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Electromagnetic Passive Localization and Tracking of

Moving Targets in a WSN-Infrastructured Environment

F. Viani, P. Rocca, M. Benedetti, G. Oliveri, and A. Massa

Abstract

In this paper, an innovative strategy for passive localization of transceiver-free
objects is presented. The localization is yielded by processing the received signal
strength data measured in an infrastructured environment. The problem is reformu-
lated in terms of an inverse source one, where the probability map of the presence of
an equivalent source modeling the moving target is looked for. Towards this end, a
customized classification procedure based on a support vector machine is exploited.
Selected, but representative, experimental results are reported to assess the feasibil-
ity of the proposed approach and to show the potentialities and applicability of this

passive and unsupervised technique.

Key words: Object tracking, wireless sensor networks, transceiver-free objects, received

signal strength indicator, classification problem, support vector machine.



1 Introduction

In the recent years, there has been a wide and rapid diffusion of wireless sensor networks
(WSNs) [1] thanks to the availability of such low-power and pervasive devices integrating
on-board sensing, processing, and radio frequency (RF) circuitry for information trans-
mission. Usually, short-range communications are at hand since the wireless nodes are
generally densely distributed and characterized by low power consumption to ensure a
long lifetime. Therefore, WW.SNs have been also profitably used for location and tracking
purposes. In such a framework, the main efforts have been devoted to develop ad-hoc sys-
tems based on dedicated transponders/sensors [2| or assuming an “active” target equipped
with a transmitting device [3][4]. Different properties of the received signal, such as the
time of arrival (TOA) and the direction of arrival (DOA), have been successfully exploited
to address the localization problem [5|[6]. Other modalities to locate active targets are
based on the evaluation of the received signal strength (RSS) [7][8][9][10]. This is an
easily measurable quantity that has been also used to localize the wireless nodes of the
network through effective triangulation strategies [8]. Moreover, the distance between
nodes has been estimated thanks to simplified radio propagation models. Although easier
than a “passive” localization technique, the main drawback of these approaches is the need
of the target to be equipped with an ad-hoc device. Whether such a fact can be consid-
ered negligible when tracking either objects or animals (although the costs unavoidably
increase), other problems arise when dealing with people (e.g., privacy) and especially
with non-cooperative subjects as for elderly people. Moreover, such wearable devices can
undergo (casual or voluntary) damages thus limiting the reliability of the tracking system.
Other strategies concerned with transceiver-free targets have been also presented in the
scientific literature. State-of-the-art approaches are based on Doppler radar systems able
to estimate the distance between the target and the sensor [11]. As a matter of fact,
moving targets can be tracked through the analysis of the Doppler signature induced
by the object motion [12]. Unfortunately, the arising performance in real environments
can be strongly influenced by non-negligible instabilities leading to several false alarms.

Furthermore, slow-moving targets [13] are not generally detected.



This paper is aimed at presenting an inversion procedure, preliminary validated in [14], for
the localization and tracking of passive objects starting from the measurements of the RS'S
indexes available at the nodes of a W.SN. Since the transmission of information among
the wireless nodes is allowed by RF' signals, the arising electromagnetic radiations can be
also profitably exploited to sense the surrounding environment. Indeed, any target lying
within the environment interacts with the electromagnetic waves radiated by the nodes.
Therefore, the measurements of the perturbation effects on the other receiving nodes
is dealt with a suitable inversion strategy to determine the equivalent source modeling
the presence of the target/scatterer generating the perturbation itself. By virtue of the
fact that the number of nodes in a W.SN can vary and the need to have a simple and
flexible tracking/localization method allowing real-time estimates, a learning-by-examples
(LBE) strategy based on a Support Vector Machine (SV M) is used. Although only
recently applied for the solution of electromagnetic inverse problems, effective approaches
based on learning-by-examples techniques have been already proposed for the estimation
of the direction of arrival of desired/undesired signals [15][16], the detection of buried
objects [17][18][19], and the early beast cancer imaging [20] thanks to their efficiency and
versatility.

The outline of the paper is as follows. The mathematical issues concerned with the pro-
posed approach are detailed in Sect. 2 where the SV M-based method is described, as well.
In Sect. 3, representative results from a wide set of experiments dealing with the tracking
of single as well as multiple targets in both outdoor and indoor W.SN deployments are

shown. Eventually, some conclusions are drawn (Sect. 4).

2 Mathematical Formulation

Let us consider the two-dimensional (2D) scenario shown in Fig. 1(a). The investigation
domain D is inhomogeneous and constituted by a set of obstacles and moving targets to
be localized /tracked all lying in free-space. The known host scenario (i.e., the target-free

o (1)

domain) is described by the object function 7, (r) = € (r) — 1 — jZ2= where w is the

working angular frequency, r = (z,y) is the position vector, €, and o} being the dielectric
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permittivity and the conductivity, respectively. Moreover, the target/s is/are identified
by the dielectric distribution 7, (r), r € D,. The area under test is infrastructured with
a WSN and S nodes are deployed at r,, s = 1, ..., S spatial locations. The s-th wireless
node radiates an electromagnetic signal, £7¢ (r) "), and the field measured by the other
S — 1 nodes and arising from the interactions of the incident field with the scenario under
test is given by

E (r) = € ) + [ T () Go (¢ ) 1)

where Gy is the free-space Green’s function [21] and r,, is the position of the m-th (m =
1,...,S — 1) receiving node. As a matter of fact, the field induced in D is equivalent to
that radiated in free-space by an equivalent current density J (r) = 7 (r) " (r), r € D
[22] modeling the presence of whatever discontinuity of the free-space (i.e., both the
obstacles and the moving targets) where 7 (r) = 7, (r) if r € D, and 7 (r) = 7, (r) if
re Dy=D-—D,, D,and D, being the support of the targets and its complementary
area.

Equation (1) can be reformulated in a different fashion by defining a differential equivalent
current density .J (r) radiating in the inhomogeneous host medium [21] [Fig. 1(b)]. Since

the host medium is a-priori known, the radiated field can be then expressed as

0 (1) = £ (1 / ()G (. 1,,) dr’ (2)

where

& (1) = € () + [ 70 () €20 () Go () (3)

is the field of the scenario without targets and equivalent to an “incident” field on the
targets, J (r) = 7 (r) ©(r) and 7 (r) = 7 (r) — 7 (1) is the differential object function.

In (3), the second term on the right side is the field scattered from the host medium

without targets, EtOt being the electric field related to £¢ in correspondence with the

(1) The scalar case has been considered to simplify the notation. However, the extension to the
vectorial case is straightforward.



target-free scenario. Moreover, G; is the inhomogeneous Green’s function for the target-

free configuration [21|, which satisfies the following integral equation

Gy (r,1') = Go (r,1)) + /D 7 (') Go (r,17) Gi (27, 1) dr”. (4)

With the knowledge of G; (i.e., the knowledge of the target-free scenario) the scattering
problem turns out to be the retrieval of the differential source .J occupying the target
domain D,. The detection of the target position and the definition of the target trajectory
in D can be then formulated as the definition of the support of the differential equivalent
source, which satisfies the inverse scattering equation (2), starting from the measurements
of & (r,,), m =1,...,S—1. This is possible in a WS N-infrastructured environment since
the nodes at hand are simple and cheap devices that give an indirect estimate of the field
value through the RSS index. Accordingly, the RSS is measured at the m-th node
when the s-th node is transmitting by considering both the target-free scenario [£™ (r,,)
knowledge| and the presence of targets within D [¢!! (r,) knowledge| and the differential
field &< = &1 (1) — ¢ine (r, ) could be used for the inversion procedure.

However, it is worth to take into account that the power radiated by the W SN nodes can
vary due to several factors (e.g., battery level of the W NS nodes, environmental condi-
tions) thus “blurring” the data acquisition and, consequently, complicating the solution of
the inverse problem at hand. To overcome this drawback, the inversion is statistically re-

cast as the definition of the probability that a target is located in a position of D starting

sct
m,s?

from the knowledge of & s=1,..,8 m=1,....5, m # s. The arising classification
problem is then solved by means of a suitable SV M-based approach. Such a strategy al-
lows one to improve the generalization capability of the localization and tracking system
since it is less sensitive to the instantaneous variations of the measurements by virtue of
the underlying probabilistic model. Moreover, it is also able to deal with scenarios not
considered in the training phase as well as to perform the real time tracking of multiple
targets. More specifically, the proposed approach works as follows. The region D where

the targets are looked for is partitioned into a grid of C' cells centered at r., c = 1,...,C.

Each c-th cell is characterized by its state, x., which can be either empty (y. = —1) or



occupied (y. = 1) whether a target (i.e., the corresponding differential equivalent source)
is present or absent. Moreover, the probability that a target belongs to the c-th cell,

a. = Pr{x.=1|(L,c)}, is given by

1
1+eap{pH[p(L.0)] +4q}

c=1,..C (5)

Qe

where [ = { f,ffs; s=1,..,8m=1,...5 m# n}, and p, ¢ are unknown parameters to
be determined [23]. In (5), the function ¢ () is a non-linear mapping from the data of
the original input space, L', to a higher dimensional space (called feature space) where the
data are more easily separable through a simpler function (i.e., the hyperplane H).

The hyperplane H is off-line defined throughout the training phase by exploiting the
knowledge of a set of T' known examples where both the input data (I, t = 1,...,T) and
the corresponding maps (x, = {Xcs; c=1,...,C}, t = 1,...,T) are available. Usually, a

linear decision function is adopted
Hlp@C o] =w oL, e)+b c=1,..C (6)

w and b being an unknown normal vector and a bias coefficient, respectively. The decision
function parameters unequivocally define the decision plane and are computed in the

training phase by minimizing the following cost function

® ®
T ZCZ N ic 0 )
=) c+ c—
2 S CJ(rt) =1 =1 S VS

subject to the separability constraints

w .

(Lye)+b> l—ng, c=1,..,C

|
AS

(8)

w-pLe)+b<n” —1, c=1,..C

where \ is a user-defined hyperparameter [24] that controls the trade-off between the
training error and the model complexity to avoid overfitting. Moreover, ng and ng are
the so-called slack variables related to the misclassified patterns. They are introduced

because the training data are usually not completely separable in the feature space by



means of a linear hyperplane.
The minimization of (7) is performed following the guidelines detailed in [17] and also

exploiting the so-called kernel trick method [23].

3 Experimental Validation

The feasibility and the effectiveness of the proposed approach have been assessed through
an extensive experimental validation carried out in both indoor and outdoor scenarios
(Fig. 2). The nodes have been placed at fixed positions r, = (x4, ys), s = 1,...,.S, on the
perimeter of the investigation area D. In all experiments, the region D has been assumed
having the same size (—20A < z < 20\ and —12\ < y < 12)) whatever the scenario at
hand, A being the free-space wavelength of the wireless signals transmitted by the nodes
(e.g., f =2.4GHz), and S = 6 Tmote Sky nodes have been used to obtained a suitable
trade-off between the complexity of the sensor network (i.e., the number of sensor nodes)
and the efficiency of the system (i.e., the sampling rate) while guaranteeing a complete
coverage of D (i.e., each sensor node is connected at least to another node of the network in
case of target-free scenario). Although the same topology has been adopted for outdoor
as well as indoor situations, two different trainings of the SV M-based approach have
been performed since the arising electromagnetic phenomena significantly differ (e.g., the
electromagnetic interferences). Otherwise, the calibration of training examples (7'), the
separation hyperplane H (A), and the discretization of the investigation area (C') has been
performed only once, namely for the outdoor case, since the format of the data processed
by the SV M does not change. More in detail, the following setup has been considered:
T € [100,700] with step AT = 100, A = 10%, i = {0,1,2,3}, and C' € [15,960] from a
rough discretization with C' = 5 x 3 cells of dimension 4\ x 4\ to the finest one having
C = 40 x 24 cells of dimension A x A. These values have been calibrated with reference to

single-target experiments by evaluating the behavior of the localization error defined as

= (g =)’ + (o =) (9)

pmax

where 1§ = (x?“, y;-mt) and r5* = (x?“, yj“) are the actual and estimated positions of the



target, pmaee being the maximum admissible location error. As for the test case at hand,
it turns out that p,., = /X3 + Y5 and 15" has been calculated from the probability

map according to the following relationships

C
est Ec:l Qe
; = —¢
! Zc:l O{C

C
est Zc:l Oécyc (10)

i = c .
Zc:l ac

Figure 3 gives the normalized values of the location indexes obtained for different combi-
nations of the control parameters. Each plot refers to the variation of a control parameter
keeping constant the others (T°P* = 500, A"* = 100, C°?* = 60).

As far as the SV M training phase is concerned, the reference measurements have been
first collected in the target-free scenarios [i.e., 7(r) = 0 = & = 0, m,s = 1,..., S,
m # s|. Successively, the sets of RSS measurements [i.e., RSS,, s (t), m,s = 1,...,S,
m # s, t =1,...,T| have been collected with the target located at T" different positions,
r; = (25,9;), j = 1,..,T, randomly selected within D to cover as uniformly as possible
the whole area under test. Concerning the required computational time, the burden of
the training phase grows proportionally with the number of training samples and the
discretization of D from a minimum of 3 x 10? [s|] when T" = 100, C' = 15 up to a
maximum of 10* [s] (i.e., almost three hours) when T = 700, C' = 960.

As regards the SV M test step, both single (J = 1) and multiple (J = 2) target track-
ing problems have been considered. Since off-the-shelf sensor nodes are used for these
experiments, they allow to obtain one RSS measurement each 5 x 1072 [s]. Therefore,
considering the situation where each node has to collect a RS'S measurement for all other
S — 1 nodes, the maximum acquisition time is 2 [s]. The system is then able to process
the data and define a localization map a., ¢ = 1,...,C, in 0.1 [s] using a 3GH z PC with
2GB of RAM.

The first experiment deals with the outdoor tracking of a single human being moving inside

D. Figure 4 shows the probability map estimated when the target is at 7 = (=16, 8)\).



The circle gives the actual position. Two different cases have been considered. More
specifically, Figure 4(a) shows the probability map assuming that the same experiment
has been taken into account in the training phase. Differently, the map in Fig. 4(b) has
been obtained the example not belonging to the training data set. It is worth noting that
the target is correctly localized in both maps since the center of the target lies within the
region with higher probability. The same experiment has been successively considered for
the indoor scenario. The results of the SV M-based localization process are shown in Fig.
5. As for the previous test, the results when the same example has been either considered
[Fig. 5(a)] or not [Fig. 5(b)| in the training phase have been reported. As expected, the
values of the localization errors increase whatever the training because of the complexity
of the electromagnetic interactions arising from the presence of the walls (i.e., multiple
reflections) in indoor environments. Nevertheless, the region with high probability still
contains the actual position of the target thus demonstrating a good degree of reliability
of the approach also in this case.

Let us now consider a single target moving outdoor inside D along the straight line shown
in Fig. 6. The RSS values have been measured at 6 different time instants, but it is worth
to point out that the acquisition time can be further shortened to reach an almost real-
time tracking. The samples of the localization maps and the estimated path are reported
in Fig. 7 and Fig. 6, respectively. As it can be observed, there is a good matching
between the actual path and the estimated one assessing the effectiveness of the approach
in real-time processing, as well. The same analysis has been carried out for the indoor
case. Although the moving target is quite carefully localized, the result in Figure 8 and
the location indexes in Tab. I confirm the higher complexity of tracking the target as
compared to the outdoor case.

In order to deal with the tracking of multiple targets, the SV M classifier has been trained
with a mixed data-set containing examples with one (7} examples with J = 1) and two
(T, examples with J = 2) targets. Since T' = T + T, examples have been used also for the
single-target training, some experiments have been carried out to analyze the dependence

of the localization on the percentage of training samples from 77 and 7,. The probability
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maps in Fig. 9 show that the position of one target can be correctly located although a
smaller set of single-target examples has been used for the training phase (i.e., T} < T3).
Vice versa, a larger number of example is needed for an effective localization of the two
targets as pointed out by the maps in Fig. 10 and quantified by the location indexes
in Tab. II. Such a behavior was expected since the number of different combinations
with two targets is higher if compared to the single-target case. Therefore, 77 = 150 and
T, = 350 examples have been successively used for the training phase of the following
tracking experiments.

As representative examples, two different situations with J = 2 have been dealt with.
In the former, one target (5 = 1) is moving within D while the other (j = 2) remains
immobile in the same position. Instead, both targets are moving in the second example.
The actual trajectory and the estimated one are shown in Fig. 11 and Fig. 12, respec-
tively. Whatever the example at hand, a quite careful indication on the position and path
followed by the targets has been obtained as further confirmed by the average values of

the localization errors (outdoor: p;, = 0.070, p, = 0.061 - indoor: p; = 0.101, p, = 0.070).

4 Conclusions

In this work, the localization and tracking of passive targets have been addressed by ex-
ploiting the RSS values available at the nodes of a W.SN. The problem at hand has
been reformulated into an inverse source one aimed at reconstructing the support of an
equivalent source generating a perturbation of the wireless links among the W.S N nodes
equal to that due to the presence of targets within the monitored area. The inversion
has been faced with a learning-by-examples approach based on a SV M classifier devoted
to determine a map of the a-posteriori probability that a differential equivalent source is
present within the investigation domain. Experimental results have assessed the effective-
ness and reliability of the proposed approach in dealing with the tracking of single and

multiple human beings both in indoor and outdoor environments.
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Fig. 1 - Fquivalent Tracking Problem - Sketch of (a) the tracking scenario and (b) the

equivalent inverse problem.
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Fig. 2 - Problem Geometry - Plots of (a) the outdoor and (b) the indoor environments

with W.SN-based tracking system.
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Fig. 3 - Calibration - Localization error as a function of the SV M control parameters:

T (A =100, C = 60), A (T =500, C' = 60), and C (T = 500, A = 100).
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Fig. 4 - Single-target localization - Outdoor Scenario - Probability maps of the
investigation region D obtained when the test data (a) belongs and (b) does not belong

to the training data set.
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Fig. 5 - Single-target localization - Indoor Scenario - Probability maps of the
investigation region D obtained when the test data (a) belongs and (b) does not belong

to the training data set.
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Fig. 6 - Single-target tracking - Outdoor Scenario - Actual and estimated trajectories.
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Fig. 7 - Single-target tracking - Outdoor Scenario - Screenshots of the probability map

of the investigation region D acquired during the target motion.



12 % = =

4 /
-8
o/ Real —e—

Estimated ----4&---

-12 & - u
20 -16 -12 -8 -4 0 4 8 12 16 20

Fig. 8 - Single-target tracking - Indoor Scenario - Actual and estimated trajectories.

22



0.0 Pr{y—+1|T} 1.0

(a)

-20 X/A 20

0.0 Pr {x=+1|T} 1.0

()

-20 x/A 20

0.0 Pr{x=+1|T} 1.0

(¢)

12

y/A

-12

o

0.0 Pr{y—+1|T} 1.

()

-20 x/A 20

12

y/A

-12

0.0 Pr {x=+1|T} 1.0

(d)

-20 X/A 20

12

y/A

-12

0.0 Pr {x—+1]|T} 1.0

(f)

Fig. 9 - Single-target localization - Outdoor Scenario (11 € [0,500], T» € [0, 500],

A =100, C' = 60) - Probability maps of the investigation region D when using (a)
100%T and 0%y, (b) 80%T, and 20%Ts, (¢) 60%T, and 40%Ts, (d) 40%T; and 60%Ts,

(e) 20%T; and 80%T3, and (f) 0%T; and 100%T5 of samples in the training phase.

23



0.0 Pr{y—+1|T} 1.0

(a)

-20 X/A 20

I

0.0 Pr {x=+1|T} 1.0

()

-20 x/A 20

©

0.0 Pr{x=+1|T} 1.0

(¢)

12

y/A

-12

o

0.0 Pr{y—+1|T} 1.

()

-20 x/A 20

12

y/A

©

0.0 Pr {x=+1|T} 1.0

-12

(d)

-20 X/A 20

12

y/A

©

0.0 Pr {x—+1]|T} 1.0

-12

(f)

Fig. 10 - Multiple-targets localization - Qutdoor Scenario (Ty € [0,500], T» € [0, 500],
A =100, C' = 60) - Probability maps of the investigation region D when using (a)
100%T and 0%y, (b) 80%T, and 20%Ts, (¢) 60%T, and 40%Ts, (d) 40%T; and 60%Ts,
(e) 20%T; and 80%T3, and (f) 0%T; and 100%T5 of samples in the training phase.
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Outdoor Indoor
Time Instant p P X Pmaz [N p P X Pmaz [N
1 0.071 3.32 0.209 9.76
2 0.070 3.30 0.131 6.09
3 0.060 2.78 0.115 5.38
4 0.057 2.67 0.048 2.23
) 0.045 2.09 0.089 4.15
6 0.074 3.46 0.140 6.53
Average Error : p 0.063 2.94 0.122 5.69

Tab. I - Single-target tracking - Localization errors for the outdoor and the indoor

scenarios.
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Single Target Multiple T'arget
Jg=1 Jg=1 J=2

p P X Prmaz [Nl p P X Prmaz [Nl p P X Prmaz [Nl
(a) 0.044 2.07 0.217 10.12 0.158 7.37
(b) 0.059 2,77 0.196 9.14 0.135 6.31
() 0.093 4.34 0.151 7.02 0.074 3.44
(d) 0.150 6.98 0.149 6.96 0.062 2.91
(e) 0.262 12.23 0.063 2.93 0.106 4.94
(f) 0.357 16.67 0.031 1.46 0.063 2.93

Tab. II - Multiple-targets localization - Outdoor Scenario - Localization errors for the

single and multiple target case.
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