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Fully-Interleaved Linear Arrayswith Predictable Sidelobesbased

on Almost Difference Sets

G. Oliveri and A. Massa

Abstract

This paper proposes an analytical technique based on Albitistence Sets4 DS’s) for

the design of interleaved linear arrays with well-behaved jpredictable radiation features.
Thanks to the mathematical properties 4D.Ss, such a methodology allows the design
of interlaced arrangements with peak sidelobe levEIS [;s) only dependent on the aper-
ture size, the number of elements of each subarray, and trevioe of the autocorrelation
function of theADS at hand. PSL bounds are analytically derived and an extensive nu-
merical validation is provided to assess the reliability, the cotapanal efficiency, and
the effectiveness of the proposed approdtis worth noticing that, although without any
optimization, such an analytic technique si still able t@iove (on average0.3 dB) the

performances ofs A-optimized layouts.

Key words. Array Antennas, Interleaved Arrays, Linear Arrays, Almbsfference Sets, Side-

lobe Control.



1 Introduction

Shared aperture antennas are of great interest in modeefessrsystems for communications,
detection, location, and remote sensing because of thetoaedlize multiple functions in a
limited space [1]. In this framework, aperture arrays oemtixed elements (often indicated
as interleaved, interlaced or interspread arrays) prointeEresting performances in terms of
hardware complexity, aperture efficiency, and flexibility.[ However, each array of an inter-
leaved arrangement usually shows a lower gain and a higlagrpéelobe level S L) than the
corresponding non-interlaced design [2].

In order to overcome such drawbacks, several approaches liesn proposed [1][2][3][4]
starting from random techniques aimed at reducing /t$/. of shared apertures [5]. More
recently, stochastic optimization techniques [1][2] obhg approaches [6] have been success-
fully applied. Despite their effectiveness, statisticathodologies are computationally ineffi-
cient when dealing with large apertures anapriori estimates of the expected performances are
usually not available.

In this paper, the problem of designing equally-weightdtyfinterleaved arrays is addressed
to provide design guidelines to be employed when, whethexhmyce or by necessity, a com-
putationally inexpensive and sub-optimal solution withgictable performances is preferred to
a random or a stochastically-optimized design. Towards ¢hd, the synthesis of interleaved
arrays is faced with an innovative approach that exploissih-called Almost Difference Sets
(ADSSs). ADSs are binary sequences characterized by a three-levelatgtation [7]. They
constitute a generalization of Difference Sets [8] and Haeen used to design thinned arrays
with predictable sidelobes [9]. In order to expleitD Ss for the synthesis of interleaved ar-

rangements, let us consider the following properties:

e the complementary of anDS is stillan ADS [10];
e an ADS-based array has a low and predictabl& L [9];

e ADS arrangements can be analytically (i.e., without any otation) designed whatever

the aperture size [9].



Such features suggest the design of an interleaved arraylawtsidelobes by determining the
memberships of the array elements to the two subarrays @iogpoio the sequence 66 or1s

of an ADS sequence [11] in a complementary way.

Let also notice that an extension or application of #hel. estimators obtained in [9] fad D S-
based thinned arrays to interleaved distributions is neiatr As a matter of fact, the bounds
deduced in [9] refer to the best thinned array among thosaimdd by cyclically shifting a
referenceADS sequence. However, such a configuration is not generallpéise one when
shared apertures are of interest, since the complementay ean exhibit an unsatisfactory
PSL. The definition of a compromisd DS guaranteeing the most suitableS L for both
arrays is then needed. Accordingly, a new theoretical amdeamical analysis is mandatory to
deduce and validate suitable bounds Adp S-based interleaved arrays.

The outline of the paper is as follows. After a short introglie on array thinning through
ADSs (Sect. 2), the exploitation of th&D.S properties for array interleaving is analyzed from
a mathematical viewpoint to highlight the key featuresAddS-based designs (Sect. 3). The
numerical validation is carried out in Sect. 4 by considgrinset of representative examples
and comparisons with state-of-the art approaches. Firediye conclusions are drawn (Sect.

5).

2 Almost Difference Setsin Linear Array Thinning

In this section, thel D S-based guidelines for linear array thinning [9] are brielyiewed and
the most relevant properties dfDSs discussed.
The array factor of a linear array defined over a latticéVoéqually-spaced positiond peing

the inter-element distance in wavelength) in the absenceutdial coupling is given by [13]

N-1

Sr(u) = Z wr(n)exp(i2rndu) Q)

n=0

wherew;(n) is the array weight of the-th elementuy = sin(6) (v € [—1, 1]). Dealing with
equally-weighted thinned arrays; (n) can either assume the valué.e., the radiating element

is present) oo (i.e., the element is missing). In [9], the design of thinaeays is carried out
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according to the following rule

1 zfn S D[
wi(n) =
0 otherwise
whereD; is an (N, K, A, t)-ADS, that is a set o’ unique integers belonging to the range
[0, N — 1] whose associated binary sequencgn), n = 0, .., N — 1 has a three-valued cyclic

autocorrelation functiod; (1) 2 SN wi(n)wr [(n +7)|, ., x], 7 € [0, N — 1], of period N

K 7=0
Er(t) =4 A fortvaluesof T (2)

A+ 1 otherwise

Thanks to this, it is possible to predict the behavior of thever pattern of the resulting thinned
arrangement. As a matter of fact, it can be shown that [9]ritaerse discrete Fourier transform

(IDFT)of&(7), Z1(k) £ SN ¢ (1) ewp (2707, is equal to the samples of the array power

5 ()

By exploiting such a property, it has been possible [9] tedatne suitable bounds for the peak

pattern|S;(u)|* atu =
2

=i(k) = 3)

sidelobe level of thel DS-based arrays
PSLY, < PSLY, < PSL™ {D;} < PSLY, < PSLY,« (4)

where

PS Loy {D1} = mingepn—1 {PSL (DY’))} , (5)

D\ 2 {d,ﬁf’) eZN k=1,..,K:d" = (d + o—)\modN} being thes-th sequence obtained

by cyclically shifting ofo positions the originah DS D; (Dg(’) is stillan ADS [7]) and

, (6)

2
PSL (Dy) & Mt Si(u)l
|51(0)]



whereRy; £ { —Uy < u < Uy, Uy = ———— % is the mainlobe region [9]. Moreover,

maxyE(k)
aNd, | s

(
ont K—A-1— /=Y
PSLy N = (N—l)A+K—11—T-]\}—t
o maxi=g(k
PSLDpév - E];(OS( :
PSLY, = 220 (0.8488 4 1.128 logio )

(K—A—1+, /t(N—t)) (0.8488+1.128 log10N)

opt _
PSLMAX - (N—1)A+K—-1+N—t

Properties and theorems df) Ss can be found in [7][10] and the references therein. In tix¢ ne
section, the properties of D S's and the associated arrangements will be exploited fogdeg]

interleaved arrays.

3 ADSInterleaved Arrays- Mathematical Formulation

Let us consider the following theorem:

Theorem 1 [10]: if D; is an ADS, then its complementary s®. £ Z"\Dj,
(ile.Dec={d;jeZ", j=1,.,N—-K:d;¢D;})isan(N, K¢, Ac,t)-ADS,
whereKo = N — K andAc = N — 2K + AW,

Starting from anA DS array with weightso;(n), n = 0, .., N — 1, the coefficientsv-(n) of the

complementary distribution are given by

we(n) =1—wr(n), n=0,.., N —1. (7)

i & Xag wim) 3 we(n) o -
The aperture efficiency,, (1., = N ) of the arisingfully interleaved array

turns out to bey,, = X< [1] and it is equal td sinceK = N — K (see Theorem 1).

For illustrative purposes, let us consider t36, 15, 7,22)-ADS [11]

D; = {5,6,8,9,10, 14, 16,17, 19, 20, 22, 23, 24, 27,29} (8)

(1) It is worth to point out thaTheorem 1 holds true also for a sub-class.4fSs for whicht = 0ort = N —1
[12] [namely, the Difference Set$XSs)] widely used in array thinning [8].



whose complementary DS is given by

D¢ = {0,1,2,3,4,7,11,12,13,15, 18, 21, 25, 26, 28} . (9)

The associated binary sequences(n) andws(n), n = 0,...,N — 1, and the interleaved
arrangement are shown in Fig.al(

Since the element distribution of the interleaved antesneomposed by two distinct D S-
based thinned arrays, several conclusions drawn in [9]tsild true. More specifically,d)
both arrays are expected to exhibit lowef Ls with respect to random arrangemenby,gach
design can be cyclically shifted to obtain up Ab different ADS arrangements, and)(the
methodology can be applied to synthesize extremely largetaes with negligible computa-
tional costs. Moreover, some specific propertiesAddS interleaved arrays can be deduced
from Theorem 1. As an example, the autocorrelation functions satisfy tlewing equation

(see the Appendix)
§o(r) =&r(T) + [N (1 —2v)] (10)

whereéo(r) £ SN Mwe(n)we [(n+7)|,.0x] @ndy £ K is the unbalancing factow(e

[0,0.5], v = 0.5 being the index value for interleaved arrays with the sanmaler of active
elements). For illustrative purposes, the plots of the @at@lation functions of thel DSs in
(8) and (9) are reported in Fig. H)Y As expecteds;(r) = (1) sincer = 0.5. On the other

hand, the samples of the corresponding power pattetiis )|” and|Sc(«)|* comply with Eq.

(3), and the ratio between the normalized valuegft) and=q(k), ¥(k) £ ;gg’g% gj—ggg is
constant and equal to (see the Appendix)
1—v\?
U= k=1 ..N—1 (11)
174

[e.0.,¥ = 0dB in Fig. 1¢) beingr = 0.5]. In such a cases;(k) = Z¢(k) (i.e., the samples

of the power patterns of the interleaved arrays at % coincide) sinc&; (1) = &c (7).

(2) Eq. (3) can be written for the array deduced frida by replacingt; (7) with &c (), 27 (k) with Z¢ (k) £
IDFT {¢c (1)}, andS; (u) with Sc(u) £ S0 we (n)exp(i2rndu).



As for v # 0.5, the interleaved arrangement deduced from (th& 14, 3,26)-ADS [11] is
displayed in Fig. ). In this casey ~ 0.26 and the interleaved subarrays have a quite different
number of active elements. According to (18)(7) has the same behavior §f(7), butitis a
replica translated bw (1 — 2v) = 25 [Fig. 2(b)]. The pattern samples still coincide with the

I DFT values of the corresponding autocorrelations at =, even though significantly differ

dN'
from those whem = 0.5 since herel ~ 8.89 dB [Fig. 2(c)]. As a matter of fact, non-negligible
differences verify between thBS Ls of |S;(u)|* and|Sc(u)|* because of the dependencelof
onv (Fig. 3).

As regards the”SL bounds of interleavedi D S-based arrays, a straightforward exploitation
of (4) is not at hand. Indeed, although Eq. (4) can be appbeprédict PSL,,: {D;} =
MingeioN—1) {PSL (Dgﬂ)} OF PS Loy {De} = mingepon-1 {PSL (D<">)} [9], it is not
generally possible to determine a shift optimal for b@h and D¢ sinces?” # o' be-

ing o £ argminegelo,N—1] {PSL ( >} and UOpt £ argmingejoN-1 {PSL (Dgﬁ) }
Therefore, a suitable compromise solution, which is notrguoied to satisfy (4), has to be
taken into account. However, since several “compromisesidbe defined also according to
the application at hand (e.g., differeRtS L constraints could be required on each subarray of

the interleaved arrangement) and unlike [9], suitablel bounds for any admissible compro-

mise interleaving (i.e., any value o) are defined (see the Appendix)

PSLL,,y < PSLL. < PSL (Dgﬂ) < PSLL, < PSL., )
PSLS,,y < PSLS,, < PSL (Dg>) < PSLS, < PSLS, 1y

wherePSLL;,y = PSL3;y, PSLhy =T (0.5 4 0.8logigN), PSLY, = ™2:2t®) (1.9 4 1.810gi, ),

K—A— N-— . .8logioN)
psit . — KAV Kf)“ PL8leN) andPSLE — WPSL, being

pa M Elk) {%J (13)

It is worthwhile to point out that, while the values &fSL%,,, and PSL{,, can be deter-
mined only when the explicit form of thelDS is available, the computation d?SL%, ,«

and PSLY,;y only requires the knowledge @, K, A, andt. Moreover, one can observe that



mutual-coupling effects could be integrated in the abogatment by considering an analysis

similar to that performed in [14] for thinned DS arrangements.

4 Numerical Analysisand Validation

This section is aimed at numerically assessing the perfoces of interleaved arrays based
on ADSs as well as the reliability of tha-priori bounds in (12). Such a study is carried out
by considering numerical experiments concerned with artagving different apertures and
thinning factors [11].

The first numerical example deals with balanced interleareays (i.e..» = 0.5) for which

¥ = 1. The plots ofPS L (DY”) andPSL (D(C”)> versuss in Fig. 4(@) refer to the interleaved
arrangements generated from ti&0, 75,37,112)-ADS (N = 150, K = K¢ = 75,1 =
ﬁ ~ 0.75). As it can be observed, every interleaved configuratian,(different value of)
presents &S L value that complies with (12) [Fig. d)]]. On the other hand, a shift optimal for
both sub-arrays cannot be identified sin¢& # o' [Fig. 4(a)], although the power patterns

in correspondence with
o™ £ qrgmin, [PSL (DY’)) + PSL (D(Cg)ﬂ (14)

[Fig. 4(0)], o [Fig. 4(c)], andc" [Fig. 4(d)] indicate that different compromise solutions
(e.g., minimumP S L for either one or both the arrays) can be easily generatedhigyl\s cycli-
cally shifting the referencel D.S without any optimization.

Similar conclusions hold true also for different valuesofandn, as confirmed by the plots in
Fig. 5 where the results concerned with t7€0, 350, 174, 175)-ADS (N = 700, K = K¢ =
350, n ~ 0.25) are shown. The existence of different compromise solstisithin thea-priori
bounds [indicated by the boxes in Figsag(7(a), 10b), and 116)] is further highlighted in Fig.
6(@) (v = 0.5, n = 0.25) for different aperture sizes\ = 150, 312, 700). As expected, wider
arrays provide loweP S L values whatever the “compromise” criterion [Figa§j(and, for each
dimensionV, there exist several arrangements Wit L performances close to those witff",

agpt, ando™? [Fig. 6(a)]. This latter as well as the uniform distribution of the presentative”



points in Fig. 64) further confirm the flexibility and effectiveness of the) S-based approach
in determining a broad set of compromise alternatives byrmmed simple cyclic shifts of a
reference sequence.

In order to complete the numerical validation for= 0.5 andn = 0.25, Figure 6f) summarizes
the obtained results in terms 1S L versusN.

Although balanced arrangements (i.e5 0.5) are commonly analyzed in the literature [1] and
usually adopted in practical applications, interleavedys withy = 0.5 can be of some interest
when dealing with wireless services requiring at the same tlifferent radiation performances
on the same physical aperture. In order to analyze theippednces, the values of thS Ls
and their bounds are shown in Fig. 7 for different aperturesi(V = 149, 349, 701) being

v = 0.25 andn = 0.5. As it can be observed?SL (D@) and PSL <D(C”)) significantly
differ [Fig. 7(a)] because of the unbalance between the two subarrays. tNeless, their
values still comply with (12) as better resumed in Fig$)74(c). For completeness, the power
patterns in correspondence witt™? and for two representative cases are reported in Fig. 8
[Fig. 8(@) - N = 149, Fig. 8() - N = 701]. As expected, the envelopes of the patterns differ
approximately by (¥ ~ 9.5 dB) within the sidelobe region outside,.

Such a behaviour suggests the use of non-isotropic arragesls to compensate thieSL
differences between the two interleaved arrays then widgtiie admissible set of D.S-based
interleaved arrays with similar/close radiation charesties of their subarrays. To investigate
such a possibility, a simple model for the elementary radiet considered in the following.
More specifically, acos™(0)-element is employed [15] (see Fig. 9) and the array pattern i

modified as follows

S8 () = Sy(u) x (VI—u)"

a maxung‘S§m)(u)‘2

beingy/1 — u2 = cosf. For notation simplicity, let us indicate withS L (Dy’),m) £ lor
the associated peak sidelobe level. By analyzing the betes/ofP.S L (Dg)) andPSL (D}”), m)
(m < 0.25) of the interleaved array deduced from th@6, 52, 25, 78)-ADS [Fig. 10@)], one
can infer that the use of a very low-directivity radiater (= 0.25) [i.e., a small “translation”

comp

of the representative points in Fig. D)is enough to reach the conditidhS L (ng )> R~

10



PSL <D§”$mp), m) [Fig. 10(c)] sinceV =~ 0.32 dB for the ADS at hand. As a matter of fact,
the value ofm depends onw. The largerV, the higher is the directivity of the array element
necessary to balance the radiation patterns of the two saysarAs an example, the interleaved
distribution generated from th@09, 27, 6, 54)-ADS (v =~ 0.25) and characterized by ~ 9.64
dB [Fig 11(@)] requires a highem value (i.e.,,m» ~ 300). The plots in Fig. 11§) confirm that

a larger translation is needed in this case to locate the pepnesentative of-?""? close to the
diagonal of the diagram [i.e., the locus whét& L (ngmp)) = PSL (D‘;“’””>,m)]. On the
other hand, the use of a highly directive element signifiganbdifies the originald D S-based
pattern as shown in Fig. 1d(where the plots of the compromise patterns for differemies
of m are reported. It should be also noted that a more regulaematiould be synthesized
by resorting to more complex or customized radiating elesand a suitable optimization for
eachADS at hand, for the time being, out of the scope of the presergipap

The last experiment is aimed at comparing the performanicdg)s-based interleaved designs
with those from state-of-the-aft A-based approaches [1]. Towards this end, the benchmark ar-
rangement described in [1] and characterizedVoy: 60 andr = 0.5 is dealt with. TheP S L of
the G A-optimized array [1] and those of théD S-based designs based on 166, 30, 14, 15)-
ADS are shown in Figs. 12§-12(b). The corresponding beampatterns in Fig.cl2fow that
the ADS interleaved array favourably compares with the antenna PSLg4 = —13.48 dB
vs. PSL <D§"C°mp)> = —13.27dB andPSL <D(C”mp)) — —13.93 dB], even if no optimiza-
tion has been performed for theD S synthesis.

Moreover, Figure 1) points out that several shifted variations of the refeeeA®.S pro-
vide PSL performances close to that of tlieA-optimized array. This further confirms the
convenience of exploiting (for a pre-screening of the adibis interleaved arrays or as start-
ing point for optimization processes) teD Ss to synthesize reliable and efficient interleaved

arrangements.
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5 Conclusions

In this paper, aml D S-based methodology has been proposed for interleavinglgeuaighted
linear arrays operating on the same frequency band. Sdekeaministic approach is not aimed
at synthesizing optimal arrays, but rather to provide fléaguidelines for the efficient de-
sign of shared apertures with predictable performancesexansive numerical analysis has
been carried out to evaluate tl#&5 L. performances as well as to prove the reliability of the
analytically-derivedP S L bounds in the absence of mutual coupling effects.

The obtained results hapointed out the following key features of tHé S-based interleaving:

e the PSLs of the interleaved arrays aeepriori known when the corresponding refer-
enceADS sequences are available in explicit form, while suitablarms are predicted

otherwise;

e the difference between thieS L bounds of the two complementary subarrays amounts to

U and only depends on the thinning indexi.e., PSL® = ¥ x PSLY);

e the ADS-based approach can be straightforwardly applied to sgitbeéoth balanced

(v = 0.5) and unbalanced interleaved arrays— 0);

e the ADS-based design enables the synthesis of very large intedearays with negli-

gible computational costs and resources;

e several compromise configurations that satisfy differequirements can be easily gen-

erated from a referencé DS by means of cyclic shifts;

e ADS interleaved arrays favourably compare with state-ofdheptimized arrangements
[e.9.,PSLea = —13.48 dB vs. PSL (ngwm) — ~13.27 dB andPSL (Dgwmp>) _

—13.93 dB], although thed DS synthesis does not include any optimization;

¢ directive elementsan be profitably used to enlarge the applicabilityddd Ss as well as

the number of admissible balanced arrays.

It is also worth observing that, although the proposed teglendoes not theoretically generate

the optimal solution of the synthesis problem at hand, itmaeasily integrated with optimiza-

12



tion approaches either to define a sub-optimal startindgisoldior a local search or to generate
the initial population for a multiple-agent optimization.

Future efforts will be deoted to extend thel DS-based synthesis method to other array ge-
ometries and wireless scenarios, as well as to take intauattbe effects of mutual coupling
between the array antennas in the mathematical derivddloreover, although out of the scope
of this paper anchot pertinent to array synthesis, but rather to combinatonathematics, ad-

vances in the generation techniquesidbSs are expected.
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Appendix

- Derivation of (10)

By definition
Eo(r) = NZ_:: we(n)we [(n+7)|oqn] - (15)
By exploiting (7), it results that
No1
ge(r) =) [1—wim) {1 —wr [(n +7)|p0a ]}

Il
=)

n

and after simple manipulations, we obtain

§o(r) = Z,Z:f 01 1 - Ei:f:_ol wr(n) — 2111\7:—01 wr [(n+ 7T)|oa vl + E =0 wl(n)wl [(n+T)]oan] =
=N — 2K 4+ &/(1).

belngEn =0 wl(n) = Eg 01 wr [(n+7)|poan) = K.
- Derivation of (11)

Starting from Eq. (10) and taking into account the definitidx (%), it can be shown that

Ec(k) = YN &o(r)exp (2miZk) =
— SN E(R) + [N (1 —20)]} exp (2miTk) =
= Zi(k)+ X0 [N (1 —2v)] exp (2miZk) =
= Z;(k)+ N[N (1—2v)] (k)

whered(k) = 1if k = 0 anddé(k) = 0, otherwise. By evaluating the normalized version of
=1(k), Z1(k) & 24}, and=c (), So (k) £ 254, it turns out that
Zo(k) = =P

14



Finally, since=;(0) = 32" ¢;(7)exp (0) = K?, one obtains that

K2 K? K \?
‘1/: g == .
K2+ N[N(1—-2v)] K?+N?—-2NK (N—K)

- Derivation of (12)

The array factor of the array generated frdimﬁf’) is equal to [9]

sin (mdulN — k)

N sin (Wdu - %r)

N-1
87 (w) =Y w” (k) (16)
k=0
wherew§“)(k) £ IDFT {w}a)(n)} = Zivz_ol wga)(n)exp(Qﬂi"—A’f) (k =0,..,N —1)and
w'” (n) is defined as follows

. 1 ifneD{
wg )(n) = . (17)

0 otherwise

By substituting (16) into (6), one obtains

2
N-1 (cr)( ) sin(rdulN—k)

maxung k=0 Wi Nsin(wdu—k—")
(o) N
PSL(D;) = e (18)
As regards the lower bounds &S L (Dy’)), it results that
(@) MOk 45 ] }w?)(k)‘z
s (D)) > o~ (19)
by sampling (18) at. = &, p =1,..., N — 1 and observing that = 0 € R,,. Then,
(o) 1 -
PSL (DI ) > ﬁmal‘kql,'_%“:[(k) (20)

15



since [9]

W\ (k) = /E (K)exp(ie\”). (21)

By using (20), it can deduced that the lower bouR6lL},, coincides withPSLS,  in [9]
since the right term in (20) does not dependson
As far asPSLL,,, is concerned, a tighter bound than that in [9] can be providedvards this

end, starting from the observation that the peaks of the pa#ern within the sidelobe region

q+1/2

are located at, = N

[9], let us consider the following approximation

_ — . o _1\g¢—k
masy |5 VEWear(iol ) v
(o) N 2
PSL <DI ) ~ = Cg=1,. {TJ .

(22)

If the the explicit form of theAD.S Dﬁ”) is available, ther’ [see (13)] is a known quantity and

(22) can be reformulated as follows

Niexp(msg’)) (=D )}2 g=1 .. {EJ

PSL (D‘,‘”) > I'maz, ——
— Nsm[ﬁ(q—kjL%

N-1 . (o) —1)1-Fk
T o ety

By defining the quantity\ (V) = min,—o__ n-1 {mamq

)

PSL <D<f)> > T A(N) (23)

(¢=1,..,[%2]), ittuns out that

where the term on the right side is independentonn order to estimaté\(/N) and likewise
to [9], it is possible to model the phase ters{$ (k = 1,.., N — 1) as independent identically
distributed (i.i.d) uniform random variables. Since thatistics of A(/V) are not known in

closed form, Monte Carlo simulations were carried out tawdethe following approximation

which holds true forV > 100. By substituting (24) in (23), the analytical form &fSL%,,, is

obtained.

16



Concerning the upper bounds 615 L (DY)), the following approximation can be obtained

starting from (22)

—_ N-—1 . (o-) —k
o = —1)4 N -1
PSL (D})) < mansik) o 3 e;p(sz =1 |, q=1., {—J
.:[(O) —1 N sin [N (q—k+§)] 2
(25)
Then, after simple manipulations, it turns out that
. =r(k)
PSL (DY) < M o 26
(or) = 5 o

whereM, .4, = maz, [M(0o)] (¢ =0,...,N — 1) and

= eap(igpl)(—1)ok

2 Noin 5 b+ 3]

k=1

M(o) & maz,

Still modeling the phase term;éf) (k =1,..,N — 1) as i.i.d uniform random variables and

performing Monte Carlo simulations, the following appnation can be obtained
M ez = 194 1.810g19(N), N = 100.

By recalling that [9]

mCLLL’kE[(l{?) < K-A-1+ \/t(N — t)
=0 = K

and substituting in (26), the upper bouR$'L!, , - is obtained.
As for PSLY, , one can observe that when tHé S at hand is knowny is a known quantity.

Thus, the following bound can be deduced directly from (26)

mazr=r(k)

PSL{p=——
UP :I(O)

Finally, it is worthwhile to point out that the bounds étt'L <D<C”)) can be directly inferred
from those onPSL (D}”)) by simple substitution of{ and A with K and A, respectively,

throughout the derivation. More specifically, one can dedd®) by exploiting the relationship
betweert; (k) and=q(k) [Eqg. (11)].
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FIGURE CAPTIONS

e Figure 1. Balanced interleaved arrays [N = 30, v = 0.5, n = 0.75 - (30, 15,7, 22)-
ADS]: (a) binary sequences and interleaved arrangembhpléts of&;(7) andéqo(7),

and €) plots of | S;(u)|?, |Sc(u) %, 21 (k), and=¢ (k).

e Figure?2. Unbalancedinterleaved arrays[N = 53, v = 0.264, n = 0.25 - (53, 14, 3, 26)-

ADS]: (a) binary sequences and interleaved arrangembhpléts of&;(7) andéo(7),

and €) plots of | S7(u)|?, |Sc(u)|?, Z1(k), and=¢ (k).

e Figure3. Plot of U versusv.

e Figure 4. Balanced interleaved arrays [V = 150 (aperture size74.5)\), v = 0.5, n =
0.75 - (150, 75,37,112)-ADS]: (a) PSL value versus cyclic shit, c = 0,..., N — 1.
Plots of the normalized patterh§;(u)|* and|Sc(u)|* generated fromky) Df,"mmp), (©)
D", and ¢) D"

e Figure 5. Balanced interleaved arrays [N = 700 (aperture size:349.5)), v = 0.5,
n = 0.25 - (700, 350,174,175)-ADS]: (a) PSL value versus the cyclic shit, o =
0,...,N — 1. Plots of the normalized patteriis;(u)|* and|Sc¢(u)|* generated fromky)

comp

D™ (© DY, and ) DV,

e Figure 6. Balanced interleaved arrays [v = 0.5, n = 0.25]: (a) representative points of
the ADS-based solutions angS L bounds whenV = 150, N = 312, N = 700, and b)

PSL values and bounds versus the array size

e Figure 7. Unbalanced interleaved arrays[v = 0.25, n = 0.5]: (@) representative points
of the ADS-based solutions angS L bounds whenV = 149, N = 349, N = 701, (b)
PSL!T and €) PSL® values and bounds versus the array size

e Figure 8. Unbalanced interleaved arrays [v = 0.25, = 0.5]. Plots of the normal-
ized pattern$S; (u)|” and|S¢(u)|” generated from the“?-th shifted version of4) the
(149,38,9,74)-ADS (N = 149 - Aperture size:74)\) and €) the (701, 175, 43, 350)-
ADS (N = 701 - Aperture size350)).
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e Figure9. Element pattern of the directive radiator for differentwed of the “directivity”

indexm [m € {0, 0.25, 1, 10, 99, 200, 300}].

e Figure 10. Unbalanced interleaved arrays [NV = 106, v = 0.49, n = 0.75]: (a) PSL
value versus the cyclic shift, c = 0, ..., N — 1, (b) representative points of th&DS-
based solutions with isotropic and directive elements= 0.25), and €) plots of the
normalized patterngSq(u)|* and )S}m) (u))2 (m = 0.0, 0.25) in correspondence with

comp)

Dy

e Figure 11. Unbalanced interleaved arrays [V = 109, v = 0.25, n = 0.5]: (a) PSL
value versus the cyclic shift, 0 = 0, ..., N — 1, (b) representative points of théDS-
based solutions with isotropic and directive elements= 10, 300), and €) plots of the

2
normalized patternsSo(u)|* and ‘S}m) (u)‘ (m = 0, 10, 300) in correspondence with

e Figure 12. Comparative Assessment - Balanced interleaved arrays [N = 109 (aperture
size:29.5)), v = 0.5]: (a) PSL value of theGG A solution [1] and thed D S-based array
versus the cyclic shift, o = 0, ..., N — 1, (b) representative points, and)(plots of the

comp

normalized patterns derived from theD.S D) and synthesized by th& A-based

procedure.
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w,(n) =[1100 0000 0010 0101 1000 0000 1000 1000 0000 1000 0010 1011 0100 0]
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