two-Way Radiation Pattern.

2



1 Introduction

Real-time ultrasound imaging techniques have several applications in underwater and sonar

systems, biomedical diagnostics, and non-invasive surgery [1][2][3][4][5][6][7]. In order to

provide adequate resolution and contrast, real time two- and three-dimensional systems require

1D/2D transducer arrays with hundred or thousand elements [2]. Non-overlapping or inter-

leaved layouts, where each element is used either in transmission or in reception, provide several

advantages in terms of costs, weight, processing power, fabrication, and interconnection com-

plexity [1][2]. However, interleaving transmitting and receiving arrays reduces the control of

the peak sidelobe level (PSL) compared to the corresponding filled layouts. To overcome such

a drawback, random approaches [8], semi-random approaches[1], and sparse periodic layouts

(e.g., Vernier arrays) [3][9] have been proposed. Improvedperformances have been obtained

by means of optimization methods, such as genetic algorithms [10], linear programming [11],

and simulated annealing [5][12]. Despite their effectiveness in dealing with complex cost func-

tions, optimization techniques usually require high computational costs and they are sometimes

affected by convergence problems especially when dealing with large apertures. Moreover, it

is often difficult toa-priori provide reliable predictions of the achievable radiation properties

because of their intrinsic randomness.

In this paper, a new analytical methodology is proposed to design non-overlapping transducer

layouts with good and predictable radiation properties. The objective of the paper is not to deter-

mine an optimal interleaving scheme for a specific problem, but rather (a) to provide simple and

reliable design guidelines to be used when a computationally efficient and sub-optimal solution

is preferred to a random or a stochastically-optimized array or/and (b) to give a better initializa-

tion for a successive global optimization aimed at determining the “optimal” solution. Towards

this end, the array synthesis is faced with an innovative approach based on the so-called Almost

Difference Sets (ADSs). ADSs are binary sequences characterized by a three-level autocor-

relation [13]. They are a generalization of Difference Sets[14][15][16]. ADS properties have

already been exploited to thin linear [17] and planar [18] arrays with controllable sidelobes.

The design of non-overlapping transducer layouts based onADS sequences is motivated by

the following key-observations: (a) the complementary of anADS is still anADS [14]; (b) an
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ADS-based array has a low and predictablePSL [17][18]; (c) ADS arrangements can be an-

alytically designed without any optimization and whateverthe aperture size [17]. Furthermore,

non-overlappingADS layouts can be synthesized by simply assigning the elementseither to

the transmitting or to the receiving array according to the sequence of0s or1s of anADS. On

the other hand, it should be also pointed out that the use ofADSs for such a purpose is not

granted by a straightforward exploitation of the results obtained in [17][18]. Unlike thinned ar-

rays, the performances of an imaging system are related to itspulse-echo(or two-way) radiation

pattern [1][2]. Therefore, the bounds determined in [17][18] for one-waypatterns ofADS ar-

rangements do not apply. New theoretical and numerical analyses are then mandatory to deduce

and validate suitablea-priori estimates for the performances ofADS-based arrangements for

ultrasound imaging systems.

The outline of the paper is as follows. After a short review onarray thinning throughADSs

(Sect. 2), a theoretical analysis concerned withADS-based non-overlapping layouts is pro-

vided. The key features of the arising two-way radiation patterns are then highlighted (Sect. 3).

Section 4 describes some validation tests and numerical simulations of representative 1D and

2DADS designs. Finally, some conclusions are drawn (Sect. 5).

2 ADS-Based Thinning

The one-wayarray factor of a planar arrangement defined over a lattice ofP × Q positions

(N = P ×Q being the total number of elements) is equal to [19]

ST (u, v) =
P−1
∑

p=0

Q−1
∑

q=0

aT (p, q)exp [2πi (psxu+ qsyv)] (1)

whereaT (p, q) is the array weight of the(p, q)-th element,sx andsy are the lattice spacings

along thex andy directions (in wavelengths),u = sin(θ)cos(φ), v = sin(θ)sin(φ) (u2 + v2 ≤

1)(1) . Dealing with equally-weighted thinned arrays,aT (p, q), p = 0, ..., P −1, q = 0, ..., Q−1

can either assume the value1 or 0 when an element is present or not at the(p, q)-th lattice

position. InADS-based thinning techniques [17][18], the lattice weights are selected as follows

(1) Linear arrays correspond to the caseQ = 1.
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aT (p, q) =











1 if (p, q) ∈ AT [p ∈ AT in the linear case]

0 otherwise
(2)

whereAT is a(N,KT ,ΛT , t)-ADS (i.e., aKT -subset ofG , Z
P ⊗Z

Q),(2)N is the array size,

KT the number of active elements, andΛT andt are parameters which define the autocorrelation

properties of the consideredADS (as discussed below). As a visual example, the(18, 9, 4, 13)-

ADS, i.e.

AT = {0, 1, 5, 6, 7, 8, 10, 12, 15}

(linear case [20]) is considered, and the associatedaT (p) is provided in Fig. 1(a). By exploiting

the properties of the autocorrelation function,ξT (τx, τy) ,
∑P−1

p=0

∑Q−1
q=0 aT (p, q) aT [ (p+ τx)|mod P ,

(q + τy)|mod Q

]

(P × Q being its period), ofADS-binary sequences [13][14][15], which is

known to be the following three-level function

ξT (τx, τy) =























KT (τx, τy) = 0

ΛT for t values of (τx, τy)

ΛT + 1 otherwise,

, (3)

it turns out that [17][18] the power pattern|ST (u, v)|2 of andADS-based array satisfies the

following constraint

∣

∣

∣

∣

ST

(

k

sxP
,
l

syQ

)
∣

∣

∣

∣

2

= ΞT (k, l) k = 0, ..., P − 1, l = 0, ...., Q− 1 (4)

i.e., the samples to the power pattern are equal to the inverse discrete Fourier transform (IDFT )

of the autocorrelation functionξT (τx, τy), ΞT (k, l) ,
∑P−1

τx=0

∑Q−1
τy=0 ξT (τx, τy) exp

[

2πi
(

τxk
P

+ τy l

Q

)]

,

which, from (3), turns out to be equal to

ΞT (k, l) = KT − ΛT +NΛT δ(k, l) + Ψ(k, l). (5)

In (5), δ(k, l) is the discrete impulse function [δ(k, l) = 1 if k = l = 0 and δ(k, l) = 0,

otherwise],Ψ(k, l) , IDFT {ψ (τx, τy)} beingψ (tx, ty) ,
∑N−1−t

r=1 δ
(

τx − τ r
x , τy − τ r

y

)

, and

(2)In this paper, aKT -subset ofG indicates a set ofKT unique elements belonging toG; moreoverG =
{(0, 0) , (0, 1) , ..., (P − 1, Q − 1)} if Q > 1, whileG = {0, 1, ..., P − 1} if Q = 1.
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(

τ r
x , τ

r
y

)

, r = 1, ..., N −1− t, are the indexes at whichξT
(

τ r
x , τ

r
y

)

= ΛT +1 [18] (an analogous

relationship holds true in the linear case [17]). In order toclarify such properties, Figs. 1(b)

and 1(c) provide an example ofξT (τ) andST (u) for the arrangement represented in Fig. 1(a)

(without loss of generality the linear case is taken into account). According to Eq. (3), the

ADS sequence exhibits a three-level autocorrelation function[Fig. 1(b)], while the samples of

the associated power pattern are confirmed to be equal toΞT (k) [Fig. 1(c)].

Thanks to (4), the followinga-priori bounds have been derived for theone-wayPSLs ofADS-

based thinned arrays:

PSLINF
T ≤ PSLMIN

T ≤ PSLOPT
T ≤ PSLMAX

T ≤ PSLSUP
T . (6)

wherePSLOPT
T ,minσx,σy

{

PSL
[

A
(σx,σy)
T

]}

, σx = 0, ..., P−1,σy = 0, ...., Q−1,PSL
[

A
(σx,σy)
T

]

,

max(u,v)/∈MT |S(σx,σy)(u,v)|2
|S(σx,σy)(u0,v0)|2 , (u0, v0) is the mainlobe steering direction,MT is the mainlobe re-

gion defined as in [16],
∣

∣S(σx,σy)(u, v)
∣

∣

2
is the power pattern of the layout generated from the

cyclically-shifted versionA(σx,σy)
T , A(σx,σy)

T ,
{(

(p+ σx)mod P , (q + σy)mod Q

)

; (p, q) ∈ AT ;

σx, σy ∈ Z}, of the referenceADS. The analytic expressions of the bounds in (6) are reported

in the Appendix for both the linear case and the planar one. Equation (6) states that the peak

sidelobe level ofADS-based arrays is constrained by thea-priori known quantitiesPSLINF
T ,

PSLMIN
T , PSLMAX

T , andPSLSUP
T .

Properties, construction techniques, and theorems concerned withADSs can be found in [13][14][15],

while explicit numerical expressions of linear and planarADS sequences are available in [20].

3 ADS-based Non Overlapping Layouts - Mathematical For-

mulation

Let us consider the following theorem:

Theorem 1[14] - If AT is anADS then its complementary setAR , G\AT ,

(i.e.,AR = {(p, q) ∈ G : (p, q) /∈ AT}) is an(N,KR,ΛR, t)-ADS, whereKR =

N −KT andΛR = N − 2KT + ΛT .
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Accordingly, starting from anADS transmitting array with weightsaT (p, q), p = 0, .., P − 1,

q = 0, .., Q−1, the coefficients of the receiving arrayaR(p, q) are simply obtained asaR(p, q) =

1−aT (p, q). TheADS layout is then composed by a rectangular aperture ofP×Q transducers:

KT transducers for the transmission and the remainingKR = N − KT for the reception. To

provide an illustrative example, the arrangements coming from the(88, 44, 21, 22)-ADS (linear

case [20]) and the(49, 25, 12, 24)-ADS (planar case [20]) are provided in Fig. 2. It is worth

noticing that whenQ = 1 (linear case),N = P andaT (p, q) = aT (p), aR(p, q) = aR(p) [Fig.

2(a)].

Since each of the two non-overlapping arrays is anADS arrangement, the following properties

hold true: (a) both arrays are expected to exhibit lowone-wayPSLs; (b) each design can be

cyclically shifted to obtain up toP × Q different layouts; (c) the computational costs to carry

out a new array design is negligible (just a simple shift) forany aperture size. Moreover, it can

be shown that the autocorrelation functions of the two arrays are equal except for an offset of

N(1 − 2ν) (ν , KT

N
)

ξR (τx, τy) = ξT (τx, τy) +N (1 − 2ν) . (7)

Therefore, the correspondingIDFTs differ only in the origin of thek − l plane

ΞR(k, l) = ΞT (k, l) +N2(1 − 2ν)δ(k, l), (8)

whereΞR(k, l) ,
∑P−1

τx=0

∑Q−1
τy=0 ξR (τx, τy) exp

[

2πi
(

τxk
P

+ τyl

Q

)]

andξR (τx, τy) are the unbal-

ancing factor and the autocorrelation function ofAR, respectively.

As regards the performances ofADS layouts for ultrasound imaging, it is worth to notice that

the quality of ultrasound images is related to the two-way continuous wave (CW ) radiation pat-

tern defined in the far field as the product of the transmit and receive power pattern [1][3][9][2]

|SCW (u, v)|2 , |ST (u, v)|2 × |SR(u, v)|2 . (9)

By using (4), (8), (9), (5) and through simple mathematical manipulations it results that the

samples of the two-wayCW pattern ofADS-based arrays are constrained to the values of
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Θ(k, l)
∣

∣

∣

∣

SCW

(

k

sxP
,
l

syQ

)
∣

∣

∣

∣

2

= Θ (k, l) (10)

where

Θ (k, l) ,











K2
T (N −KT )2 k = l = 0

[KT − ΛT + Ψ (k, l)]2 otherwise
(11)

beingΨ(0, 0) = N−1−t [18] andKT (KT − 1)−tΛT = (ΛT + 1) (N − 1 − t) [14]. Equation

(10) points out that the samples of the two-wayCW patterns ofADS-based arrays area-priori

known. Furthermore, by exploiting the sampling theorem [21], it can be shown that the two-way

CW pattern ofADS-based arrays is equal to

|SCW (u, v)|2 =

∣

∣

∣

∣

∑P−1
k=0

∑Q−1
l=0 αT (k, l) sin(πsxuP−kπ)

P sin(πsxu− kπ
P )

sin(πsyvQ−lπ)

Q sin(πsyv− lπ
Q )

∣

∣

∣

∣

2

×

×
∣

∣

∣

∣

∑P−1
k=0

∑Q−1
l=0 αR (k, l) sin(πsxuP−kπ)

P sin(πsxu− kπ
P )

sin(πsyvQ−lπ)

Q sin(πsyv− lπ
Q )

∣

∣

∣

∣

2 (12)

whereαE (k, l),E = T, R, is theIDFT of aE(p, q) related toΞE(k, l) by means of the circular

correlation property [21]

αE (k, l) =
√

ΞE (k, l)eiϕE(k,l) E = T, R. (13)

As far as the peak sidelobe level of the two-wayCW radiation pattern [1] is concerned, it is

defined as the ratio between the maximum of the two-wayCW pattern in the sidelobe region

and the value of the two-wayCW pattern in the steering directionu0, v0

PSLCW

[

A
(σx,σy)
T/R

]

,
max(u,v)/∈MCW

∣

∣

∣
S

(σx,σy)
CW (u, v)

∣

∣

∣

2

∣

∣

∣
S

(σx,σy)
CW (u0, v0)

∣

∣

∣

2 , (14)

whereMCW is the two-wayCW mainlobe region equal to the smallest region betweenMT

andMR. Moreover,
∣

∣

∣
S

(σx,σy)
CW (u, v)

∣

∣

∣

2

is the two-wayCW pattern generated byA(σx,σy)
T and

A
(σx,σy)
R . More specifically, by substituting (12) in (14) and using (13) and (11), one can obtain

the following relation about the two-way radiation patternof ADS-based designs

PSLCW

[

A
(σx,σy)

T/R

]

=
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max(u,v)/∈MCW







∣

∣

∣

∣

∣

∑P−1
k=0

∑Q−1
l=0

√
ΞT (k,l)e

iϕ
(σx,σy)
T

(k,l)
sin(πsxuP−kπ)sin(πsyvQ−lπ)

P sin(πsxu− kπ
P )Q sin(πsyv− lπ

Q )

∣

∣

∣

∣

∣

2

×

×

∣

∣

∣

∣

∣

∣

P−1
∑

k=0

Q−1
∑

l=0

√

ΞR (k, l)eiϕ
(σx,σy)
R (k,l)sin (πsxuP − kπ) sin (πsyvQ− lπ)

P sin
(

πsxu− kπ
P

)

Qsin
(

πsyv − lπ
Q

)

∣

∣

∣

∣

∣

∣

2





1
[

K2
T (N −KT )2] .

(15)

As it can be noticed,PSLCW is: (a) a function ofΞE (k, l), E = T, R given by (5) and (8)

starting from the only knowledge of theADS parameters [i.e.,(N,KT ,ΛT , t)]; (b) independent

on the shift value(σx, σy); (c) a function of the phase termsϕ(σx,σy)
E (k, l) computed through

(13) once the explicit form of theADS at hand is available [20]. Thanks to these properties,

the following set of inequalities on thePSL of the two-wayCW pattern ofADS-based arrays

can be derived (see the Appendix)

PSLINF
CW ≤ PSLMIN

CW ≤ PSLopt
CW ≤ PSLMAX

CW ≤ PSLSUP
CW (16)

wherePSLopt
CW , minσx,σy

{

PSLCW

[

A
(σx,σy)

T/R

]}

and the upper and lower bounds are re-

ported in Tab. I for the linear and planar cases, beingΞmax
E , max(k,l)/∈H0

{ΞE (k, l)}, Ξmin
E ,

min(k,l)/∈H0 {ΞE (k, l)}, E = T, R. As it can be noticed, the wider upperPSLSUP
CW and lower

boundsPSLINF
CW area-priori known only from theADS features (N , KT , ΛT , t), while the

evaluation of the tighter boundsPSLMIN
CW andPSLMAX

CW requires the knowledge of the explicit

form of theADS at hand.

4 Numerical Analysis

In this section, the results of an extensive numerical studyare presented to point out the features,

the potentialities, and the limitations ofADS-based non-overlapping layouts as well as the re-

liability of the bounds in (16). Representative experiments concerned with different geometries

(linear and planar) and aperture sizes are provided to investigate the two wayCW response of

ADS arrays and the accuracy of (16). Preliminary results on the pulsed-response properties of

ADS-based layouts are discussed, as well.

The first test deals with arrays withν = 0.5. As regards the first experiment, the plot of
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PSLCW

(

A
(σ)
)

in Fig. 3(a) refers to the linear layout derived from the(88, 44, 21, 22)-ADS

(N = P = 88, Q = 1, KT = KR = 44, ΛT = ΛR = 21, t = 22 [20]) [Fig. 2(a)]

and its shifted versions (σ = 0, ..., P − 1). It points out that the peak sidelobe level in cor-

respondence withσopt , arg
{

minσ

[

PSLCW

(

A
(σ)
)]}

(i.e. PSLopt
CW ) satisfies (16) as also

confirmed by the two-wayCW radiation pattern ofA(σopt) [Fig. 2(b)]. As expected (10),

|SCW (u)|2 exhibits a regular behavior foru /∈ MCW since its samples are constrained to

Θ(k, l) [Fig. 3(b)]. Moreover, Figure 3(a) also shows that different shifted arrangements de-

rived from the same referenceADS providePSL values within the bounds in (16) and always

PSLINF
CW ≤ PSLCW

(

A
(σ)
)

≤ PSLSUP
CW . This means that various configurations with good

PSL performances can be obtained from a singleADS sequence.

The above considerations still hold true for larger linear arrays as highlighted by the second

experiment related to the(700, 350, 174, 175)-ADS layout (N = P = 700, Q = 1, KT =

KR = 350, ΛT = ΛR = 174, t = 175). Figure 4(a) shows the plot ofPSLCW

(

A
(σ)
)

, while

the two-wayCW pattern in correspondence with the optimal shiftσopt in reported in Fig. 4(b).

For completeness, Figure 5 summarizes the behavior ofPSLopt
CW versus the array apertureN

whenη , t
N−1

= 0.25. As it can be observed, the value ofPSLopt
CW turns out to be quite close

to the upper boundPSLMAX
CW whatever the linear aperture size.

Dealing with planar geometries, Figures 6-8 are concerned with different-sizedADS layouts to

further assess the general reliability of (10). More specifically, the following configurations have

been analyzed:(49, 25, 12, 24)-ADS [Fig. 2(b) - Fig. 6], (529, 265, 132, 264)-ADS (Fig. 7),

(1849, 1105, 552, 1104)-ADS (Fig. 8). The plots ofPSLCW

(

A
(σx,σy)

)

[Figs. 6(a)-7(a)-8(a)]

indicate, also for planar geometries, that multiple shifted arrays providePSL values very close

toPSLopt
PE further pointing out the efficiency of the method in generating satisfactory solutions.

Moreover, the behaviors of the optimal two-wayCW patterns [Figs. 6(b)-7(b)-8(b)] show that

theADS arrays spread the radiation energy quite uniformly within the sidelobe region because

of the pattern constraints at the sampling points (10). Finally, Figure 9 gives a summary of the

performances ofADS-based arrays whenν = η = 0.5 and for different dimensions of the

square lattice (P = Q =
√
N ). As expected, the main lobe widthmonotonicallydecreases with

N and the same holds true forPSLopt
CW .
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Previous results are concerned with thefar-field two-wayCW response ofADS arrays. It is

certainly a useful tool to evaluate the properties of an ultrasound array, since it represents a good

approximation of theCW response in the focus of the array, as well as a first approximation of

the pulsed response at a selected focal range or in the far field [1]. However the near-field pulse-

echo response (i.e., the echo from a point-like target when excited by an incident pulse [1]) has

also a great importance in several applications (e.g., biomedical imaging, underwater acoustic

[1][22]). In order to provide some insights on the near-fieldpulse-echo properties ofADS-

based arrangements, the steered pulse-echo responses of someADS-based planar layouts have

been simulated by using the programField II [23][24] and the results compared with state-of-

the-art designs [1][22]. For a fair comparison, planar arrays have been analyzed by assuming the

same parameter setup of [1]:c = 1540 m/s (speed of sound),f0 = 3 MHz (central frequency),

fs = 102 MHz (sampling frequency),sx = sy = 0.6λ (element pitch),F = 40 mm (focal

range), an impulse response equal to a three-period sine with hamming weighting, and one

period sine excitation.

For each simulation, the maximum projection functionWPE(u, v) of the pulse-echo responses

has been computed as well as the “worst-case cut” functionWC (sin (θ)) [1]

WC (sin (θ)) , maxφ∈[0,π] {WPE (sin (θ) cos (φ) , sin (θ) sin (φ))} . (17)

Moreover, the mainlobe beamwidth ofWC (sin (θ)) at −6, −20 and −50 dB (i.e., BW6,

BW20, BW50) [1] has been evaluated along with the integrated sidelobe ratio (ISLR) defined

as ISLR ,
R

RM
WPE(u,v) du dv

R

RS
WPE(u,v) du dv

[1][25][26] whereRM , {u, v ∈ [−1, 1] : u2 + v2 ≤ BW50}

andRS , {u, v ∈ [−1, 1] : BW50 ≤ u2 + v2 ≤ 1}. The behavior of the largest peak in the an-

gular rangesin (θ) ≥ 0.2, PSLNF [1], has been analyzed, as well. It is worth pointing out that

such descriptive parameters have been selected due to theirimportance in ultrasound imaging

as a tool to investigate the obtainable contrast, noise-like artifacts, shadows, false targets and

signal-to-noise ratio [1].

Filled/dense layouts [i.e., fully-overlapped:aT (p, q) = aR (p, q) = 1] have been considered

as references since they are known to provide the best performances in ultrasound imaging

applications even though with the highest hardware and processing costs [1].
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By considering the optimal layout from the reference(49, 25, 12, 24)-ADS [Fig. 2(b)] and

comparing the plot ofWC (sin (θ)) along with the “worst case cut” of the corresponding7× 7

dense array [Fig. 10(a)], it turns out that theADS solution provides performances similar to

those of the square filled array in the neighborhood of the mainlobe, while a degradation can

be observed when|sin (θ)| & 0.3 [Fig. 10(a)]. The same considerations arise from the plots of

WPE(u, v) [Figs. 10(b)-10(d)]. Moreover, theADS synthesis provides a near-field pulse-echo

pattern more regular in the sidelobe region. Since theCW -response provides a first approxima-

tion forWPE(u, v) [as pointed out by the plots in Fig. 6(b) and Fig. 10(b)], similar conclusions

hold true also from the comparisons among theCW -responses of the corresponding layouts.

For completeness, a uniform circular apodization has been applied to both theADS layout

and the filled arrangement since it generally improves the near-field ultrasound properties of

planar transducer layouts [1][22]. The obtained results are reported in Fig. 10(a) in terms

of WC (sin (θ)), while the associatedWPE(u, v) functions are shown in Fig. 10(c) and Fig.

10(e). The circular apodization slightly affects theADS radiation outside the mainlobe, while

it significantly enhances the performances of the filled arrangement within the same angular

region [Fig. 10(a)]. As for the near-field pulse-echo response, the modifications of theADS

pattern are limited [Fig. 10(b) vs. Fig. 10(c)], while its effect is more significant on the

dense layout. As a matter of fact, a more uniform spread of theenergy can be noticed within

the sidelobe region [Fig. 10(d) vs. Fig. 10(e)]. The values ofISLR, PSLNF , BW6, and

BW20 reported in Tab. II together with the number of overlapping elementsNC [NC ,
∑P−1

p=0

∑Q−1
q=0 (aT (p, q) × aR(p, q))], the number of transmittersNT [NT ,

∑P−1
p=0

∑Q−1
q=0 (aT (p, q))],

and the number of receiversNR [NR ,
∑P−1

p=0

∑Q−1
q=0 (aR(p, q))] further and quantitatively

confirm the above outcomes. However, even for the filled layout, a very poor resolution is

yielded (Tab. II) because of the small aperture.

In order to investigate more realistic configurations, the near-field behavior of the layouts com-

ing from the(529, 265, 132, 264)-ADS and the(1849, 1105, 552, 1104)-ADS is analyzed here-

inafter. The beamwidth of the radiated pattern is enhanced as pictorially show in Figs. 11(b)-

12(b) and quantified by the corresponding indexes in Tab. II. Unlike the small array, the circular

apodization tends now to improve the mainlobe width ofADS, as well [Figs. 11(a)-12(a) - Tab.

12



II]. On the other hand, even though the circular apodizationenables a better distribution of the

energy within the sidelobe region, the enhancement turns out to be less evident forADSs [Fig.

11(c) vs. Fig. 11(e) and Fig. 12(c) vs. Fig. 12(e)] notwithstanding the decrease ofPSLNF

[Tab. II]. Such an effect is due to the stronger impact of the reduction of the available elements

on the non-overlapped layouts of theADSs.

Because of the dimension of theADS-layout in Fig. 12 similar to that considered in [1] (i.e.,

N = 47×47 vs.N = 48×48), the next analysis presents a comparison in terms of beamwidth,

ISLR, andPSLNF values with some reference designs in [1] (Tab. III). The values in Tab. II

and Tab. III indicate that the beamwidths are quite similar for all considered designs, except

for the dense square array whose mainlobe is wider due to the secondary lobes atu = v =

0 [Fig. 12(d)]). On the contrary, the values ofISLR andPSLNF exhibit non-negligible

variations. More specifically, the lowestPSLNF (except for the dense array) yielded with

the ImpR4b architecture is of about4 dB below that of theADS layout, but its architecture

presents a consistent number of overlapped channels (NCImpR4b = 484). On the contrary,

non-overlapping or low overlapping designs (e.g., VERN, BIN, POL, and Rad4) givePSLNF

values significantly higher than that of the47 × 47 ADS array (Tab. II), even though with a

smaller number of active channelsNA = NT +NR. Moreover,ISLR values similar to that of

theADS displacement are exhibited by the VERN and Rad3 arrangements, while significantly

improvedISLRs are obtained only with strongly overlapped designs characterized by highNA

values (e.g., Diag2, DP, DiagDP, and Dense architectures - Tab. III, Fig. 13(b)).

By sake of clarity, some representative points in the (PSLNF , ISLR) plane of the different

layouts and various aperture sizes are reported in Fig. 13(a). More in detail, the BIN and POL

designs have been taken into account since referred to non-overlapping layouts, while the VERN

array has been analyzed for both the reduced number of overlapped elements (NC = 48 [1])

and its role as reference for ultrasound imaging [1][3]. TheN = 47 × 47 ADS array improves

the ISLR value of both theBIN andPOL designs, while it turns out to be better than the

V ERN architecture in terms ofPSLNF . However, theV ERN structure exhibits a smaller

number of total active channels [NAV ERN = 629 vs. NAADS = 1741 for the apodized case

- Fig. 13(b)]. One could also notice that the circularly apodized23 × 23 ADS arrangement,

13



which has a lowerNA (NAADS = 421), shows an improvedPSLNF and a similarISLR

with respect to the48 × 48 V ERN array (but a largerBW , due to the smaller aperture). As

a matter of fact, only theN = 48 × 48 circularly apodized layout [Fig. 13(a) - Tab. III]

presents better radiation parameters than theADS array defined over the same aperture, thanks

to the overlapped texture, but at the cost of a significantly higher number of active channels

[NADENSE = 3608 for the apodized case - Fig. 13(b)]. For completeness, Figure 13(a) also

provides the results of otherADS designs in correspondence with wider and smaller apertures

to point out that the circular apodization usually reduces thePSLNF of ADS arrangements,

while it does not substantially changes theirISLR. Moreover, theISLR value only slightly

changes for larger apertureADSs, while thePSLNF value significantly reduces asN increases.

These observations point out thatADS layouts provide a good tradeoff between the image

contrast (which depends on theISLR [1]) and the resolution (i.e.,BW ) when compared to

low-NC arrays when dealing with ultrasound imaging applications,while a significantly higher

contrast can be achieved only with a more complex hardware (i.e., higherNC andNA) [Fig.

13(b)].

Finally, the capability of the proposed non-overlapped layouts to maintain the beam properties at

different steering angles(θ0, φ0) is analyzed because its importance in ultrasound applications.

Towards this end, the beam features of the47× 47 ADS-based array are evaluated forφ0 = π
4
,

θ0 = −π
4
, ..., π

4
and compared with those of the reference47×47 dense array. The behaviour of

PSLNF , ISLR, andBW20 [Figs. 14(a)-14(c)], indicate that the figures of merit of theADSs

present, even for large steering angles, a dependency onθ0 similar to that of dense arrangements

despite the sparse nature of their layouts. More specifically, ADSs synthesizeBW20s almost

identical to those of their filled counterparts [Fig. 14(c)] and a very similarPSLNF especially

for large values ofθ0 [Fig. 14(a)]. Moreover, unlike dense architectures, the arisingISLR only

slightly depends onθ0 [Fig. 14(b)]. These features are confirmed by the plots of the steered

WPE(u, v) for the47 × 47 ADS-based array (Fig. 15 -φ0 = π
4
, circular apodization). Indeed,

the beam shape remains almost unaltered whatever the consideredθ0 [Fig. 15 - steered vs. Fig.

12(c) - unsteered], and no artifact appears in the steered pulsedresponse for small [θ0 = ± π
12

-

Figs. 15(a), 15(b)], medium [θ0 = ±π
6

- 15(c),15(d)], or large [θ0 = ±π
4

- 15(e),15(f )] steering
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angles.

5 Conclusions

In this paper, anADS-based methodology has been proposed to design non-overlapping trans-

ducer layouts for ultrasound imaging applications. The approach is not aimed at synthesizing

optimal layouts, but rather to provide reliable general-purpose guidelines to efficiently design

non-overlapping layouts with predictable and sub-optimalperformances. An extensive numer-

ical analysis has been carried out to assess the reliabilityof the PSL bounds as well as to

evaluate the features ofADS designs in theCW /pulsed response cases and for both linear and

planar geometries.

The obtained results have pointed out that

• theADS approach can be profitably exploited to synthesize linear and planar non-overlapping

arrangements;

• the optimalPSL of the far-fieldCW -response pattern of anADS-based layout isa-

priori bounded. Tighter bounds exist when the explicit form of theADS sequence is

available, otherwise larger bounds forPSLopt
CW can be always determined from the only

knowledge of theADS features (i.e.,N ,KT , ΛT , t);

• theADS-based methodology enables the design of arbitrary size arrays with negligible

computational costs only related to simple shifts of the referenceADS sequence;

• several non-overlapping designs can be obtained from the referenceADS to comply dif-

ferent requirements on the radiated pattern;

• the near-field pulsed-response properties ofADS layouts favorably compare with those

of reference state-of-the-art overlapping as well as non-overlapping designs in terms of

both beamwidth,ISLR, andPSLNF , even when large steering angles are at hand;

• theADS-based technique can be used to define a suitable starting point for a local or a

global search. In view of this, it can be easily and profitablyintegrated with state-of-the-

15



art optimization approaches for improving their rate of convergence and enabling their

use in practical and large scale problems.

Future efforts will be aimed at providinga-priori estimates for the near-field performances of

ADS arrangements, including their imaging capabilities with simulated ultrasound phantoms,

as well as to deal with other array geometries and application scenarios. Finally, although

out-of-the-scope of this present paper and outside currentresearches concerned with ultrasound

imaging systems, but rather related to combinatorial mathematics, advances inADS generation

techniques are expected.
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Appendix

- PSL bounds for ADS-based thinned linear and planar arrays

Concerning linearADS thinned arrays, the following bounds can be deduced [17]:PSLINF
T =

KT−ΛT−1−
q

t(N−t)
(N−1)

(N−1)ΛT +KT−1+N−t
,PSLMIN

T = max

{

[maxk 6=0{ΞT (k)}]
K2

T
,

[mink 6=0{ΞT (k)}][0.8488+1.128 log10N ]

K2
T

}

,PSLMAX
T =

[maxk 6=0{ΞT (k)}][0.8488+1.128 log10N ]

K2
T

, andPSLSUP
T = [0.8488 + 1.128 log10N ]

KT−ΛT −1+
√

t(N−t)

(N−1)ΛT +KT−1+N−t
.

In such a case, the mainlobe region is defined as [17]

MT =







−
(

2Nd

√

maxk 6=0ΞT (k)

ΞT (0)

)−1

≤ u ≤
(

2Nd

√

maxk 6=0ΞT (k)

ΞT (0)

)−1






. (18)

As regards the planar case, the bounds on thinnedADS arrays turn out to be [18]:PSLMIN
T =

[min(k,l)∈H0
{ΞT (k,l)}][0.5+0.8 log10(PQ)]

K2 ,PSLMAX
T =

[max(k,l)∈H0
{ΞT (k,l)}][−0.1+1.5 log10(N)]

K2
T

,PSLINF
T =

KT−ΛT−
q

(t+1)(N−1−t)
N−1

K2
T

,PSLSUP
T =

“

KT−ΛT +
√

(t+1)(N−1−t)
”

[−0.1+1.5 log10(N)]

K2
T

, whereH0 , G\(0, 0).

In this case, the mainlobe region is given by [18]
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MT =

{

(u, v) ∈ [−1, 1] × [−1, 1] : u2 + v2 ≤ 1, uv ≤ KT

4Nsxsy max(k,l)∈H0
|ΞT (k, l)|

}

.

(19)

- Derivation of PSLSUP
CW in (16)

Let us first consider planar arrangements. With reference tothe discrete version ofMCW ,

min {MT ,MR} (19

MD
CW =

{

m,n ∈ Z,

(

m+
1

2

)(

n +
1

2

)

≤ min

{

KT

4max(k,l)∈H0 |ΞT (k, l)| ,
KR

4max(k,l)∈H0 |ΞR(k, l)|

}}

,

(20)

equation (15) is approximated as follows

PSLCW

[

A
(σx,σy)

T/R

]

≈ max(m,n)/∈MD
CW







∣

∣

∣

∣

∣

∑P−1
k=0,kl 6=0

∑Q−1
l=0,kl 6=0

√
ΞT (k,l)e

iϕ
(σx,σy)
T

(k,l)
(−1)m+n−k−l

N sin[ π
P (m−k+ 1

2)]sin[
π
Q(n−l+ 1

2)]

∣

∣

∣

∣

∣

2

×

×
∣

∣

∣

∣

∣

∑P−1
k=0,kl 6=0

∑Q−1
l=0,kl 6=0

√
ΞR(k,l)e

iϕ
(σx,σy)
R

(k,l)
(−1)m+n−k−l

N sin[ π
P (m−k+ 1

2)]sin[
π
Q(n−l+ 1

2)]

∣

∣

∣

∣

∣

2






/
[

K2
T (N −KT )2]

(21)

by neglecting the term atk = l = 0 since the “max” operator is applied in the sidelobe region

[18]. To define an upper bound forPSLCW , let us notice that (5)

max(k,l)/∈H0
{ΞT (k, l)} = KT − ΛT +max(k,l)/∈H0

{Ψ (k, l)} . (22)

By applying the Parseval’s theorem to the real valued function Ψ (k, l), it can be obtained that
∑P−1

p=0

∑Q−1
q=0 [Ψ (k, l)]2 = N (N − 1 − t). Moreover, sinceΨ(0, 0) = N − 1 − t, it turns out

thatmax(k,l)/∈H0 {Ψ (k, l)} ≤
√

(t+ 1) (N − 1 − t). Therefore

max(k,l)/∈H0 {ΞT (k, l)} ≤ KT − ΛT +
√

(t+ 1) (N − 1 − t). (23)

[a similar expression can be determined forΞR (k, l) by using (8)]. By substituting (23) in (30),
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it results that

PSLCW

[

A
(σx,σy)

T/R

]

≤

[

KT − ΛT +
√

(t+ 1) (N − 1 − t)
] [

KR − ΛR +
√

(t+ 1) (N − 1 − t)
]

[

K2
T (N −KT )2] ×

(24)

max(m,n)/∈MD
CW







∣

∣

∣

∣

∣

∣

P−1
∑

k=0,kl 6=0

Q−1
∑

l=0,kl 6=0

eiϕ
(σx,σy)
T (k,l) (−1)m+n−k−l

N sin
[

π
P

(

m− k + 1
2

)]

sin
[

π
Q

(

n− l + 1
2

)

]

∣

∣

∣

∣

∣

∣

2

×

×

∣

∣

∣

∣

∣

∣

P−1
∑

k=0,kl 6=0

Q−1
∑

l=0,kl 6=0

eiϕ
(σx,σy)
R (k,l) (−1)m+n−k−l

N sin
[

π
P

(

m− k + 1
2

)]

sin
[

π
Q

(

n− l + 1
2

)

]

∣

∣

∣

∣

∣

∣

2





.

In analogy with [18][16], let us treat the phase termsϕ
(σx,σy)
T (k, l) andϕ(σx,σy)

R (k, l), although

deterministic, as independently identically distributeduniform random variables to rewrite (24)

as

PSLopt
CW ≤ Υ

[

KT − ΛT +
√

(t+ 1) (N − 1 − t)
] [

KR − ΛR +
√

(t+ 1) (N − 1 − t)
]

[

K2
T (N −KT )2]

(25)

whereΥ , min(σx ,σy) {max {H0, ..., HC−1}}, C ≈ N is the cardinality ofMD
CW , andHi ,

[

∣

∣

∣

∣

∑∞
k=∞

∑∞
l=−∞

e
iϕ

(σx,σy)
T

(k,l)

π2(k− 1
2)(l− 1

2)

∣

∣

∣

∣

2

×
∣

∣

∣

∣

∑∞
k=∞

∑∞
l=−∞

e
iϕ

(σx,σy)
R

(k,l)

π2(k− 1
2)(l− 1

2)

∣

∣

∣

∣

2
]

, i = 0, ..., C − 1. Since

the statistics ofΥ are not available in closed form, its mean value can be approximated as

follows

E {Υ} ≈ [−0.1 + 1.5 log10 (N)]2 . (26)

Finally, the upper boundPSLSUP
CW is then obtained by substituting (26) in (25).

Starting from (15) and settingQ = 1, PSLSUP
CW for linear arrays can be derived by following

the same procedure detailed above when dealing with planar architectures.

- Derivation of PSLINF
CW in (16)

As regards planar layouts and considering the sampled version of (15) atu = f
Psx

, f =

0, ..., P − 1, v = g
Qsy

, g = 0, ..., Q− 1, it can be deduced that

PSLopt
CW ≥ PSLCW

[

A
(σx,σy)

T/R

]⌋

u= f
Psx

,v= g
Qsy

=
max(f,g)∈H0 {ΞT (k, l) × ΞR (k, l)}

K2
T (N −KT )2 . (27)
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The lower boundPSLINF
CW is then obtained

PSLINF
CW =





KT − ΛT −
√

(t+1)(N−1−t)
N−1

KT (N −KT )





2

(28)

by exploiting (27), (22), and observing thatmax(k,l)∈H0 {Ψ (k, l)} ≥ −
√

(t+1)(N−1−t)
N−1

.

A similar procedure applies to the linear case, as well.

- Derivation of PSLMAX
CW in (16)

With reference to (30) and still considering the planar casefor generality, let us observe that

Ξmax
T , max(k,l)/∈H0

{ΞT (k, l)} and Ξmax
R , max(k,l)/∈H0

{ΞR (k, l)} are known quantities

when the explicit form of theADS at hand is available. Equation (30) can be then rewritten as

PSLCW

[

A
(σx,σy)

T/R

]

≤ Ξmax
T Ξmax

R max(m,n)/∈MD
CW







∣

∣

∣

∣

∣

∑P−1
k=0,kl 6=0

∑Q−1
l=0,kl 6=0

e
iϕ

(σx,σy)
T

(k,l)
(−1)m+n−k−l

N sin[ π
P (m−k+ 1

2)]sin[
π
Q(n−l+ 1

2)]

∣

∣

∣

∣

∣

2

×

×
∣

∣

∣

∣

∣

∑P−1
k=0,kl 6=0

∑Q−1
l=0,kl 6=0

e
iϕ

(σx,σy)
R

(k,l)
(−1)m+n−k−l

N sin[ π
P (m−k+ 1

2)]sin[
π
Q(n−l+ 1

2)]

∣

∣

∣

∣

∣

2






/
[

K2
T (N −KT )2

]

.

(29)

By dealing with the phase terms as random variables, it turnsout that

PSLopt
CW ≤ Υ Ξmax

T Ξmax
R

K2
T (N −KT )2

and the upper boundPSLMAX
CW is finally derived through (26).

- Derivation of PSLMIN
CW in (16)

As regards two-dimensional layouts and using (30), one can deduce that

PSLopt
CW & Ξmin

T Ξmin
R min(σX ,σy)







max(m,n)/∈MD
CW





∣

∣

∣

∣

∣

∑P−1
k=0,kl 6=0

∑Q−1
l=0,kl 6=0

e
iϕ

(σx,σy)
T

(k,l)
(−1)m+n−k−l

N sin[ π
P (m−k+ 1

2)]sin[
π
Q(n−l+ 1

2)]

∣

∣

∣

∣

∣

2

×

×
∣

∣

∣

∣

∣

∑P−1
k=0,kl 6=0

∑Q−1
l=0,kl 6=0

e
iϕ

(σx,σy)
R

(k,l)
(−1)m+n−k−l

N sin[ π
P (m−k+ 1

2)]sin[
π
Q(n−l+ 1

2)]

∣

∣

∣

∣

∣

2










/
[

K2
T (N −KT )2]

(30)
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whereΞmin
E , min(k,l)/∈H0

{ΞE (k, l)}, E = T,R, is a known quantity when theADS at hand

is known. By dealing with the random representation of the phase terms and taking into account

that, in this case, the summations cannot be extended to±∞, the following approximation holds

true

PSLopt
CW &

Ξmin
T Ξmin

R [0.5 + 0.8log10N ]2

K2
T (N −KT )2 .

PSLMIN
CW is then defined as the right term of previous expression.

Dealing with linear arrangements,PSLMIN
CW can be simply obtained by substituting the known

quantitiesΞmax
T andΞmax

R in (27) toΞmin
T andΞmin

R .

References

[1] A. Austeng and S. Holm, “Sparse 2-D arrays for 3-D phased array imaging - design meth-

ods,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 49, no. 8, pp. 1073-1086,

Aug. 2002.

[2] M. Karaman, I. O. Wygant, O. Oralkan, and B. T. Khuri-Yakob, “Minimally redundant

2-D array designs for 3-D Medical Ultrasound Imaging”,IEEE Trans. Med. Imag., vol.

28, no. 7, pp. 1051-1061, Jul. 2009.

[3] G. R. Lockwood, P.-C. Li, M. O’Donnell, and F. S. Foster, “Optimizing the radiation pat-

tern of sparse periodic linear arrays,”IEEE Trans. Ultrason., Ferroelectr., Freq. Control,

vol. 43, no. 1, pp. 7-14, Jan. 1996.

[4] A. Trucco, E. Omodei, P. Repetto, "Synthesis of Sparse Planar Arrays,"Electronics Let-

ters, vol. 33, no. 22, pp. 1834-1835, 23rd October 1997.

[5] A. Trucco and V. Murino, “Stochastic optimization of linear sparse arrays,”IEEE J. Ocean

Eng., vol. 24, no. 3, pp. 291-299, Jul. 1999.

[6] A. Trucco, "Synthesising Asymmetric Beam Patterns,"IEEE Journal of Oceanic Engi-

neering, vol. 25, no. 3, pp. 347-350, July 2000.

20



[7] A. Trucco, "Weighting and Thinning Wide-Band Arrays by Simulated Annealing,"Ultra-

sonics, vol. 40, no. 1-8, pp. 485-489, March 2002

[8] D. H. Turnbull and F. S. Foster, “Beam steering with pulsed two-dimensional transducer

arrays,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 38, no. 4, pp. 320-333,

Jul. 1991.

[9] G. R. Lockwood and F. S. Foster, “Optimizing the radiation pattern of sparse periodic

two-dimensional arrays,”IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 43, no.

1, pp. 15-19, Jan. 1996.

[10] P. K. Weber, R. M. Schmitt, B. D. Tylkowski, and J. Steck,“Optimization of random

sparse 2-D transducer arrays for 3-D electronic beam steering and focusing”, inProc.

IEEE Ultrason. Symp., vol. 3, pp. 1503-1506, 1994.

[11] S. Holm, B. Elgetun, and G. Dahl, “Properties of the beampattern of weight- and layout-

optimized sparse arrays,”IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 44, no.

5, pp. 983-991, Sep. 1997.

[12] A. Trucco, “Thinning and weighting of large planar arrays by simulated annealing,”IEEE

Trans. Ultrason., Ferroelectr., Freq. Control, vol. 46, no. 2, pp. 347-355, Mar. 1999.

[13] C. Ding, T. Helleseth, and K. Y. Lam, “Several classes ofbinary sequences with three-level

autocorrelation,”IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2606-2612, Nov. 1999.

[14] K. T. Arasu, C. Ding, T. Helleseth, P. V. Kumar, and H. M. Martinsen, “Almost difference

sets and their sequences with optimal autocorrelation,”IEEE Trans. Inf. Theory, vol. 47,

no. 7, pp. 2934-2943, Nov. 2001.

[15] Y. Zhang, J. G. Lei, and S. P. Zhang, “A new family of almost difference sets and some

necessary conditions,”IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2052-2061, May 2006.

[16] D. G. Leeper, “Isophoric arrays - massively thinned phased arrays with well-controlled

sidelobes,”IEEE Trans. Antennas Propag., vol. 47, no. 12, pp. 1825-1835, Dec. 1999.

21



[17] G. Oliveri, M. Donelli, and A. Massa, “Linear array thinning exploiting almost difference

sets,"IEEE Trans. Antennas Propag., vol. 57, no. 12, pp. 3800-3812, Dec. 2009.

[18] G. Oliveri, L. Manica, and A. Massa, “ADS-based guidelines for thinned planar arrays,"

IEEE Trans. Antennas Propag., in press.

[19] C. A. Balanis,Antenna Theory: Analysis and Design, 2nd ed. New York: Wiley, 1997.

[20] ELEDIA Almost Difference Set Repository (http://www.eledia.ing.unitn.it/).

[21] J. G. Proakis and D. G. Manolakis,Digital Signal Processing: Principles, Algorithms, and

Applications, 3nd ed. London: Prentice Hall, 1996.

[22] A. Austeng and S. Holm, “Sparse 2-D arrays for 3-D phasedarray imaging - experimental

validation,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 49, no. 8, pp. 1087-

1093, Aug. 2002.

[23] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped,

apodized, and excited ultrasound transducers”,IEEE Trans. Ultrason., Ferroelec., Freq.

Contr., Vol. 39, no. 2, pp. 262-267, Mar. 1992.

[24] J. A. Jensen, “Field: a program for simulating ultrasound systems,” in10th Nordic-Baltic

Conf. Biomed. Imag., Med. Biol. Eng. Comput., vol. 34, Suppl. 1, p. 1, pp. 351-353, 1996.

[25] C. Boni, M. Richards, and S. Barbarossa, “Optimal configuration and weighting of nonuni-

form arrays according to a maximum ISLR criterion,” inIEEE Int. Conf. Acoust., Speech,

Sign. Proc., vol. V, pp. 157-160, 1994.

[26] S. Holm, “Minimum sidelobe energy versus minimum peak sidelobe level for sparse array

optimization,” inProc. IEEE Nordic Sign. Proc. Symposium, pp. 227-230, Sep. 1996.

22



FIGURE CAPTIONS

• Figure 1. ADS thinned array layout obtained from the(18, 9, 4, 13)-ADS (P = 18,

Q = 1) [20] (a) and associated autocorrelation (b) and beampattern (c) properties.

• Figure 2. Non-overlappingADS layouts obtained from (a) the (88, 44, 21, 22)-ADS

(P = 88,Q = 1) [20] and (b) the(49, 25, 12, 24)-ADS (P = Q = 47) [20].

• Figure 3. Far-fieldCW -response properties - Linear Array(88, 44, 21, 22)-ADS [20]:

(a) PSLCW

(

A
(σ)
)

values versusσ = 0, ..., N−1 and (b) plot of the normalized|SCW (u)|2

in correspondence withσopt. Aperture size:43.5λ.

• Figure 4. Far-field CW -response properties - Linear Array(700, 350, 174, 175)-ADS

[20]: (a) PSLCW

(

A
(σ)
)

values versusσ = 0, ..., N − 1 and (b) plot of the normalized

|SCW (u)|2 in correspondence withσopt. Aperture size:349.5λ.

• Figure 5. Far-fieldCW -response properties - Linear Arrays.Plots of thePSLopt
CW values

and associated bounds forADS-based linear arrangements whenν = 0.5 andη = 0.25.

• Figure 6. Far-fieldCW -response properties - Planar Array(49, 25, 12, 24)-ADS [20]:

(a) PSLCW

(

A
(σx,σy)

)

values versusσx = 0, ..., P − 1, σy = 0, ..., Q− 1 and (b) plot of

the normalized|SCW (u, v)|2 in correspondence withσopt. Aperture size:3λ× 3λ.

• Figure 7. Far-fieldCW -response properties - Planar Array(529, 265, 132, 264)-ADS

[20]: (a) PSLCW

(

A
(σx,σy)

)

values versusσx = 0, ..., P−1, σy = 0, ..., Q−1 and (b) plot

of the normalized|SCW (u, v)|2 in correspondence withσopt. Aperture size:11λ× 11λ.

• Figure 8. Far-field CW -response properties - Planar Array(2209, 1105, 552, 1104)-

ADS [20]: (a) PSLCW

(

A
(σx,σy)

)

values versusσx = 0, ..., P − 1, σy = 0, ..., Q − 1

and (b) plot of the normalized|SCW (u, v)|2 in correspondence withσopt. Aperture size:

23λ× 23λ.

• Figure 9. Far-fieldCW -response properties - Planar Arrays.Plots of thePSLopt
CW values

and associated bounds forADS-based planar arrangements whenν = 0.5 andη = 0.5.

23



• Figure 10. Near-field pulsed-response properties - Planar Arrays(N = 7 × 7). (a)

Plots ofWC (sin (θ)) for different non-overlapping/dense arrays with uniform/circular

apodization and plot of the normalizedWPE(u, v) in correspondence with: (b) A
(σopt

x ,σopt
y )

[(49, 25, 12, 24)-ADS] - Uniform apodization, (c) A
(σopt

x ,σopt
y ) [(49, 25, 12, 24)-ADS] -

Circular apodization, (d) Dense layoutN = 7 × 7 - Uniform apodization, and (e) Dense

layoutN = 7 × 7 - Circular apodization. Aperture size:3λ× 3λ.

• Figure 11. Near-field pulsed-response properties - Planar Arrays(N = 23 × 23). (a)

Plots ofWC (sin (θ)) for different non-overlapping/dense arrays with uniform/circular

apodization and plot of the normalizedWPE(u, v) in correspondence with: (b) A
(σopt

x ,σopt
y )

[(529, 265, 132, 264)-ADS] - Uniform apodization, (c) A
(σopt

x ,σopt
y ) [(529, 265, 132, 264)-

ADS] - Circular apodization, (d) Dense layoutN = 23× 23 - Uniform apodization, and

(e) Dense layoutN = 23 × 23 - Circular apodization. Aperture size:11λ× 11λ.

• Figure 12. Near-field pulsed-response properties - Planar Arrays(N = 47 × 47). (a)

Plots ofWC (sin (θ)) for different non-overlapping/dense arrays with uniform/circular

apodization and plot of the normalizedWPE(u, v) in correspondence with: (b) A
(σopt

x ,σopt
y )

[(2209, 1105, 552, 1104)-ADS] - Uniform apodization, (c) A(σopt
x ,σopt

y ) [(2209, 1105, 552, 1104)-

ADS] - Circular apodization, (d) Dense layoutN = 47× 47 - Uniform apodization, and

(e) Dense layoutN = 47 × 47 - Circular apodization. Aperture size:23λ× 23λ.

• Figure 13. Near-field pulsed-response properties - Planar Arrays. Plots of (a) PSLNF

[dB] versusISLR [dB] and (b) PSLNF [dB] and ISLR [dB] versusNA for ADS

arrays [P = Q; (a) P = 17, 23, 31, 47, 61, 71; (b) P = 47] with uniform and circular

apodization and representative samples of reference layouts [1].

• Figure 14. Near-field pulsed-response properties - Planar Arrays(φ0 = π
4

[rad]). Be-

haviour ofPSLNF [dB] (a), ISLR [dB] (b), andBW20 [deg] (c) versus steering angleθ0

for ADS arrays [P = Q = 47] and for reference filled layouts, with uniform and circular

apodization.

• Figure 15. Near-field pulsed-response properties - Planar Arrays(φ0 = π
4

[rad]). Plot of

the normalizedWPE(u, v) in correspondence withA(σopt
x ,σopt

y ) [(2209, 1105, 552, 1104)-
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ADS] with circular apodization for (a) θ0 = −π
4
, (b) θ0 = π

4
, (c) θ0 = −π

6
, (d) θ0 = π

6
,

(e) θ0 = − π
12

, (f ) θ0 = π
12

.

TABLE CAPTIONS

• Table I. Far-fieldCW -response properties. Closed-form expressions for thePSL bounds

of ADS-based layouts.

• Table II. Near-field pulsed-response properties - Planar Arrays[P = Q, P = 7, 23, 47].

Values of the descriptive indexes (BW , ISLR, PSLNF ).

• Table III. Near-field pulsed-response properties - Planar Arrays[P = Q = 48]. Values

of the descriptive indexes (BW , ISLR, PSLNF ).

25



 0  2  4  6  8  10  12  14  16  18

p

ADS (18,9,4,13)

aT(p)

(a)

ΛT=   

ΛT+1=   

KT=  

 3

 4

 5

 6

 7

 8

 9

 10

 0  2  4  6  8  10  12  14  16  18

ξ T
(τ

)

τ

ADS (18,9,4,13)

t=13 values

(b)

-20

-15

-10

-5

 0

 0  0.2  0.4  0.6  0.8  1

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

ADS (18,9,4,13)

|ST(u)|2

ΞT(k)

(c)

Figure 1 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

26



 0  30  60  90

p

N=88, KT=KR=44

aT(p) aR(p)

(a)

P=Q=7, KT=24, KR=25

aT(p,q) aR(p,q)

 0  1  2  3  4  5  6

p

 0

 1

 2

 3

 4

 5

 6

q

(b)

Figure 2 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

27



-40

-35

-30

-25

-20

 0  10  20  30  40  50  60  70  80  90

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

σ

N=88, KT=KR=44

PSLCW
opt

PSLCW(A(σ))

PSLCW
INF

PSLCW
SUP

PSLCW
MAX

PSLCW
MIN

(a)

-50

-40

-30

-20

-10

 0

 0  0.2  0.4  0.6  0.8  1

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

N=88, KT=KR=44

MCW

PSLCW
opt

|SCW(u)|2 - (A(σopt))
Θ(k,l)

PSLCW
INF

PSLCW
SUP

PSLCW
MAX

PSLCW
MIN

(b)

Figure 3 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

28



-60

-55

-50

-45

-40

-35

 0  100  200  300  400  500  600  700

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

σ

N=700, KT=KR=350

PSLCW
opt

PSLCW(A(σ))

PSLCW
INF

PSLCW
SUP

PSLCW
MAX

PSLCW
MIN

(a)

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0  0.2  0.4  0.6  0.8  1

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

N=700, KT=KR=350

MCW

PSLCW
opt

|SCW(u)|2 - (A(σopt))

PSLCW
INF

PSLCW
SUP

PSLCW
MAX

PSLCW
MIN

(b)

Figure 4 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

29



-90

-80

-70

-60

-50

-40

-30

-20

102 103 104

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

N

ν=0.5, η=0.25

PSLCW
opt

PSLCW
MAX

PSLCW
MIN

PSLCW
SUP

PSLCW
INF

Figure 5 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

30



-38

-36

-34

-32

-30

-28

-26

-24

-22

-20

-18

-16

 0  10  20  30  40  50

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

Q σx+σy

P=Q=7, KT=25, KR=24

PSLCW
opt

PSLCW(A(σx,σy)) PSLCW
INF PSLCW

SUP PSLCW
MIN PSLCW

MAX

(a)

(b)

Figure 6 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

31



-60

-55

-50

-45

-40

-35

-30

 0  100  200  300  400  500

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

Q σx+σy

P=Q=23, KT=264, KR=265

PSLCW
opt

PSLCW(A(σx,σy)) PSLCW
INF PSLCW

SUP PSLCW
MIN PSLCW

MAX

(a)

(b)

Figure 7 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

32



-70

-65

-60

-55

-50

-45

-40

 0  500  1000  1500  2000

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

Q σx+σy

P=Q=47, KT=1105, KR=1104

PSLCW
opt

PSLCW(A(σx,σy)) PSLCW
INF PSLCW

SUP PSLCW
MIN PSLCW

MAX

(a)

(b)

Figure 8 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

33



-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

10 102 103 104 105
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

[d
eg

]
P × Q

ν=0.5, η=0.5

PSLCW
opt

PSLCW
MAX

PSLCW
MIN

PSLCW
SUP

PSLCW
INF

BW3

Figure 9 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

34



-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

-1 -0.5  0  0.5  1

W
C

(s
in

(θ
))

 -
 N

or
m

al
iz

ed
 V

al
ue

 [d
B

]

sin(θ)

P=Q=7, KT=24, KR=25

ADS

Dense

ADS, circular apodization

Dense, circular apodization

(a)

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, P=Q=7, KT=25, KR=24

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, Circular Apodization, P=Q=7, KT=25, KR=24

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1
v

(b) (c)

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

Filled Array, P=Q=7

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

Filled Array, Circular Apodization, P=Q=7

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

(d) (e)

Figure 10 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

35



-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

-1 -0.5  0  0.5  1

W
C

(s
in

(θ
))

 -
 N

or
m

al
iz

ed
 V

al
ue

 [d
B

]

sin(θ)

P=Q=23, KT=264, KR=265

ADS

Dense

ADS, circular apodization

Dense, circular apodization

(a)

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, P=Q=23, KT=264, KR=265

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, Circular Apodization, P=Q=23, KT=264, KR=265

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1
v

(b) (c)

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

Filled Array, P=Q=23

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

Filled Array, Circular Apodization, P=Q=23

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

(d) (e)

Figure 11 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

36



-120

-100

-80

-60

-40

-20

 0

-1 -0.5  0  0.5  1

W
C

(s
in

(θ
))

 -
 N

or
m

al
iz

ed
 V

al
ue

 [d
B

]

sin(θ)

P=Q=47, KT=1105, KR=1104

ADS

Dense

ADS, circular apodization

Dense, circular apodization

(a)

-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, P=Q=47, KT=1105, KR=1104

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, Circular Apodization, P=Q=47, KT=1105, KR=1104

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1
v

(b) (c)

-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

Filled Array, P=Q=47

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

Filled Array, Circular Apodization, P=Q=47

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

(d) (e)

Figure 12 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

37



-75

-70

-65

-60

-55

-50

-45

-40

-35

-30
-20-15-10-5 0 5 10

P
S

L N
F
 [d

B
]

ISLR [dB]

DENSE square, 48×48

DENSE circular, 48×48 
     [Austeng, 2002]

DENSE square, 47×47

DENSE circular, 47×47

VERN circular, 48×48 
  [Austeng, 2002]

BIN circular, 48×48 
  [Austeng, 2002]

POL circular, 48×48 
  [Austeng, 2002]

P=Q=17

P=Q=23
P=Q=31

P=Q=47 P=Q=61

P=Q=71

ADS ADS - Circular apodization

(a)

-70

-65

-60

-55

-50

-45

-40

-35

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5
-18

-14

-10

-6

-2

 2

 6

 10

P
S

L N
F
 [d

B
]

IS
LR

 [d
B

]

NA [×103]

ADS
ADS, circular

Dense, P=Q=47
Dense, P=Q=47, circular

Dense, P=Q=48
Dense, P=Q=48, circular

BIN
Diag2

DiagDP
DP

ImpR3
ImpR4b

POL
Rad3
Rad4

VERN

(b)

Figure 13 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

38



-75

-70

-65

-60

-55

-50

-45

-50 -40 -30 -20 -10  0  10  20  30  40  50

P
S

L N
F
 [d

B
]

sin(θ0)

P=Q=47, KT=1105, KR=1104, φ0=45

ADS

Dense

ADS, circular apodization

Dense, circular apodization

(a)

-18

-16

-14

-12

-10

-8

-6

-4

-2

-50 -40 -30 -20 -10  0  10  20  30  40  50

IS
LR

 [d
B

]

sin(θ0)

P=Q=47, KT=1105, KR=1104, φ0=45

ADS

Dense

ADS, circular apodization

Dense, circular apodization

(b)

 3.5

 4

 4.5

 5

 5.5

 6

-50 -40 -30 -20 -10  0  10  20  30  40  50

B
W

20
 [d

eg
]

sin(θ0)

P=Q=47, KT=1105, KR=1104, φ0=45

ADS

Dense

ADS, circular apodization

Dense, circular apodization

(c)

Figure 14 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”

39



-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, Circular Apodization, P=Q=47, KT=1105, KR=1104, θ0=-π/12, φ0=π/4

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, Circular Apodization, P=Q=47, KT=1105, KR=1104, θ0=π/12, φ0=π/4

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

(a) (b)

-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, Circular Apodization, P=Q=47, KT=1105, KR=1104, θ0=-π/6, φ0=π/4

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, Circular Apodization, P=Q=47, KT=1105, KR=1104, θ0=π/6, φ0=π/4

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

(c) (d)

-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, Circular Apodization, P=Q=47, KT=1105, KR=1104, θ0=-π/4, φ0=π/4

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

-70

-60

-50

-40

-30

-20

-10

 0

W
P

E
(u

,v
) 

- 
N

or
m

al
iz

ed
 v

al
ue

 [d
B

]

ADS, Circular Apodization, P=Q=47, KT=1105, KR=1104, θ0=π/4, φ0=π/4

-1 -0.5  0  0.5  1

u

-1

-0.5

 0

 0.5

 1

v

(e) (f )

Figure 15 - G. Oliveri et al., “ADS-based Array Design for 2D and 3D Ultrasound Imaging”
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Design P = Q NC NT NR BW6 [deg] BW20 [deg] BW50 [deg] ISLR [dB] PSLNF [dB]

Dense, square 7 49 49 49 13.52 24.86 (*) −22.5 −17.5

Dense, circular 7 37 37 37 15.12 27.67 (*) −19.2 −14.1

(49, 25, 12, 24)-ADS 7 0 25 24 13.98 25.95 (*) −28.9 −16.5

(49, 25, 12, 24)-ADS, circular 7 0 19 18 15.64 28.87 (*) −36.1 −13.2

Dense, square 23 529 529 529 4.18 7.90 39.7 −17.3 −41.3

Dense, circular 23 421 421 421 4.69 8.47 23.49 −16.8 −49.7

(529, 265, 132, 264)-ADS 23 0 265 264 4.23 7.96 108.69 −0.4 −40.8

(529, 265, 132, 264)-ADS - circular 23 0 211 210 4.69 8.47 44.5 −1.1 −46.4

Dense, square 47 2209 2209 2209 2.00 3.66 18.67 −16.7 −53.6

Dense, circular 47 1741 1741 1741 2.29 4.01 11.17 −16.3 −68.6

(2209, 1105, 552, 1104)-ADS 47 0 1105 1104 2.00 3.66 18.67 −2.8 −53.6

(2209, 1105, 552, 1104)-ADS, circular 47 0 871 870 2.29 4.06 12.03 −2.5 −60.1

(*) Computation not feasible sinceWC (sin (θ)) doesn’t reach−50 dB.
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Design P = Q NC NT NR BW6 [deg] BW20 [deg] BW50 [deg] ISLR [dB] PSLNF [dB]

Dense, square 48 2304 2304 2304 1.83 4.52 18.27 −17.0 −54.0

Dense, circular [1] 48 1804 1804 1804 2.03 3.81 10.82 −16.9 −69.6

VERN [1] 48 48 421 208 2.05 3.83 10.65 −3.8 −39.9

BIN [1] 48 0 447 447 2.05 3.84 11.34 7.1 −51.6

POL [1] 48 0 484 361 2.25 4.15 8.10 7.0 −48.5

Diag2 [1] 48 396 877 296 2.05 3.84 11.09 −13.3 −60.0

DP [1] 48 428 880 880 2.05 3.85 11.21 −14.4 −62.5

DiagDP [1] 48 208 606 606 2.02 3.79 10.65 −12.2 −57.4

Rad4 [1] 48 69 533 373 2.21 4.11 12.66 2.7 −56.9

Rad3 [1] 48 221 821 533 2.13 4.00 11.63 −1.7 −63.4

ImpR3 [1] 48 551 821 1104 2.12 3.97 11.72 −7.6 −63.7

ImpR4b [1] 48 484 964 780 2.23 4.14 12.17 −7.8 −64.9
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