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This work presents an improved Multi-Scale algorithm for microwave imaging of two-
dimensional scatterers. The proposed methodology includes a feedback between high- 
and low-resolution reconstructions in order to correlate the iterative reconstruction steps. 
Towards this end, the appealing features of a Particle Swarm-based algorithm are fully 
exploited. Such an integration is aimed at better matching a suitable representation of the 
unknowns with the global optimization properties of the stochastic optimizer to allow 
faithful reconstructions. 

 
 

Introduction 
 

The reconstruction of the electromagnetic properties of an unknown area starting from 
the measurement of the diffused electromagnetic field is still an open problem affected by 
some severe obstacles. In fact, the non-linear nature of the mathematical model that 
describes the scattering phenomena complicates the inversion procedure intrinsically 
characterized by the ill-posedness [1]. Moreover, the information content of the scattered 
field [2] even in multi-view systems [3] is limited. Therefore a key issue in every 
microwave imaging problem is the optimal representation of the unknowns in order to 
fully exploit all the available information. Toward this end, several multi-resolution 
approaches have been recently proposed in order to guarantee a high resolution only in 
the regions of interest (RoIs). Some approaches [4] define a multi-resolution 
discretization of the investigation domain starting from a-priori assumptions. Similarly, 
E. Miller proposed a wavelet expansion [5], [6] to deal with different statistical 
configurations of the scenario under test. On the contrary, the approach presented in [7] 
avoids a-priori hypotheses and it considers an adaptive distribution of the spatial 
unknowns according to the information gained during an iterative multi-steps process. 
In the same framework, this paper proposes an improved methodology with respect to 
that presented in [7] aiming at overcoming some limitations. Firstly, a sort of feedback 
mechanism has been included in order to contemporarily take into account all the 
different resolution grids adopted for the unknowns expansions. Consequently, because 
of the nonlinear nature of the cost function at hand, an innovative optimization approach 
has been used for the cost function minimization. As a matter of fact, although a multi-
resolution strategy intrinsically reduces the search space (with respect to a standard 
“bare” approach) thus limiting the occurrence of local-minima, it does not completely 
eliminate the false-solutions problems. Therefore, the optimization block of the multi-
scaling methodology has been redesigned by inserting a global optimization technique 
based on the particle swarm optimizer (PSO) [8]. 
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Mathematical Formulation 
 
Let us consider a two-dimensional geometry. An unknown distribution of the object 
function ),( yxτ  has to be reconstructed in an unknown region DI starting from a set 
measures of the scattered electric field, , collected in a 
measurement domain DM. By assuming a multi-view/multi-illumination acquisition setup, 
the scenario under test is probed by a set of different incident fields, , 

. The arising scattering phenomena can be described by the following system 
of nonlinear integral equations 
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which turns out to be ill-posed and ill-conditioned without a unique solution. To 
overcome these drawbacks, the problem is commonly addressed by looking for the 
configuration of the unknowns that minimizes a suitable cost function (3) forcing the 
solution to fit the available scattering data 
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where { }VvNnyxEyxu nn
v
totnn ,...,1;,...,1);,(),,( === τ . In order to better exploit the 

information available from scattered data [2], an innovative approach aimed at fully 
exploiting the features of the adaptive multi-resolution strategy proposed in [7] will be 
adopted. Such a methods considers a new processing of the data through an integration of 
the multi-steps procedure with an evolutionary optimization algorithm. The key-features 
of the approach can be summarized as follows. 
Low-Resolution Reconstruction. A “rough” reconstruction is achieved by means of the 
minimization of ( )uΦ  by considering a uniform discretization of the investigation area 
with  equal square basis functions. )1(N
Iterative Multi-Resolution Procedure. Starting from the initial estimate ( )1u  obtained 
through the “Low-Resolution Reconstruction”, the following operations are iterated at 
each step “s” of the multi-scaling procedure: 
  RoIs Detection. According to a clustering method based on the analysis of the image-
histogram [9], )(sT  RoIs are identified by defining their centers ( ))(
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  Combined Multi-Resolution Expansion. A finer expansion is used in the estimated RoIs 
so that a higher resolution level  is adopted in those areas at the s-th step. Moreover, )(sR



the unknowns related to previous )1( −R  resolution levels are not neglected, but they are 
simultaneously optimized to obtain a sort of retrieval feedback. Even though the number 
of unknowns grows during the multi-step procedure, (e.g.,  
is the number of unknowns at the s-th step), it should be noticed that they are not “blind” 
parameters since they are set according to the information gained at previous steps. 

))(()1)(()1( ... sRsR NNN +++ −

  PSO-based Optimization. Previous works [7], [9] consider a deterministic optimizer for 
the minimization of the multi-resolution cost function since the multi-scaling technique 
limits the dimension of the solution-space and the occurrence of local minima. However, 
the presence of false solution cannot be completely avoided and a global optimization 
procedure is needed. Towards this end, the easy implementation and integration with the 
multi-scaling technique, as well as the simple tuning of the control parameters and the 
low computational cost, seem to indicate the PSO as a convenient choice. 
According to the swarm logic, a set of )(sI  trial solutions (called swarm of particles 

) are generated by defining their positions )()( ,...,1; ss
i Iip = )(s

iu  (on the basis of the 

information acquired during the multi-step process) and velocities )(s
i

g  in the solution 

space. Successively,  iterations of the PSO are performed by applying the evolutionary 
operators defined in 

K
[10] to achieve an estimate of the unknown dielectric profile, 
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  Termination Condition. The iterative multi-step scheme is terminated when there is a 
stationariness on the number of estimated RoIs and their geometrical parameters 
( ))(

)(
)(
)( , s

tc
s
tc yx  and  )(
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s
tL [9]. 

 
Numerical Validation 

 
In this section, a selected test case is shown to preliminarily assess the potentialities of 
the proposed reconstruction method. It refers to the experimental database [11] and it is 
concerned with the multiple-object configuration of two homogeneous circular cylinders 
characterized by an object function 3.00.2),( ±=yxτ . Their radius measures  and 
they are located about  from the center of the experimental setup, while is 
the distance between the centers of the cylinders. As far as the retrieval process is 
concerned, all the available data (

mm15
mm30 mm90

49=M , 36=V ) at GHzf 4=  have been considered 
to reconstruct an investigation domain of . The enhancement of the 
reconstruction accuracy allowed by the IMSA-PSO integrated strategy can be noticed in 
Figure 1, where a comparison with the same multi scaling technique using a deterministic 
optimizer is shown. Even though the scatterers are correctly located in both the numerical 
experiments, ( ,  versus , 

; ,  versus , 

) as well as satisfactory dimensioned (the reconstructed radii are equal 

to  and  for the IMSA-PSO, while they turn out to be 

 and  with the IMSA-CG), the PSO provides a more 
faithful and homogeneous retrieval of the object function (maximum value of the object 
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function equal to  versus ), thus contributing to the improvement 
of the overall quantitative imaging of the structure under test. 
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Figure 1. Real Database “Marseille”. Reconstruction of a multiple-object configuration by means 
of the iterative multi-scaling technique integrated with a conjugate gradient based algorithm, (a), 

and a PSO based algorithm (b). 
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