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GA-Enhanced ADS-Based Approach for Array Thinning

G. Oliveri and A. Massa

Abstract

This paper proposes a Genetic AlgorithtiA)-enhanced Almost Difference Sed D5S)-
based methodology to design thinned linear arrays with leakpsidelobe levels{SLs).
The method allows one to overcome the limitations of thedsesh4 DS approach in terms
of flexibility and performances. The numerical validatioarried out in the far-field and for
narrow-band signals, points out that with affordable cotaponal efforts it is possible to
design array arrangements that outperform standdvé-based designs as well as standard

G A approaches.

Key words - Array Antennas, Linear Arrays, Thinned Arrays, Almost Rifénce Sets, Sidelobe

Control.



1 Introduction

Modern radars for remote sensing and traffic control, devfoe satellite and ground commu-
nications, and biomedical imaging systems often requidtateon patterns with a very high
directivity [1]. To meet this requirement, large thinnedags are usually used because of their
advantages in terms of weight, consumption, hardware oexitp] and costs over their filled
counterparts [1]. Unfortunately, thinning large arrayduees the control of the peak sidelobe
level (PSL). In order to overcome such a limitation, several technigiave been proposed
(e.g., random techniques [2][3], algorithmic approacl#sdynamic programming [4], genetic
algorithms [5][6], simulated annealing [7][8], and palgicwarm optimizers [9]) and efficient
methods for designing thinned arrays with I@%% Ls are still of great interest [10] due to their
importance in practical applications [11]. Difference S@?2S's) have been at first employed to
analytically determine thinned arrangements with welltoalied sidelobes [10]. More recently,
such an analytical approach has been extended to a widsraflggometries by exploiting the
mathematical properties of Almost Difference SetgXSs) [12][13]. Reliable and-priori
predictable bounds for th®SL of the synthesized arrays have been provided [14], as well.
Moreover, the reliability of the analytiel D.S-based thinning has been analyzed also taking
into account the mutual coupling effects among array elegjdi®]. However, despite several
interesting features and advantages, the usd Ot sequences for array thinning has some
limitations that could prevent their widespread explaodain real applications [14][16]. More

specifically:
1. ADS-based arrays usually provide sub-optinfef L performances;

2. although large repositories ofDSs are available [17]AD.S arrays with arbitrary aper-
ture sizes and thinning factors cannot be designed, siie¢® sequences exist only for

specific sets of descriptive parameters;

3. even for admissible aperture sizes and thinning factonseige purposed DS construc-
tion techniques do not exist at present and the explicit oofd DS sequences has to be

determined on a case by case basis using suitable constrticiorems [12][13].



This paper is then aimed at introducing a technique able hamere thedD S-based design
methodology and to overcome the above limitations. Towdrdsend, a& A-based procedure
exploiting and improving the approach in [14] seems to be ®m@l candidate since:a)

(G As are intrinsically able to deal with discrete or binary ap#ation problems [6] as those
of interest, b) G As have been extensively and successfully applied to ariayitig [5], (c)
a-priori information and constraints from D.S-based designs can be easily integrated into the
(GG A-based optimization [6]. Accordingly, & A-enhancedd DS methodology is hereinafter
proposed. Unlike previously published works exploitiag.S for thinning [14][16] as well as
for other array design problems (such as interleaved a3, the proposed approach does
not rely on a purely analytic technique and, therefore, ggloot allow one to determiree
priori performance bounds. The main objective of the paper is nigt tonpropose a hybrid
technigue to design linear thinned arrays, but rather tegarea methodological approach use-
ful when/where either thel DS-based array performances do not comply with the radiation
requirements of the application at hand orA0 .S is available for the geometry (aperture size
or thinning factor) under study. In order to focus on thag groposed method is applied to
three different classes of problems related to the mairtditioins of A D .S-based arrays.

The outline of the paper is as follows. After a short reviewAn.S thinning, theG A-enhanced
methodology is proposed to address three different problncerned wittl D S-based linear
arrays working in the far-field and with narrowband sign&sd¢t. 2). The hybrid approach is
then validated by means of several numerical simulationspré&sentative results concerned
with both small and large arrays as well as different thigrfactors are discussed to point out

its reliability (Sect. 3). Finally, some conclusions arewn (Sect. 4).

2 Problem Statement and Mathematical Formulation

The design of an equally-weighted thinned linear array @effover a regularly-spaced lattice of
N elements is carried out by properly selecting the array tsig(n) € {0,1},n =1,..., N,

to obtain a suitable array factoi(u) [1]



S(u) = w(n)exp(i2rndu) (1)

(d being the inter-element distance in wavelength). Accaydanthe AD S-based methodology

described in [14], the weight selection is performed asfed

1 ifneD
w(n) =
0 otherwise
whereD is an(N, K, A, t)-Almost Difference Sets4ADJS), that is a set ofX’ unique integers

belonging to the rang®, N — 1], whose associated binary sequence has a cyclic autocmrela

function,&(7) £ SN P w(n)w [(n + 7).y 8] T =0, .., N — 1, of period N given by

K T=0
r)=14 A fortvaluesof T (2)

A+1 otherwise.

Because of (2) and the relationship between the autoctoelfunction andS(u), it results
that the samples of the array power patter@’]i\atare equal to the values of the inverse discrete
Fourier transform [DFT) of £(7), Z(k) £ SN € (1) exp (2miTE) e, E(k) = |S (&) \2].
Thanks to this property, it can be shown [14] that the arigiiy. complies with the following
inequality

PSLE . < PSLEY, < PSLP"{D} < PSLY, < PSLY, (3)

wherePSL? {D} = mingepon_1y { PSL (D)}, D@ £ {d}j) eZN k=1, K:d" =
(dx + )|} istheo-shifted version of the original DS (D is still an ADS [12]),PSL <D(“))

2 morugnlSWI s the pS T, of the array deduced ', R2 {~U <u <U,U = —F4»—— 3,
|S(0)‘ INd mazéﬁoz)(k)

. K-A—1—,/{N=0
and the performance bounds are the followin@SL%,, = N DATR NS PSLY, =

mazxp=r(k 0 mazxp 21 (k o K—A—1+4/t(N—t)
221l pSLY, = ™= (0.8488 + 1.128logioN), and PSLY, « = <(N_1)A+KV_1+N_2

(0.8488 + 1.128 log19N) [14]. Equation (3) indicates thatD S-based thinned arrays exhibit a




sidelobe level which can be predictaepriori either from the knowledge of the features of the
ADS sequenceRSLSY,  and PSLSY, . only depend onV, K, A, andt) or, with a higher ac-
curacy, from the expression &f(k) (necessary for computin@SL%’éV andPSLOUp}i). Despite
the implicit advantages in terms of computational efficieand predictable performances, the
ADS-based approach for array thinning has the limitationsioed in the Introduction (Sect.
1). Therefore, a methodology able to overcome these limaitatwhile exploiting theAD.S
analytic features seems to be of some interest in view opipdi@ation to wireless communica-
tions.

Towards this end, a hybrid approach/) SG A in the following) is proposed. By sake of clarity,
the critical situations of thel D S approach are modeled in the following sub-sections astsaita
optimization problems then solved through th®SG A. Concerning the iterativd D.SG A op-
timization, the standard structure of thed (summarized in Appendix 1) is modified to exploit
the positive key-features of théDS's.

The initial population { = 0, ¢ being the iteration index) is generated as follows. T\ie
shifted versions of a referenceD S are ranked according to theitS L values. Then, half trial
solutions P being the dimension of th& A population) are chosen with chromosomes equal
to the binary sequences of the fil‘%‘highly-ranked shiftedd DS's

P
2

pp(i) = {bp(n):w(p)(n); n:O,...,N—l}, 1<p< (4)

whereb,(n) is the n-th digit of the p-th trial solution andw”(n) = 1 if n € D and
w'®(n) = 0, otherwise. Concerning the remaining of the populatioe, tthal solutions are

chosen randomly within the range of admissibility of thelgemn at hand

pp(i) = {by(n) =rp(n); n=0,..,.N—-1}, 1<p< (5)

P
2
rp,(n) being a random digit. Such an initialization allows the fiséer” into theGA chro-
mosomes of the good DS-based schemata also providing a sufficient variabilityhimithe
population to avoid the stagnation [6].

As regards the&> A operators, both crossover and mutation are applied foligvihe standard



binary implementations [6], but also guaranteeing the tgatirial solutions be admissible and
comply with the problem constraints (e.g., fixed thinningtéa v £ %). Towards this end,

the crossover operation is repeated until the new chromesaatisfy the solution constraints,
while a conditioned-mutation is applied. More specificalét v be the user-defined thinning

factor, then the bit-mutation probability is defined asdails

[N XV—=2 b(m)} x [1 —2b(n)] + b(n) (6)

PBM(”) = N_n

2.1 Problem| - PSL Minimization in Array Synthesis

In order to determine an optimal thinned configuration sigrfrom the (usually) sub-optimal
ADS arrangement with a given aperture si¥g s and thinning factor, g, let us formulate

the following constrained optimization problem

max u 2
Problem |- Minimize F {p} & “QT'S”(IOBE( i

, Ry, being the mainlobe region
defined asky;, = {—Uy < u < Uy} andU)y, is the angular location of the first

null, subject toX = K ps andN = Naps

to be solved througldl DSGA. In such a case, th@ A fitness function is defined as theS L
of the array while the constraints force the array to kepdéscriptive parameters (i.e., original

dimension,N = N,pg, and thinningy = v4pgs).

2.2 Problem Il - Extension of the Range ofAD.S Applicability in Array

Synthesis

The use of amADS-based technique for array synthesis is sometimes limieftked array
dimensions and thinning values because of the limitedpalih quite large, set of available
ADS sequences. In order to design a thinned configuration witlrary values ofN andv,
still exploiting the properties of the existingD.S arrangements, the following problem is at

hand



2 N A~
Problem Il - Minimize I {p} = max“gﬁg”(foﬂf(u)l } subject tok = K andN = N,

beingN # Napg and/orK # Kaps

Such a constrained optimization problem is quite similathi&t in Sect. 2.1, but, in this case,

no ADS-based array is available in correspondence with the amagrpeters ¥/, K).

2.3 Problemlll - Definition of a General PurposeA D.S Construction Tech-

nique for Array Synthesis

With reference to the potential limitation (I1) outlined the Introduction, the aim is now to find
the explicit forms ofA D S's sequences (i.e., binary sequences with a three-leved@uttation
function) for arbitrary values ofV. Towards this end, let us denote with{p} and R {p} the
number of levels of the autocorrelation functiéfr) of a trial solutionp and the number of
7 values for which¢ (1) differ from (2). Then, the search for admissible (but notikade in

ADS repositories)AD S sequences is recast as the solution of the following

Problem Il - Minimize F {p} = o [L {p} — 3]+ GR {p} subjecttoN = N, where

N # Naps anda andg are suitable user-defined weight coefficients.

In such a case, the optimization at hand turns out to be diftefirom that inProblem land
Problem Il. As a matter of fact, it is defined and performed with thB SG A within the “auto-
correlation space” instead of in the “pattern space”, wthike constraints are still on the set of

parameters defining th&DS as well as the corresponding array arrangement.

3 Numerical Analysis

In this section, the effectiveness of tHéd) SG A in solving Problems I-111 is analyzed by dis-
cussing a set of representative numerical results condesth different aperture sizes and
thinning factors. The set of parameters of thd-based procedure ard’> = 0.9 (crossover

rate), P,; = 0.01 (mutation ratg, andP = N (population sizgif not otherwise stated.



3.1 Application to Problem |

The first experiment deals with tHe00, 50, 24, 25)-ADS [17] (Naps = 100, vaps = 0.5).

Figure 1@) shows the behavior of the optimal fitness value

Fpop(i) = min, [F{p,(9)}], p=0,...,P—1, (7)

versus the iteration numberin correspondence with tha DSG A and the standar@ A min-
imization ( = % is assumed hereinafter). ThHeSL value of the referencel DS sequence
is reported, as well. Obviousl¥;»55(0) < Fabs594(0) since theAD.S sequence belongs to
the initial population of theADSGA. It is also worth to notice that the convergefiCerate

of the optimization process improves when using e SG A as compared to thé' A-bare
approach (while the average iteration tifiedoes not sensibly change - Tab. 1). As a matter
of fact, /4P5¢4 = 386 iterations are necessary to reach the convergence, ifile= 598
[1mae = 1000 - Fig. 1@)]. Moreover, the thinned arrangement synthesized wWithSG A turns
out to be significantly better than the referent®S in terms of PSL [PSLAPSGA = —20.64

dB vs. PSLAPS = —14.45 dB]. Furthermore, it improves the performance of thd of about

1 dB as confirmed by the plots of the corresponding power paitgfig. 1€)].

However, both7 A-based optimizations also enlarge the mainlobe beamwaltipared to the
ADS reference solution([;}P°¢4 ~ U{A = 0.041 vs. UsiPS = 0.020 - Tab. 1] because
of the quasi-dense nature of the arising layouts (in botlessathe average spacing is close
to 0.6\ - Tab. ). In order to perform a more fair comparison, anotbetimization has been
carried out by setting a constraint on the extensiom?gf, as well. More specifically, the
mainlobe region has been required to be equal to that of thst*bi D.S-based array, that is
the shifted array with the best trade-off betwdef L and R, among allAD S layouts whose
representative points belong to the Pareto front (i.e.s#tef all nondominated solutions [6])

in the (PSL, Ry) plane (Fig. 2): Ry, = R4P°. The obtained results are shown in Figs.

@D The process is assumed ¢onvergewhen the fittest (withinl,,,.,. iterations) solutionp..,, has been
reached. Accordingly] (I < I,,q.) is the “convergence iteratidrsuch thatF' { pcon, } = (min, [F {pp(I)}]) =
min; (miny, [F'{py(i)}]).

(2) The values of theverage iteration timeéhave been computed by exploiting non-optimizéecoded
versions running on an Intél1 GHz single core laptop.



1(b)-1(d)-1(f). As expected, thé’SL improvement of thedADSG A over theADS turns out

to be smaller, although non-negligibl®§ LAP5¢4 = —16.39 - Fig. 1(d)], and the number of
iterations to reach the final design increase¥’ (¢4 = 629 vs. [1P5¢4 = 704). On the other
hand and unlike the unconstrained case [Fig)]1the array elements of the new arrangements
[Fig. 1(f)] are now distributed within a spatial rangeof extension close to that @~ (i.e.,
PAPSGA = 455 )\, DGA = 44.5 )\, and®*PS = 48.5 )\) in order to fit the beamwidth condition
Ry = RAPS

Similar conclusions generally hold true also for wider apess as confirmed by the resum-
ing plots in Fig. 3 where the values of th&SL [Fig. 3(a)] and the mainlobe siz#&),, [Fig.
3(b)] along with the behavior of..,,, [Fig. 3(c)] and of the normalized apertu% [Fig. 3(d)]

are reported as functions of the array si¥efor both the R,,;-constrained and unconstrained
problems. With reference to Fig. &( the ADSGA provides enhanced performances in com-
parison with thez A for any array sizeV, even though the improvements are not always very
significant. Furthermore, bot¥ A-based techniques result better than the refereno& ar-
rangements, setting or not the same mainlobe beamwidth xpected, the improvements of
the R),-constrained synthesis are lower, but the differences thighunconstrained approach
reduce asV grows sinceds — @ [Fig. 3(d)] andU§; — Uy, [Fig. 3()]. On the other hand,
the plots in Fig. 3€) point out the following: i) the iteration indeX..,,., increases dealing with

a higher complexity problem (i.eR,,-constrained vsR,,-unconstrained) or a larger solution
space § = 2V, S being the dimension of the solution space as a function ofttay lattice
dimension); i{) whatever the dimension and the synthegis,>%4 < 194 thanks to theADS
initialization and the customized genetic evolution of thB SG A optimization.

For illustrative purposes, Figures 4-5 and Tabs. -1l @dete the “picture” coming from
Fig. 1 and concerned with a small arrangemeé¥it£ 100) with those on the synthesis of a
medium array V. = 198 - Fig. 4 and Tab. IlI) and a large arrayv(= 502 - Fig. 5 and Tab.
[I1). More specifically, the power patterns and the corregfing arrangements generated from
the (198,99, 49, 148)-ADS [17] (vaps ~ 0.5) are reported in Fig. 4, while the case of the
(502,251, 125,376)-ADS [17] (vaps ~ 0.5) is analyzed in Fig. 5.
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3.2 Application to Problem Il

Dealing with the application of thé D SG A to Problem 11, let us consider ti{&98, 99, 49, 148)-
ADS [17] (vaps =~ 0.5) and let us set the following objective paramete¥s= 198, = 0.601,
and/,,.. = 2000. It is worthwhile to note that the thinning factor of the nefeceAD.S and of
the initial population differ from that of the target array.

The plots in the first row of Fig. 6 show the evolution of the digis function during the itera-
tive process for the approaches with and without the coims$toa R,,. Also in this case, the
ADSG A enhances the optimization performances of the stan@ardpproach [Fig. 61)-6(b)]
synthesizing the power patterns shown in Figs)-®(d) whose characteristics are summarized
in Tab. IV. More in detail, the”S L of the optimalR,,-unconstrainedi DSG A (G'A) configu-
ration is of aboutt dB lower than that of thel DS [Fig. 6(a) - Tab. IV]. Such an enhancement
is also kept almost unaltered when matching the mainbearthwédjuirement. On the other
hand and as expected, it should be pointed out that the arbthe P.S L improvement turns
out to be more significant than for the similar test case ofRleblem | because of the larger
number of active elements & 0.601 vs. v = 0.5) in the array [Fig. 6€)].

To further validate the proposed approach, Problem Il has we-formulated by using again
the (198,99, 49, 148)-ADS [17] ( vaps ~ 0.5) as the reference, but now setting = 200
andr = 0.77 (i.e., a target array with both different dimension and tinng factor). Such a
parameter setup has been chosen to compare the synthesizééahswith those from state-of-
the-artG A optimizations available in the literature [5][6]. Sincestpattern in [5] presents a
beamwidth different fromR4PS (e w1994 — ( 0125 vs. UAPS = 0.0108), the results from
the R,,-unconstrained problem are at first analyzed.

The ADSG A solution is characterized by a fithess valud at, = 1598 (/... = 3000) of
almost7 dB below that obtained with the referengeD S [Fig. 7(a) - Tab. V]. Such a non-
negligible improvement is mainly due to the increased apersize (V = 200 vs. N4P5 =
198) and to the larger number of active elements € 144 vs. K4P9 = 99) [Fig. 7(c)]. On
the other hand, by comparing theDSG A result with that from the standardA approach
and the state-of-the-af A in [5], the ADSG A improvement is of aboui.6 dB and1 dB,

respectively [Fig. Ag)]. It is worth noting that this reduction is certainly retatto theADS

11



initialization and it is obtained without enlarging the miaibe region {'l7*7****Y = 0.0125

~ UPS¢4 = 0.0120). The arrangements in correspondence with the differeaketisns are
provided in Fig. 7¢).

Dealing with the same test case, but constraining the aodit the ADS beamwidth, the
ADSGA method confirms its reliability and efficiency synthesizargarray with performances,
summarized in Tab. V, close to that of the unconstrainedtsoland still better than those in
[5] (Fig. 8).

For completeness, Figure 8 provides an overview of the tesohcerned with Problem Il. As

it can be noticed, the D SG A solution overcomes th@ A-based designs whatever the test case
at hand further pointing out the convenience of thB S initialization and its integration with

the G A optimization.

3.3 Application to Problem Il

To complete the preliminary validation presented in [1&]t(nere limited to the use of a 'bare’
G A procedure) and to further confirm, in a more exhaustive tashthe underlying proof-
of-concept, a representative example of the numerical itiefinof new ADS sequences is
performed by choosingy = 55 (nor ADSS sequence with such a length is known/available
[17], neither suitable theorems for its computation areilalsée). TheG A parameters have
been set to1,,., = 50, a = 1072, 3 = 10~%. Moreover, thg53, 14, 3,26)-ADS [17] has been
assumed as the starting point for the optimization process.

The plot of the optimal fitness in Fig. &(shows that am DS of the desired size has been
found just afterl.,,, = 34 iterations Fpop(l.ony) = 0] as confirmed by the three-level au-
tocorrelation function of the arising optimal sequenceg[F([)]. As it can be observed, the
synthesized DS is characterized by = 7 (K £ max, {£(7)}), A = 0 (A = min, {£(7)}),
andt = 12 [t being the number of values for which¢(r) = A]. For completeness, the binary
arrangement is given in Fig. &(

Similar results can be also obtained for largérvalues, even though with a greater number
of iterations, assessing the reliability of the approachatstrer the dimension at hand. For

illustrative purposes, a different instance of the Problénis addressed by settingy = 214

12



(once again, no explicit expression for the correspondirgs is available [17]). Because of
the wider solution space, the maximum number of iteratiassbeen enlarged 1Q,,, = 1500,
while keeping the same values of the other parameters. Mergihe following reference DS
has been chosef(210, 105, 52, 157)-ADS [17].

As expected, the optimal sequence has been synthesizednaite than1200 iterations [Fig.
10(@)] with a significant increase of the computational cost aahing the convergence com-
pared to the previous smaller case. Anyway, the approadiilialde to define a binary config-
uration [Fig. 10¢)] with three-levels [Fig. 10f)] as requested for thd D.S sequences. More
specifically, the newADS is described by the following parameter& = 10, A = 0, and
t=123.

As a final observation, it is worthwhile to point out that thewnADSs determined solving
different instances of Problem 11l can be directly used tbreienew thinned arrays or as start-
ing points for different formulations of Problem | or Probidl. Indeed, the power patterns
|S(u)[? of the arrays derived from the binary sequen¢&s 7,0,12)-ADS [Fig. 11(@)] and
(214,10,0,123)-ADS [Fig. 11()] fit the AD.S radiation properties with samples constrained

to the associated (k) values.

4 Conclusions and Remarks

In this paper, a hybrid- A-based approach has been developed to further exploit drahea
the features in the far-field and for narrow-band signald 6¥S-based binary sequences for lin-
ear array thinning. In order to overcome the main limitasi¢ice., flexibility and performances)
of ADS-based thinned arrays, while taking advantage of theirgntigs, an innovative method-
ological approach that, unlike th&D.S thinning techniques described in [14], does not rely on
purely analytical design method, has been proposed.

An extensive numerical analysis has been performed by aslidigdifferent kinds of problems,
each one concerned with a specifi® S limitation. The obtained results have pointed out the

following outcomes:
e thanks to theADS initialization, the ADSGA provides improved performances with

13



respect to a standarelA approach when dealing with linear array thinning, even giou

the improvements are not always very significant;

e ADSGA-constrained designs are usually advantageous sincevbl/f@th quasi-dense
layouts of limited practical importance as well as large m@e widths, unlike uncon-

strained architectures:

¢ the knowledge ofADS reference sequences and &@riori information on the perfor-
mances of the corresponding arrays turn out to be useful ®resynthesizing antenna

arrangements with different (also whelD S's do not exist) thinning factors or sizes;

e the hybrid approach can be profitably employed to determtieeekplicit form of new
ADS sequences of desired length beyond those already avdilat})lehus extending the

range of applicability of thed D S-based array thinning.

As regards the array synthesis, future developments wililped at assessing the performances
of the hybrid approach in dealing with non-ideal structuieg., mutual coupling effects and
real radiators). Moreover, extensions to more complex agt-timension array geometries
will be analyzed to verify advantages and potentialitieg,dso limitations and reliability, of

the ADSG A approach in terms of radiation properties and implememdt\W issues.

Appendix |
In this section, the building blocks of tli@A considered in this paper are briefly summarized.

1. Initialization - A randomly-chosen initiali(= 0) population ofP trial solutions,p,(7),

p=1,..., Pis defined,;

2. Coding - Each solutiorp, () (individual) codes the values of an unknown set of parame-

ters into a binary stringghromosomg

3. GA-Evolution - At each iteration, the genetic evolution takes places through suitable

binary operatorsgelection crossovey reproduction mutation elitism [9][6]) applied in

14



a probabilistic fashion and taking into account the fitnesisie@sF, = F {p,(i)}, p =

1,..., P of current trial solutions;

4. Termination - The iterative optimization terminates when the optimak#s valuefpop(i) =
miny, {F,}, is smaller than an user-defined threshold or when a maximunber of iter-
ations/,,,. has been reached. Théral solutior is the fittest trial solution determined

throughout the whole iterative procegs,,, = arg {min; (min, [F' {p,(i)}])}.
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FIGURE CAPTIONS

e Figure 1. Problem | (N ps = 100, vaps = 0.5) - Synthesis results from th&,,-
Unconstrainedléft column and R,,-Constrainedright column approaches:a)(b) be-
havior of the optimal fitness valué;pop(i) = PSL(i), versus the iteration number,

(c)(d) power patterns plot$S(u)|*, and €)(f) array arrangements.

e Figure 2. Problem I (N4ps = 100, vaps = 0.5) - Representative points in the space
(Un, PSL)ofthe ADS-based arrays derived from the shifted versions of 1108, 50, 24, 25)-
ADS [17].

e Figure 3. Problem I(v4ps = 0.5) - Synthesis results from th,,-Unconstrainedl( and
R)-Constrained I() approaches versu§ (array dimension): &) peak sidelobe level,
PSL, (b) first null location,U,,, (c) convergence iteration numbdy,,,.,, and ¢) normal-

H <)
ized array aperture .

e Figure 4. Problem | (N4ps = 198, vaps = 0.5) - Synthesis results from th&,,-
Unconstrainedléft columr) and R,,-Constrainedright columr) approaches:aj(b) power

patterns plots|,S(u)|*, and €)(d) array arrangements.

e Figure 5. Problem | (Naps = 502, vaps = 0.5) - Synthesis results from th&,,-
Unconstrainedéft columr) andR,,-Constrainedrfght columr) approaches:a)(b) power

patterns plots,S(u)|?, and €)(d) array arrangements.

e Figure 6. Problem II(V = 198, # = 0.601) - Synthesis results from th,,-Unconstrained
(left columr) and R,,-Constrainedright columr) approaches:aj(b) behavior of the op-
timal fitness valueFpop(i) = PSL(i), versus the iteration numbet, (c)(d) power
patterns plots|,S(u) |2, and @)(f) array arrangements with théDSG A, the G A, and the
ADS-based method.

e Figure 7. Problem Il (N = 200, ? = 0.77) - (a) Behavior of the optimal fitness value,
Fpop(i) = PSL(i), versus the iteration number,(b) power patterns plot$S(u)|*, and
(c) array arrangements with the&D SG A, the standard- A, the AD S-based method, and

the solution in [5].
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e Figure 8. Problem Il - Representative points in the spadé,,, PSL) of the thinned
arrays synthesized whe¥i = 198, 7 = 0.601 and N = 200, & = 0.77.

e Figure 9. Problem Ill (N = 55) - (a) Behavior of the optimal fitness;pop, versus the
iteration number;, and @) three-level autocorrelation function of the convergeAddes

arrangementd).

e Figure 10. Problem Ill (N = 214) - (a) Behavior of the optimal fithes#;»op, versus the
iteration number;, and ) three-level autocorrelation function of the convergeddesS

arrangementd).

e Figure 11. Problem Il - Plots of the power patterns and sample& () for the thinned

arrangements fromej the (55,7, 0, 12)-ADS and ) the(214, 10,0, 123)-ADS.

TABLE CAPTIONS

e Table I. Problem I(Nps = 100, v4ps = 0.5) - Comparative assessment.

Table Il. Problem |(Nsps = 198, v4ps = 0.5) - Comparative assessment.

Table Ill. Problem I(Naps = 502, vaps = 0.5) - Comparative assessment.

Table IV. Problem Il (N = 198, © = 0.601) - Comparative assessment.

Table V. Problem Il (N = 200, # = 0.77) - Comparative assessment.
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Figure 1 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 6 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 7 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”

26



0.017

T T T T T T
GA
Unconstrained R,QDS
0.016 - =X -
0.015 / _
0.014 i
=) |

S /

5 / A ADS
0.013 | e - Constrained Ry;™ >
0.012 - 1

ADS

0.011 N=198, v=0.5]

+ X L
N=200, v=0.77 N=198, v=0.6
001 1 1 1 1 1 1 1
-24 -23 -22 -21 -20 -19 -18 -17 -16
PSL [dB]

Figure 8 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”

27



N=55
0.07

0.06 - —\ B

0.05 - R

0.03 |- R

Fpop(i) [arbitrary unit]

0.02 |- R

0.01 4

0 I I I | | | . . .
0 5 10 15 20 25 30 35 40 45 50

Iteration i

(@)

N=55

!

peeee sees seer seeeeeeeoeeeee Sees peee peeeq s 4

14 iV i i H ¥

(b)

GA-Obtained ADS-(55,7,0,12) o

[oloolclNoMoNoNoNOMON JoloNoloNooNoN JNoloNooNON JNololoiclololoMooMNoNON JNoNoMoNoN oM JNololoMooNoNOMoN JojNo)

1 1 1 1 1 1
0 10 20 30 40 50
Array lattice location

(©

Figure 9 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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30



Unconstrained?{* | ConstrainedR{/*
ADS GA ADSGA GA | ADSGA
® [A] 48.5 31.5 31 44.5 45.5
Average spacing)\] 0.989 0.642 0.632 0.908 0.928
PSL[dB] —14.45 || —19.82 —20.64 —15.71 | —16.39
Uy, [rad] 0.020 0.041 0.041 0.022 0.022
Iconv - 5998 386 704 629
Average iteration tim¢s] - 0.397 0.397 0.397 0.397

Table | - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Unconstrained?{* | ConstrainedR{/*
ADS GA ADSGA GA | ADSGA

O[N] 98.5 98 88.5 92.5 92.0

Average spacing)\] 1.005 1.000 0.903 0.943 0.938
PSL[dB] —16.60 || —18.12 —19.24 —17.86 | —18.40

Uy, [rad] 0.0108 | 0.0167 0.0170 0.0108 | 0.0108

Iconv - 730 619 1359 1049

Average iteration tim¢s] - 0.704 0.704 0.704 0.704

Table Il - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Unconstrained?4*

ConstrainedRr{*

ADS GA ADSGA GA ADSGA
3 [)] 250.5 250.0 250.5 248.5 249.5
Average spacing)\] 1.002 1.000 1.002 0.994 0.998
PSL[dB] —15.91 —20.83 —21.31 —20.40 —20.54
Uy [rad] 412x 1073 || 490 x 1073 | 4.93 x 1073 | 412 x 1073 | 4.12 x 1073
lcony - 1450 1274 2000 1878
Average iteration tim¢s] - 3.723 3.723 3.723 3.723

Table Ill - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Unconstrained?{* | ConstrainedR{/*
ADS GA ADSGA GA | ADSGA
O[N] 98.5 98.0 90.5 92.5 96.0
Average spacing)\] 1.005 0.830 0.766 0.783 0.813
PSL[dB] —16.60 || —19.95 —20.26 —19.70 | —20.01
Uy, [rad] 0.0108 | 0.0160 0.0140 0.0108 | 0.0108
Iconv - 1730 637 1741 1264
Average iteration tim¢s] - 0.704 0.704 0.704 0.704

Table IV - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Unconstrained?4{'” | ConstrainedR{"*
ADS | GA | ADSGA GA | ADSGA | [5]
O[] 98.5 99.5 98.5 99.0 98.5 99.5
Average spacing)\] 1.005 0.650 0.643 0.647 0.643 0.650
PSL[dB] —16.60 || —22.47 —23.05 —22.26 | —22.79 || —22.09
Uy [rad] 0.0108 || 0.0124 0.0120 0.0108 | 0.0108 0.0125
lcony - 1725 1528 2187 2062 -
Average iteration tim¢s] - 0.704 0.704 0.704 0.704 -

Table V - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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