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Abstract— The increasing demand in homeland security speeds up the development of innovative and non-invasive systems to localize
and track moving objects in complex environments. In this paper the real-time localization of transceiver-free targets is addressed by
means of learning by example methodology that exploits the received signal strength indicator available at the nodes of a wireless sensor
network as input data. This approach uses neither dedicated sensors nor active devices put on the target to localize both idle and moving
objects. The definition of a customized classifier during an offline training procedure enables the real-time generation of a probability
map of presence by processing the output of the support vector machine. Some selected experimental results validate the effectiveness
of the proposed methodology applied in real scenarios.

. INTRODUCTION

Accurate localization and tracking is an essential part of many kind of applications based on the real-time determination of
moving object position. General location discovery problem has recently attracted interest in civilian and military surveillance
thanks to the growing advances in low-power, low-cost and highly integrated sensors. In certain civilian applications, human
beings walking through a building, as schools or hospitals, can be located exactly at all times. In the framework of
communication systems, wireless sensor networks (WSNs) appear as an ideal infrastructure for localization purposes
providing clear interaction with the physical world. Sensors exploit the benefits of sensor data fusion by collaborating and
sharing information. Tracking in WSN poses different challenges due to communication, processing and energy constraints.

Nowadays, most of the proposed approaches deal with the localization of targets that wear an active transmitting and
receiving device [1-3]. Starting from this assumption, the mobile target could be localized exploiting different parameters of
its transmitted signal such as the direction of arrival (DOA) or the time of arrival (TOA) [4]. Unfortunately, the indoor radio
channel suffers from severe multipath propagation and shadow fading causing less accurate measurements. Moreover, in
indoor areas, due to different kind of obstructions, dramatically large errors occur in the estimation of such parameters. To
overcome these drawbacks, complex signal processing techniques have to be implemented although the limited resources
available on the integrated and portable systems.
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Fig. 1 Schematic geometry of a realistic indoor environment with WSN infrastructure for target localization.
Other location-sensing modalities based on received signal strength (RSS) have been studied to localize active targets

exploiting the easily measurable RSS [5]. In such approaches, the localization problem is based on the known location
coordinates of some reference nodes and on the RSS measurements among the other network elements. These



measurements are related to the distance between the transmitting nodes through classic radio propagation pathloss models
and, according to triangulation strategies, the localization of the active target is possible if it is connected to at least three
reference nodes.

Alternative approaches are focused on the localization of unknown targets taking up the monitored area without any
transmitting device. Conventionally, applications like perimeter monitoring for homeland security adopt Doppler radar as
common microwave sensor to detect the distance and the velocity of the object [6]. Since the objective of life recognition for
homeland security is the identification of human presence and the differentiation among the human activities, it could be
intuitive the use of the Doppler signature induced by human motion [7]. This technology, although widely employed, leads to
a lot of false alarm and requires clear environment for reliable operation. Moreover, slow-moving targets become invisible
since the Doppler shift depends on the target motion [8].
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Fig. 2 Actual and estimated path of the moving target.

In this work, the localization problem is addressed by considering only the RSS provided by the nodes of a WSN, as in [9].
Unlike state-of-the-art approaches, the tracking procedure needs only the quality link information easily provided by the
nodes of the WSN, without the need of additional sensors. As a matter of fact, the target moving inside the investigation
domain interacts with the electromagnetic signals transmitted by the wireless devices, thus modifying the values of the
measured quality indexes. Such a localization problem can be reformulated in terms of a simplified electromagnetic inverse
scattering problem and solved in real-time by means of a learning-by-example (LBE) strategy [10]. A standard Support Vector
Machine (SVM) classifier constructs a rule for discriminating between classes and just selecting the class with the most
winning two-class decision [11]. However, in such an application the output binary classification map could provide a raw
estimation of the object position since the reconstructed information is thresholded just considering the sign of the decision
function. To overcome this drawback, the proposed procedure gives as output the probability that the target was located in a
precise position inside the considered area. This posterior probability, when evaluated overall the investigation domain,
produces a map of presence probability of the whole monitored area.

Il. MATHEMATICAL FORMULATION

Let us assume that a two-dimensional indoor space /, is monitored by a WSN infrastructure of N reference nodes.
Ip= {0 <x<Xp;,0<y< YD} is a realistic homeland environment of whatever shape, where heterogeneous objects can be found
in, as shown in Fig. 1. For the sake of reality, the nodes are installed on the walls of the room, that is the perimeter of /,, in
order to minimize the negative impact of the network. More in detail, each sensor node is located at known position
(xn,yn),nzl,...,N and can take measurements at a sequence of time instants {tﬁ");jzo,...,J—l;n:1,...,N}, J being the
maximum number of time samples needed to collect all the link quality indexes avoiding data loss due to transmission errors.
The nodes are all connected via a multi-hop network strategy with the advantage that each one only has to be within the
range of at least one other node to guarantee the transmission of the data also in case of temporary malfunctioning of some
network elements. Assuming that each node can transmit and receive data with all the others, the maximum number of
M=N><(N—1) wireless links exists in the network. The quality of each link can be quantified by the Received Signal Strength
Indicator (RSS/) as an easily measurable parameter. Every time the k -th, k=1,...,N, node receives the signal from another



| -th, /=1,..,N -1, node the quality index RSSI,'((t}k)) is available at the tj-k) time instant, at the k -th node. The value of the

signal strength depends, first of all, from the distance between transmitter and receiver, but it is also strictly related to the
presence of obstacles the signal runs into. The consequent generation of the basic propagation effects like reflection,
diffraction and scattering is responsible for the unknown perturbation of the signal strength. Moreover, the raw collected data
are affected by fluctuations that could be attributed to different kind of fading as well as hardware instability. These multiple
effects can be quickly removed by pre-processing the raw data with ad-hoc filtering techniques as the histogramic analysis

—
proposed in [12]. The output of the filtering procedure can be seen as a stabilized value RSS/k :Q(RSSI,’((t}k))) obtained after J
time samples. Among the physical factors influencing the signal strength, the presence and the position (xs,ys) of the moving
target object play a significant role, where s=1,..,S are the indexes of the timestamps when the changing object position is

considered. This contribution is the quantity that carries the unknown relation with the target position and can be almost
isolated by subtracting the environment footprint from the raw signal through differential measurements

B =Pl _q
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Py @and @) being the @L measurements in presence and absence of the moving target, respectively.

Starting from the quantities A, the problem of tracking the moving target inside /;, is reformulated as the definition of a
location-probability map of the observation domain. Such a probability is derived from the unthresholded output of an ad-hoc
SVM classifier f(w) [13], where @ = {A’k,(xt,yt );t = 1,...,T} is the input test data vector, T being the number of the test points
(x,,y;) of I, where the probability is evaluated.
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Fig. 3 Probability maps of presence of moving object inside homeland environment at (a) s=3 and (b) s=4 time sample.

Test data are classified by the learning machine that constructs, only once and offline, the decision function f(e) on the
base of the input-output vector pairs (m,,n,),rzl,...,R , representing the so-called training data set V¥ ,

m, = {A’k,(xh,yh);h =1,...,H}(,) and n, ={o,;h=1,..,H},;r=1,..,R

being the input vector and the output vector, respectively. Every input-output pair carries the unknown relation between
the measured data A, and the corresponding class o, to which the position (xh,yh) belongs. Since the localization
problem has been recast as a binary classification problem, the class index o, € {— 1,+ 1}. More in detail, o, =+1 if the h-th

point of /,, corresponds to the position of the target object, o, =—1 otherwise, as shown in Fig. 1.

1. EXPERIMENTAL RESULTS

The effectiveness of the proposed methodology has been assessed by carrying out a set of preliminary experimental results.
The localization strategy has been applied to a realistic noisy environment monitored by a WSN infrastructure composed
by N=8 sensor nodes installed on the walls of the room. The size of the considered area has dimensions X, =554, Y, =454,



where A is the wavelength of the working frequency f =2.4GHz . As shown in the maps of Fig. 3, some heterogeneous
obstacles, like desks and closets, are present and they obscure the line of sight of many wireless links. In the optimal condition
when each node communicates with all the others, a total of M =56 wireless links exists. Even if some transmitted packets
are corrupted because of transmission errors or collisions, the selected value J=10 of subsequent time instants of RSSI
measurements guarantees that all the links were acquired and the proper generation of the input vector w .

s X [4] ysl4] &5[4]
1 17 38 28
2 16 33 3.0
3 15 28 3.2
2 15 21 28
5 13 14 14
6 11 8 3.1

Tab. | Localization errors of all the considered time instants.

The training set ¥ is composed by R =250 samples, each one has been generated with a different randomly-chosen and
uniformly distributed position of the target object inside |D . Every training position is composed by H=100 samples, still
randomly-chosen, whose states are set according to the binary rule previously defined. More in detail, if the training data
refers to a single object detection, H—1 class states are o, =-1;h=1,...,.H-1.

The selected representative results deal with the tracking of a single human being moving inside the monitored area. Fig. 2
shows the actual path in comparison with the estimated positions obtained at S=6 subsequent time instants. For each
acquisition the probability map of presence is generated and in Fig. 3 two representative results obtained at s=3 and s=4
are shown. As can be seen, the proposed methodology detects the presence of the human being and the actual position,

depicted by the white cross, is correctly estimated. Localization errors 55:\/(xs—xs)+(ys—y_s), where (XS,Z) is the

estimated position with higher probability, of all the timestamps are reported in Tab. I.

IV. CONCLUSIONS

In this work, the problem of localizing and tracking transceiver-free moving objects in WSN infrastructured environments
has been dealt with. The applicability of such methodology to indoor scenarios makes it very attractive to the field of
homeland security. The proposed strategy exploits the easily available signal strength measured by the nodes of the WSN in
conjunction with a learning-by-example methodology based on SVM in order to obtain real-time probability maps of target
presence inside the investigation domain. Some experimental results related to the tracking of a single moving human being
inside a realistic indoor environment have been shown.
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