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Abstra
tIn this paper, an innovative strategy for passive lo
alization of trans
eiver-freeobje
ts is presented. The lo
alization is yielded by pro
essing the re
eived signalstrength data measured in an infrastru
tured environment. The problem is reformu-lated in terms of an inverse sour
e one, where the probability map of the presen
e ofan equivalent sour
e modeling the moving target is looked for. Towards this end, a
ustomized 
lassi�
ation pro
edure based on a support ve
tor ma
hine is exploited.Sele
ted, but representative, experimental results are reported to assess the feasibil-ity of the proposed approa
h and to show the potentialities and appli
ability of thispassive and unsupervised te
hnique.
Key words: Obje
t tra
king, wireless sensor networks, trans
eiver-free obje
ts, re
eivedsignal strength indi
ator, 
lassi�
ation problem, support ve
tor ma
hine.2



1 Introdu
tionIn the re
ent years, there has been a wide and rapid di�usion of wireless sensor networks(WSNs) [1℄ thanks to the availability of su
h low-power and pervasive devi
es integratingon-board sensing, pro
essing, and radio frequen
y (RF ) 
ir
uitry for information trans-mission. Usually, short-range 
ommuni
ations are at hand sin
e the wireless nodes aregenerally densely distributed and 
hara
terized by low power 
onsumption to ensure along lifetime. Therefore, WSNs have been also pro�tably used for lo
ation and tra
kingpurposes. In su
h a framework, the main e�orts have been devoted to develop ad-ho
 sys-tems based on dedi
ated transponders/sensors [2℄ or assuming an �a
tive� target equippedwith a transmitting devi
e [3℄[4℄. Di�erent properties of the re
eived signal, su
h as thetime of arrival (TOA) and the dire
tion of arrival (DOA), have been su

essfully exploitedto address the lo
alization problem [5℄[6℄. Other modalities to lo
ate a
tive targets arebased on the evaluation of the re
eived signal strength (RSS) [7℄[8℄[9℄[10℄. This is aneasily measurable quantity that has been also used to lo
alize the wireless nodes of thenetwork through e�e
tive triangulation strategies [8℄. Moreover, the distan
e betweennodes has been estimated thanks to simpli�ed radio propagation models. Although easierthan a �passive� lo
alization te
hnique, the main drawba
k of these approa
hes is the needof the target to be equipped with an ad-ho
 devi
e. Whether su
h a fa
t 
an be 
onsid-ered negligible when tra
king either obje
ts or animals (although the 
osts unavoidablyin
rease), other problems arise when dealing with people (e.g., priva
y) and espe
iallywith non-
ooperative subje
ts as for elderly people. Moreover, su
h wearable devi
es 
anundergo (
asual or voluntary) damages thus limiting the reliability of the tra
king system.Other strategies 
on
erned with trans
eiver-free targets have been also presented in thes
ienti�
 literature. State-of-the-art approa
hes are based on Doppler radar systems ableto estimate the distan
e between the target and the sensor [11℄. As a matter of fa
t,moving targets 
an be tra
ked through the analysis of the Doppler signature indu
edby the obje
t motion [12℄. Unfortunately, the arising performan
e in real environments
an be strongly in�uen
ed by non-negligible instabilities leading to several false alarms.Furthermore, slow-moving targets [13℄ are not generally dete
ted.3



This paper is aimed at presenting an inversion pro
edure, preliminary validated in [14℄, forthe lo
alization and tra
king of passive obje
ts starting from the measurements of the RSSindexes available at the nodes of a WSN . Sin
e the transmission of information amongthe wireless nodes is allowed by RF signals, the arising ele
tromagneti
 radiations 
an bealso pro�tably exploited to sense the surrounding environment. Indeed, any target lyingwithin the environment intera
ts with the ele
tromagneti
 waves radiated by the nodes.Therefore, the measurements of the perturbation e�e
ts on the other re
eiving nodesis dealt with a suitable inversion strategy to determine the equivalent sour
e modelingthe presen
e of the target/s
atterer generating the perturbation itself. By virtue of thefa
t that the number of nodes in a WSN 
an vary and the need to have a simple and�exible tra
king/lo
alization method allowing real-time estimates, a learning-by-examples(LBE) strategy based on a Support Ve
tor Ma
hine (SV M) is used. Although onlyre
ently applied for the solution of ele
tromagneti
 inverse problems, e�e
tive approa
hesbased on learning-by-examples te
hniques have been already proposed for the estimationof the dire
tion of arrival of desired/undesired signals [15℄[16℄, the dete
tion of buriedobje
ts [17℄[18℄[19℄, and the early beast 
an
er imaging [20℄ thanks to their e�
ien
y andversatility.The outline of the paper is as follows. The mathemati
al issues 
on
erned with the pro-posed approa
h are detailed in Se
t. 2 where the SV M-based method is des
ribed, as well.In Se
t. 3, representative results from a wide set of experiments dealing with the tra
kingof single as well as multiple targets in both outdoor and indoor WSN deployments areshown. Eventually, some 
on
lusions are drawn (Se
t. 4).2 Mathemati
al FormulationLet us 
onsider the two-dimensional (2D) s
enario shown in Fig. 1(a). The investigationdomain D is inhomogeneous and 
onstituted by a set of obsta
les and moving targets tobe lo
alized/tra
ked all lying in free-spa
e. The known host s
enario (i.e., the target-freedomain) is des
ribed by the obje
t fun
tion τh (r) = εh (r) − 1 − j
σh(r)
ωε0

where ω is theworking angular frequen
y, r = (x, y) is the position ve
tor, εh and σh being the diele
tri
4



permittivity and the 
ondu
tivity, respe
tively. Moreover, the target/s is/are identi�edby the diele
tri
 distribution τo (r), r ∈ Do. The area under test is infrastru
tured witha WSN and S nodes are deployed at rs, s = 1, ..., S spatial lo
ations. The s-th wirelessnode radiates an ele
tromagneti
 signal, ξinc
s (r) (1) , and the �eld measured by the other

S−1 nodes and arising from the intera
tions of the in
ident �eld with the s
enario undertest is given by
ξtot
s (rm) = ξinc

s (rm) +
∫

D
J (r′)G0 (r′, rm) dr′ (1)where G0 is the free-spa
e Green's fun
tion [21℄ and rm is the position of the m-th (m =

1, ..., S − 1) re
eiving node. As a matter of fa
t, the �eld indu
ed in D is equivalent tothat radiated in free-spa
e by an equivalent 
urrent density J (r) = τ (r) ξtot (r), r ∈ D[22℄ modeling the presen
e of whatever dis
ontinuity of the free-spa
e (i.e., both theobsta
les and the moving targets) where τ (r) = τo (r) if r ∈ Do and τ (r) = τh (r) if
r ∈ Dh = D − Do, Do and Dh being the support of the targets and its 
omplementaryarea.Equation (1) 
an be reformulated in a di�erent fashion by de�ning a di�erential equivalent
urrent density Ĵ (r) radiating in the inhomogeneous host medium [21℄ [Fig. 1(b)℄. Sin
ethe host medium is a-priori known, the radiated �eld 
an be then expressed as

ξtot
s (rm) = ξ̂inc

s (rm) +
∫

Do

Ĵ (r′)G1 (r′, rm) dr′ (2)where
ξ̂inc
s (rm) = ξinc

s (rm) +
∫

D
τh (r′) ξtot

s,u (r′)G0 (r′, rm) dr′ (3)is the �eld of the s
enario without targets and equivalent to an �in
ident� �eld on thetargets, Ĵ (r) = τ̂ (r) ξtot
s,p (r) and τ̂ (r) = τ (r) − τh (r) is the di�erential obje
t fun
tion.In (3), the se
ond term on the right side is the �eld s
attered from the host mediumwithout targets, ξtot

s,u being the ele
tri
 �eld related to ξinc
s in 
orresponden
e with the

(1) The s
alar 
ase has been 
onsidered to simplify the notation. However, the extension to theve
torial 
ase is straightforward. 5



target-free s
enario. Moreover, G1 is the inhomogeneous Green's fun
tion for the target-free 
on�guration [21℄, whi
h satis�es the following integral equation
G1 (r, r′) = G0 (r, r′) +

∫

D
τh (r′)G0 (r, r”)G1 (r”, r′) dr”. (4)With the knowledge of G1 (i.e., the knowledge of the target-free s
enario) the s
atteringproblem turns out to be the retrieval of the di�erential sour
e Ĵ o

upying the targetdomain Do. The dete
tion of the target position and the de�nition of the target traje
toryin D 
an be then formulated as the de�nition of the support of the di�erential equivalentsour
e, whi
h satis�es the inverse s
attering equation (2), starting from the measurementsof ξtot (rm), m = 1, ..., S−1. This is possible in a WSN -infrastru
tured environment sin
ethe nodes at hand are simple and 
heap devi
es that give an indire
t estimate of the �eldvalue through the RSS index. A

ordingly, the RSS is measured at the m-th nodewhen the s-th node is transmitting by 
onsidering both the target-free s
enario [ξinc

s (rm)knowledge℄ and the presen
e of targets within D [ξtot
s (rm) knowledge℄ and the di�erential�eld ξsct

m,s = ξtot
s (rm) − ξ̂inc

s (rm) 
ould be used for the inversion pro
edure.However, it is worth to take into a

ount that the power radiated by the WSN nodes 
anvary due to several fa
tors (e.g., battery level of the WNS nodes, environmental 
ondi-tions) thus �blurring� the data a
quisition and, 
onsequently, 
ompli
ating the solution ofthe inverse problem at hand. To over
ome this drawba
k, the inversion is statisti
ally re-
ast as the de�nition of the probability that a target is lo
ated in a position of D startingfrom the knowledge of ξsct
m,s, s = 1, ..., S, m = 1, ..., S, m 6= s. The arising 
lassi�
ationproblem is then solved by means of a suitable SV M-based approa
h. Su
h a strategy al-lows one to improve the generalization 
apability of the lo
alization and tra
king systemsin
e it is less sensitive to the instantaneous variations of the measurements by virtue ofthe underlying probabilisti
 model. Moreover, it is also able to deal with s
enarios not
onsidered in the training phase as well as to perform the real time tra
king of multipletargets. More spe
i�
ally, the proposed approa
h works as follows. The region D wherethe targets are looked for is partitioned into a grid of C 
ells 
entered at rc, c = 1, ..., C.Ea
h c-th 
ell is 
hara
terized by its state, χc, whi
h 
an be either empty (χc = −1) or6



o

upied (χc = 1) whether a target (i.e., the 
orresponding di�erential equivalent sour
e)is present or absent. Moreover, the probability that a target belongs to the c-th 
ell,
αc = Pr {χc = 1| (Γ, c)}, is given by

αc =
1

1 + exp
{

pH
[

ϕ (Γ, c)
]

+ q
} , c = 1, ..., C (5)where Γ =

{

ξsct
m,s; s = 1, ..., S; m = 1, ..., S; m 6= n

}, and p, q are unknown parameters tobe determined [23℄. In (5), the fun
tion ϕ (·) is a non-linear mapping from the data ofthe original input spa
e, Γ, to a higher dimensional spa
e (
alled feature spa
e) where thedata are more easily separable through a simpler fun
tion (i.e., the hyperplane H).The hyperplane H is o�-line de�ned throughout the training phase by exploiting theknowledge of a set of T known examples where both the input data (Γ, t = 1, ..., T ) andthe 
orresponding maps (χ
t

= {χc,t; c = 1, ..., C}, t = 1, ..., T ) are available. Usually, alinear de
ision fun
tion is adopted
H

[

ϕ (Γ, c)
]

= w · ϕ (Γ, c) + b, c = 1, ..., C (6)
w and b being an unknown normal ve
tor and a bias 
oe�
ient, respe
tively.The de
isionfun
tion parameters unequivo
ally de�ne the de
ision plane and are 
omputed in thetraining phase by minimizing the following 
ost fun
tion

Ψ (w) =
‖w‖2

2
+

λ
∑T

t=1 C
(t)
+

T
∑

t=1

C
(t)
+

∑

c=1

η
(t)
c+ +

λ
∑T

t=1 C
(t)
−

T
∑

t=1

C
(t)
−

∑

c=1

η
(t)
c− (7)subje
t to the separability 
onstraints

w · ϕ (Γ, c) + b ≥ 1 − η
(t)
c+, c = 1, ..., C

w · ϕ (Γ, c) + b ≤ η
(t)
c− − 1, c = 1, ..., C

(8)where λ is a user-de�ned hyperparameter [24℄ that 
ontrols the trade-o� between thetraining error and the model 
omplexity to avoid over�tting. Moreover, η
(t)
c+ and η

(t)
c− arethe so-
alled sla
k variables related to the mis
lassi�ed patterns. They are introdu
edbe
ause the training data are usually not 
ompletely separable in the feature spa
e by7



means of a linear hyperplane.The minimization of (7) is performed following the guidelines detailed in [17℄ and alsoexploiting the so-
alled kernel tri
k method [23℄.3 Experimental ValidationThe feasibility and the e�e
tiveness of the proposed approa
h have been assessed throughan extensive experimental validation 
arried out in both indoor and outdoor s
enarios(Fig. 2). The nodes have been pla
ed at �xed positions rs = (xs, ys), s = 1, ..., S, on theperimeter of the investigation area D. In all experiments, the region D has been assumedhaving the same size (−20λ ≤ x ≤ 20λ and −12λ ≤ y ≤ 12λ) whatever the s
enario athand, λ being the free-spa
e wavelength of the wireless signals transmitted by the nodes(e.g., f = 2.4 GHz), and S = 6 Tmote Sky nodes have been used to obtained a suitabletrade-o� between the 
omplexity of the sensor network (i.e., the number of sensor nodes)and the e�
ien
y of the system (i.e., the sampling rate) while guaranteeing a 
omplete
overage of D (i.e., ea
h sensor node is 
onne
ted at least to another node of the network in
ase of target-free s
enario). Although the same topology has been adopted for outdooras well as indoor situations, two di�erent trainings of the SV M-based approa
h havebeen performed sin
e the arising ele
tromagneti
 phenomena signi�
antly di�er (e.g., theele
tromagneti
 interferen
es). Otherwise, the 
alibration of training examples (T ), theseparation hyperplane H (λ), and the dis
retization of the investigation area (C) has beenperformed only on
e, namely for the outdoor 
ase, sin
e the format of the data pro
essedby the SV M does not 
hange. More in detail, the following setup has been 
onsidered:
T ∈ [100, 700] with step ∆T = 100, λ = 10i, i = {0, 1, 2, 3}, and C ∈ [15, 960] from arough dis
retization with C = 5 × 3 
ells of dimension 4λ × 4λ to the �nest one having
C = 40×24 
ells of dimension λ×λ. These values have been 
alibrated with referen
e tosingle-target experiments by evaluating the behavior of the lo
alization error de�ned as

ρ =

√

(

xact
j − xest

j

)2
+

(

yact
j − yest

j

)2

ρmax

(9)where ract
j =

(

xact
j , yact

j

) and rest
j =

(

xest
j , yest

j

) are the a
tual and estimated positions of the8



target, ρmax being the maximum admissible lo
ation error. As for the test 
ase at hand,it turns out that ρmax =
√

X2
D + Y 2

D and rest
j has been 
al
ulated from the probabilitymap a

ording to the following relationships

xest
j =

∑C
c=1 αcxc

∑C
c=1 αc

yest
j =

∑C
c=1 αcyc

∑C
c=1 αc

. (10)Figure 3 gives the normalized values of the lo
ation indexes obtained for di�erent 
ombi-nations of the 
ontrol parameters. Ea
h plot refers to the variation of a 
ontrol parameterkeeping 
onstant the others (T opt = 500, λopt = 100, Copt = 60).As far as the SV M training phase is 
on
erned, the referen
e measurements have been�rst 
olle
ted in the target-free s
enarios [i.e., τ̂ (r) = 0 ⇒ ξsct
m,s = 0, m, s = 1, ..., S,

m 6= s℄. Su

essively, the sets of RSS measurements [i.e., RSSm,s (t), m, s = 1, ..., S,
m 6= s, t = 1, ..., T ℄ have been 
olle
ted with the target lo
ated at T di�erent positions,
rj = (xj , yj), j = 1, .., T , randomly sele
ted within D to 
over as uniformly as possiblethe whole area under test. Con
erning the required 
omputational time, the burden ofthe training phase grows proportionally with the number of training samples and thedis
retization of D from a minimum of 3 × 102 [s] when T = 100, C = 15 up to amaximum of 104 [s] (i.e., almost three hours) when T = 700, C = 960.As regards the SV M test step, both single (J = 1) and multiple (J = 2) target tra
k-ing problems have been 
onsidered. Sin
e o�-the-shelf sensor nodes are used for theseexperiments, they allow to obtain one RSS measurement ea
h 5 × 10−2 [s]. Therefore,
onsidering the situation where ea
h node has to 
olle
t a RSS measurement for all other
S − 1 nodes, the maximum a
quisition time is 2 [s]. The system is then able to pro
essthe data and de�ne a lo
alization map αc, c = 1, ..., C, in 0.1 [s] using a 3 GHz PC with
2 GB of RAM.The �rst experiment deals with the outdoor tra
king of a single human being moving inside
D. Figure 4 shows the probability map estimated when the target is at ract

1 = (−16λ, 8λ).9



The 
ir
le gives the a
tual position. Two di�erent 
ases have been 
onsidered. Morespe
i�
ally, Figure 4(a) shows the probability map assuming that the same experimenthas been taken into a

ount in the training phase. Di�erently, the map in Fig. 4(b) hasbeen obtained the example not belonging to the training data set. It is worth noting thatthe target is 
orre
tly lo
alized in both maps sin
e the 
enter of the target lies within theregion with higher probability. The same experiment has been su

essively 
onsidered forthe indoor s
enario. The results of the SV M-based lo
alization pro
ess are shown in Fig.5. As for the previous test, the results when the same example has been either 
onsidered[Fig. 5(a)℄ or not [Fig. 5(b)℄ in the training phase have been reported. As expe
ted, thevalues of the lo
alization errors in
rease whatever the training be
ause of the 
omplexityof the ele
tromagneti
 intera
tions arising from the presen
e of the walls (i.e., multiplere�e
tions) in indoor environments. Nevertheless, the region with high probability still
ontains the a
tual position of the target thus demonstrating a good degree of reliabilityof the approa
h also in this 
ase.Let us now 
onsider a single target moving outdoor inside D along the straight line shownin Fig. 6. The RSS values have been measured at 6 di�erent time instants, but it is worthto point out that the a
quisition time 
an be further shortened to rea
h an almost real-time tra
king. The samples of the lo
alization maps and the estimated path are reportedin Fig. 7 and Fig. 6, respe
tively. As it 
an be observed, there is a good mat
hingbetween the a
tual path and the estimated one assessing the e�e
tiveness of the approa
hin real-time pro
essing, as well. The same analysis has been 
arried out for the indoor
ase. Although the moving target is quite 
arefully lo
alized, the result in Figure 8 andthe lo
ation indexes in Tab. I 
on�rm the higher 
omplexity of tra
king the target as
ompared to the outdoor 
ase.In order to deal with the tra
king of multiple targets, the SV M 
lassi�er has been trainedwith a mixed data-set 
ontaining examples with one (T1 examples with J = 1) and two(T2 examples with J = 2) targets. Sin
e T = T1 +T2 examples have been used also for thesingle-target training, some experiments have been 
arried out to analyze the dependen
eof the lo
alization on the per
entage of training samples from T1 and T2. The probability10



maps in Fig. 9 show that the position of one target 
an be 
orre
tly lo
ated although asmaller set of single-target examples has been used for the training phase (i.e., T1 < T2).Vi
e versa, a larger number of example is needed for an e�e
tive lo
alization of the twotargets as pointed out by the maps in Fig. 10 and quanti�ed by the lo
ation indexesin Tab. II. Su
h a behavior was expe
ted sin
e the number of di�erent 
ombinationswith two targets is higher if 
ompared to the single-target 
ase. Therefore, T1 = 150 and
T2 = 350 examples have been su

essively used for the training phase of the followingtra
king experiments.As representative examples, two di�erent situations with J = 2 have been dealt with.In the former, one target (j = 1) is moving within D while the other (j = 2) remainsimmobile in the same position. Instead, both targets are moving in the se
ond example.The a
tual traje
tory and the estimated one are shown in Fig. 11 and Fig. 12, respe
-tively. Whatever the example at hand, a quite 
areful indi
ation on the position and pathfollowed by the targets has been obtained as further 
on�rmed by the average values ofthe lo
alization errors (outdoor: ρ1 = 0.070, ρ2 = 0.061 - indoor: ρ1 = 0.101, ρ2 = 0.070).4 Con
lusionsIn this work, the lo
alization and tra
king of passive targets have been addressed by ex-ploiting the RSS values available at the nodes of a WSN . The problem at hand hasbeen reformulated into an inverse sour
e one aimed at re
onstru
ting the support of anequivalent sour
e generating a perturbation of the wireless links among the WSN nodesequal to that due to the presen
e of targets within the monitored area. The inversionhas been fa
ed with a learning-by-examples approa
h based on a SV M 
lassi�er devotedto determine a map of the a-posteriori probability that a di�erential equivalent sour
e ispresent within the investigation domain. Experimental results have assessed the e�e
tive-ness and reliability of the proposed approa
h in dealing with the tra
king of single andmultiple human beings both in indoor and outdoor environments.

11
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Fig. 1 - Equivalent Tra
king Problem - Sket
h of (a) the tra
king s
enario and (b) theequivalent inverse problem.15
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Fig. 4 - Single-target lo
alization - Outdoor S
enario - Probability maps of theinvestigation region D obtained when the test data (a) belongs and (b) does not belongto the training data set.18
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Fig. 5 - Single-target lo
alization - Indoor S
enario - Probability maps of theinvestigation region D obtained when the test data (a) belongs and (b) does not belongto the training data set.19



-12

-8

-4

 0

 4

 8

 12

-20 -16 -12 -8 -4  0  4  8  12  16  20

y
/λ

x/λ

Real
Estimated

Fig. 6 - Single-target tra
king - Outdoor S
enario - A
tual and estimated traje
tories.20



−20 20

12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}

−20 20

12

0.0 1.0

−
12

x/λ

y/λ
Pr {χ=+1 | Γ	}

(a) (b)

−20 20

12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}

−20 20
12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}
(c) (d)

−20 20

12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}

−20 20

12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}
(e) (f)

Fig. 7 - Single-target tra
king - Outdoor S
enario - S
reenshots of the probability mapof the investigation region D a
quired during the target motion.21
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king - Indoor S
enario - A
tual and estimated traje
tories.22
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Fig. 9 - Single-target lo
alization - Outdoor S
enario (T1 ∈ [0, 500], T2 ∈ [0, 500],
λ = 100, C = 60) - Probability maps of the investigation region D when using (a)
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Fig. 10 - Multiple-targets lo
alization - Outdoor S
enario (T1 ∈ [0, 500], T2 ∈ [0, 500],

λ = 100, C = 60) - Probability maps of the investigation region D when using (a)
100%T1 and 0%T2, (b) 80%T1 and 20%T2, (
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Outdoor Indoor

T ime Instant ρ ρ × ρmax [λ] ρ ρ × ρmax [λ]

1 0.071 3.32 0.209 9.76

2 0.070 3.30 0.131 6.09

3 0.060 2.78 0.115 5.38

4 0.057 2.67 0.048 2.23

5 0.045 2.09 0.089 4.15

6 0.074 3.46 0.140 6.53

Average Error : ρ 0.063 2.94 0.122 5.69

Tab. I - Single-target tra
king - Lo
alization errors for the outdoor and the indoors
enarios.27



Single Target Multiple Target

j = 1 j = 1 j = 2

ρ ρ × ρmax [λ] ρ ρ × ρmax [λ] ρ ρ × ρmax [λ]

(a) 0.044 2.07 0.217 10.12 0.158 7.37

(b) 0.059 2.77 0.196 9.14 0.135 6.31

(c) 0.093 4.34 0.151 7.02 0.074 3.44

(d) 0.150 6.98 0.149 6.96 0.062 2.91

(e) 0.262 12.23 0.063 2.93 0.106 4.94

(f) 0.357 16.67 0.031 1.46 0.063 2.93

Tab. II - Multiple-targets lo
alization - Outdoor S
enario - Lo
alization errors for thesingle and multiple target 
ase.28


