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Abstract

This paper introduces a numerically-efficient techniqueeldaon the Bayesian Compres-
sive Sampling BC'S) for the design of maximally-sparse linear arrays. The oetls
based on a probabilistic formulation of the array synthasid it exploits a fast relevance
vector machine RV M) for the problem solution. The proposed approach allowsdte
sign of linear arrangements fitting desired power patteritb & reduced number of non-
uniformly spaced active elements. The numerical valisetissesses the effectiveness and
computational efficiency of the proposed approach as abdeiomplement to existing

state-of-the-art techniques for the design of sparse sirray
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1 Introduction

Synthesizing antenna arrays with a minimum number of elésnisra problem of high impor-
tance in those applications (e.g., satellite communioaticadars, biomedical imaging, acous-
tics, and remote sensing) where the weight, the consumpmmhthe hardware/software com-
plexity of the radiating device have a strong impact on the@lltost of the overall system
[11[2].

Non-uniform arrangements have potential advantages wgpact to uniform layouts [3] such
as @) significantly increased resolution (i.e, decreased noaimiwidth) [4], ) sidelobe level
control/reduction [5], andd) enhanced efficiency in dealing with physically-consteairge-
ometries (e.g., conformal architectures) [6]. Howevegrspning array elements has the main
drawback of reducing the control of the beam shape [1]-[d] several approaches for the de-
sign and optimization of sparse arrangements have beewgedpn the last 50 years [1]-[30]
to properly address such an issue.

Dealing with beam shape control, two different problemswseally considered in the state-
of-the-art literature [20]: I() the minimization of the peak sidelobe levél{ L) by determining

a fixed set of N element positions over an aperture and sometimes the pomrdsg weights;
(I1) the synthesis of a maximally-sparse aftayadiating a desired pattern. A wide set of
methods concerned witRroblem 1[2] has been investigated including random approaches
[11][15], dynamic programming [12]F' [ R-filter design [16], stochastic optimization meth-
ods [17][18][20][24][27][28], analytical techniques [R20], and hybrid algorithms [25][29],
as well. On the contrariroblem Il has received less attention and few methods have been de-
veloped [2][3][13][14][19][20][21][23][26]. Because dhe limitations of available computers,
first attempts relied on techniques requiring as few contpmrtal resources as possible such as
the steepest descent method [13] and the iterative leasrsdgechnique [14]. However, those
approaches have strong limitations as, for example, the twesepriori know the number of ac-
tive elements of the array and the aperture size [13][14drtier to overcome these drawbacks,

a technique exploiting the simplex search was developeg] ito[find the sparsest array match-

(1) An array with the minimum number of active element, over a lattice (regular or irregular) a¥
positions.



ing a given reference pattern. Moreover, a mixed linear ogning approach was introduced
in [19] with the same aim. Further developments ranging feoracursive inversion algorithm
based on the Legendre transform [21][26] up to the use of@hasiic optimizer based on the
simulated annealing technique [20] or a generalized Gansgiadrature approach [23] have
been successively analyzed. More recerRigblem Il has been solved by means of an inno-
vative technique based on the Matrix Pencil MethofK{ M) [7]. Thanks to its efficiency, the
M PM generally outperforms other synthesis techniques in teshonvergence speed and

array performances [7]. Despite its effectiveness, sudpgmoach presents some limitations:

1. the locationgl,, p = 1, ..., P, of the P active elements of the array are proportional to the
complex values of the non-zero roots of the generalizedwajae problem described in
[7]. Consequentlyunphysicalcomplex solutions (i.ed, € C) can be generated [7] and
an approximation [i.ed)'" = R (d,)] is required (p. 2957 - [7]) whose impact on the

array performances cannot bepriori estimated nor neglected;

2. no requirements on the element positions [7] can be statads, no geometrical regular-

ity or user-desired geometric features on the synthesiaag aan bea-priori enforced;

3. the method may fail in synthesizing/matching shaped heatterns because of the imag-

inary parts ofd,, p = 1, ..., P are not usually negligible (p. 2958 - [7]).

This paper is aimed at proposing an innovative, flexible, emehputationally-efficient com-
plement to the existing synthesis methods that s&lk@blem Il The method, based on the
Bayesian Compressive Sampling'S) [31], is devoted to find the maximally-sparse array
with the highesta-posterioriprobability to match a user-defined reference pattern. Tdsva
this end, an efficienBC'S solver exploiting a fast relevance vector machifrd’(\/) algorithm
[31] is adopted.

The outline of the paper is as follows. Section 2 is aimed ahsraatically formulating the
synthesis problem and describing an algorithm for miningza suitable cost function that
depends on the degree of sparseness of the array and thetofidmeween the desired power

pattern and the actual one. Section 3 provides a selecteaf seimerical results to validate



the proposed approach as well as to compare its performavittestate-of-the-art techniques.

Finally, some conclusions are drawn (Sect. 4).

2 Mathematical Formulation

2.1 BCS Formulation

Let us consider a symmetric linear arrangementof= 2 x N — x (x = 0 if an even number

of elements is at hand, = 1 otherwise) isotropic elements;,, € R being the real excitation
of then-th element pairif = 1, ..., V). The synthesis problem is that of finding the set of array
weights such tha) the radiated pattern is sufficiently close to a given rafeesone Frpr(u),

and @) the number of active(i.e., w,, = w_,, = d,,w,, p = 1, .., P, d,,,, being the Kronecker
function) array elements is as small as possible [3]. Tow#nds end, theBC'S formulation

is considered and similarly to [3] the following assumpsaare taken into accounta) the
reference pattern is approximated in an arbitrary sekadngular positions,,, k = 1, ..., K,
within the visible range«(;, € [—1,1]); (b) the set of P active positions are constrained to
a large, but finite, user-chosen set/f (i.e., M > P) candidate locations not necessarily

belonging to a regular lattice. Mathematically, the problean be formulated as follows

Synthesis Problem - Given a set of K samples of the reference patteldzzr €
RE, and a fidelity factor= find the set of array weightsy, which is maximally

sparse subject thEppr — E|* < ¢

Where”-” is thegg-norm,EREF = [EREF (ul),...,EREF (UK)]H, w £ [wl,...,wN]H, E £

[E (w1) , ..., E (ux)]” whosek-th entry is given by (u;,) = S

2ndy, 1
1 UnWpCOS [%}, A being

the wavelengthy, the distance of the-th location from the array cented(= 0 if x = 1), and
v, is the Neumann’s number [9] definedias= 2 — x if n = 1, andy,, = 2 otherwise.

The synthesized pattern samplesan be then expressed as
E=Uw Q)

where¥ € RX>N and its(k, n)-th element is given by (k,n) = v,,cos [Z%t].
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To recast the problem at hand a®é'S problem, the following three steps are necessary. Let

us first rewrite the/,-norm constraint|[Ezzr — E|*> < <) as? [34]
Ergr —VYw =e (2

wheree = [ey, ..., eK]T is a zero mean Gaussian error vector [31][33][34] with arrasdined
variances? proportional to the mismatching with the reference pat{em, o2 « ). Then, let

us modelE z;» through a Gaussian likelihood model
2 1 1 2
p (EREF| [W,U D =k &SXP| 535 |Erpr — Yw|| €))
(2702) 20

to recast the original problem as the following linear r&gien one with sparseness constraints

(LRSC)

LRSC Problem - GivenE zxr € R¥ findw ando? which maximize the a-posteriori

probability p (w, 0% |Erpr ) subject to the constraint that is maximally-sparse

Finally, the sparseness eof [33][34] is enforced. As regards the Bayesian formulatguch a
task is accomplished by introducing a sparseness'prinrerw [31]. Hereinafter, the Gaussian

hierarchical prior [32][33][34] is invoked

anw2
Hg:1 v/ Gn €XP (_Tn>
(27) %

p(wla) = 4)
wherea £ [ay, ..., ay] anda,, (n = 1, ..., N) is then-th independent hyperparameter controlling
the strength of the prior oven,, [32]. To fully specify (4), the hyperpriors ovex [i.e., p(a)]
ando? [i.e.,p (0—12)] have to be defined. The Gamma distributions are here camrsi{a2]

N

p(a) = [[ G (an| a1, 00) (5)

n=1

and

() It is worth pointing out that Eq. (2) and tlfle-norm constraint are mathematically equivalent [34].
(3) In Bayesian inference,rior represents tha-priori knowledge about an unknown quantity in probabilis-
tic terms.



(7)o (=

@ a1—1 _q5a
whereq; (i = 1,...,4) is thei-th scale prior, G (a,|a, as) £ “21“’1:1(7)62 andT(a;) £

Qasg, 044) (6)

f0°° t1~le~tdt is the gamma function [32]. Thanks to (4), (5), and (6), thiginal synthesis

problem can be finally formulated as

BCS Problem - GivenEggr € R, find wpcs, apcs, andoyg which maximize

p([w,a, 0'2] |EREF>

2.2 BCS Solver - The RV M Procedure

In order to solve thé8CS Problenby determining the unknown parametevs s, agcs, and
%04, the RV M method [32][31] is applied. Towards this end, let us constidat the posterior

over all unknowns can be expressed as

P ([W, a, 02] \EREF) =p (W ‘ [EREF, a, 02} )p ([a, 0'2] \EREF) ) @)

Moreover, because of (3) and (4), the posterior distributieerw

p (Eger|[w,0%]) p(w|a)
p(Egrgrlla, 0?])

(8)

p(w|[Brer,a,0%]) =

turns out to be equal to the following multivariate Gaussletribution [34]

ey 1w () w )
o) = e el g

1
where the posterior mean and the covariance are givw‘pby“’i% andX = <‘PT‘I’ + A) :

o2

respectively, beingl £ diag (a4, ..., ay).
As for the second term on the right-hand side of (7), the efelt&tion approximation is used

[32] to model the hyperparameter posterior

p([a,0”] [Erer) = 6 (apcs, ohes) (10)



whereapcs ando?, ¢ are the most probable valugascs, 0%g) = argmax, .2 {p ([a, 0% |Erer)},
also called hyperparameter postenwodes In order to determine their values, let us consider

that

p([a, 02} |EREF) ocp(EREF Ha, 0‘2])]9(&)]9(0’2) 11

and let us assume uniform scale priors. Thefw?) andp (a) become constant values [32] and
the maximization of (11) is equivalent to maximize the ter(Exxr| a, 0?), whose logarithm
is given by [32]

L (a, 0'2) £ lOg [p (EREF‘ a, 0'2):| = —% [N 10g27r + lOg ‘C‘ + EgEFC_lEREF] (12)

whereC' = o%I + WA-1UT, It is worthwhile to point out that it is not possible to perfo

the maximization of the “marginal likelihood” (12) in an estdashion, but dype-Il maximum
likelihood procedure [34] can be profitably exploited for determinimgtarative re-estimation
of (apcs, 0%05). Such a technique, whose Matlab implementation is availab]35], is sum-
marized in the Appendix.

Finally, by substituting (9) and (10) in (7), one obtainsttha

(13)

p([w.a,0"] [Brer) = p (W |[Erer a,0%]) |

a,02)=(aBCS,o%CS) ’

The posterior over all unknowns results a multivariate Gaurs function (9) only depend-

ing on the unknown se once (apcs,o3og) have been determined. Therefore, the value
of wpes = argmaxy, {p ([w,a,0?| |Ergr)} turns out to be equal to the posterior mean of
p (W |[Eger,a, c?])] (0%)=( given by

3303702305)

Wpcs = NJ (a702)=(aBCSvUQBcs) . (14)



2.3 BSC SynthesisMethod - Algorithmic I mplementation

The algorithmic implementation of thBC'S-based pattern synthesis consists of the following

steps:

1. Input Phase Set the reference pattefiizzr(u), the grid of admissible locationgl(;
n = 1,..., N), the set of pattern sampling points,( £ = 1, ..., K), the target variance
o? of the error terme, and itsinitial estimates? for the sequential solver of thBV M

algorithm (see the Appendix);
2. Matrix Definition- Fill the entries of the matriceBrsr, ¥, e, andErzr = Erpr + €;

3. Hyperparameter Posterior Modes Estimatiofind (agcs, 0%.5) by maximizing (12)

as described in the Appendix;
4. Array Weights EstimationFind wzcs by (14);

5. Output Phase Return the estimated array weightgzcs, the number of active array
elements,Ppcs = —x + 2 ||[wpes||,), and the corresponding hyperparameter modes
(apes, Ohes)-

Starting from an user-required patteffgzr(u) (i.€., its sampled representati®y ), the
control parameters of the synthesis process are the falpwariables: &) d,,,n =1, ..., NV; (b)

ug, k= 1,..., K; (c) 02, and @) o2. Consequently, it is possible to synthesize arbitraryrezfee
patterns specifying the pattern matching accurayyafd the sequential solver initialization
(d). Moreover, theBC'S method allows one to enforce pattern constraints withirnvthele or

in a subset of the visible rangb)(as well as to set suitable geometrical features of the array

arrangements).

3 Numerical Analysis and Assessment

This section is devoted to numerically assess potengalé&nd limitations of the proposét’'S
approach for the design of sparse linear arrays. The nualexialysis is carried out by con-

sidering a set of representative/benchmark referencerpatto evaluate the effectiveness and

#)In this papet|x|, is thelo-norm ofx (i.e., the number of non-zero elementsaf
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reliability of the BC'S in approximating a user-desired pattern. In order to evaltlze “degree
of optimality” of the array designs, the following metricsdapattern descriptors are used: the

matching erro¢ defined a$)

o Jo |Brer(u) = B(w)* du

) 15
Jo | Brer(u)[ du 4o

§

the aperture lengtih, the mean inter-element spacidg. = %, and the minimum spacing

ALmin - minp:l,..,P—l {|dp+1 - dp|}

3.1 BCS Sensitivity Analysis

As a first numerical experiment, the synthesis of a non-umfarray matching a Dolph-Chebyshev
pattern [2] is considered. A broadside Dolph-Chebyshetepatvith L = 9.5\ and PSL =

—20 [dB] is assumed as reference. Let us notice that such a paterbe synthesized through

a uniform array withPyy; = 20 %-spaced elements. ThHeC'S synthesis has been carried out
by samplingEggr(u) at K points € [0, 1], ux = % k = 1,..., K) and assuming the
following grid of admissible locations

L(n-1)

d":2(N—1)

,n=1,...,N. (16)

Figure 1@) describes théB(C'S results by reporting the matching errgrversus the number
of active elementsPzc5 for different values of the control parameter&’ = {5, ..., 25},

0% € [107°,1], 02 € [107°,1], andN € [5, 5 x 10%]. The Pareto front of the solution set in the
plane(¢, Pges) is indicated, as well. As it can be observed, differ&dt.S trade-off solutions
are obtained with accuracy and element number in the rargél0-%, 2] and Ppcs € [5, 20],
respectively. By comparing the patterns related to thrpeesentative points of the Pareto front
(i.e., Pecs = {8, 14, 20}) with the reference one [Fig. )], it turns out that the solution with
Pgcs = 8 elements provides a very poor matchigg=€ 2.91 x 10~!), while a reliable recon-
struction € = 0.99 x 107%) is yielded choosing the solution haviigs-s = 14 [Fig. 1()]

. . . . . )\ - .
with a non-negligible saving of array elements with respecthe 5-spaced uniform array (i.e.,

®)Only u € [0,1] is considered in the definition gffor symmetry reasons.
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% = 0.7). As a general by-product, it results that a value of the emmuindex around
the threshold = 10~ identifies an optimal trade-of8C'S solution, whereas lowef values
usually require more radiating elemenf3sf.s = 20, £ = 2.03 x 107° - Fig. 1(0)] without
significant/relevant improvements in the matching of tHenence pattern. As regards the re-
sulting layouts, it is worth pointing out that the optiniad’'S array (Pscs = 14) has an aperture
and an excitation displacement [Fig.cll(close to those of the uniform array. This proves the
effective non-uniform sampling of the ideal current distiion affordingErgr(u). Otherwise,
different apertures [e.9.L.pcs] p_g = 6.2A VS. Lpcs|p_q, = 9.5A] and weights [Fig. 1f)]

are synthesized in correspondence with greater valu€s é&fs for the element arrangement,
a positive feature of th&(C'S arrays is the enlarged inter-element spacing with respetttd
corresponding uniform array [Fig. @) despite the closely-spaced admissible locations [EQ.
(16)1.

In order to provide a deeper understanding about the seibsitif the BC'S performances on
the control parameters, Figures 2 and 3 summarize the sesui comprehensive numerical
analysis. More specifically, the matching error has beeffuated as a function ok, or o2,

or o2, or N by setting the other parameters to the values used to olftaingtimal trade-off
with Pgcs = 14 (i.e., K = 15, 0% = 1072, 62 = 2.0 x 1073, N = 501). For completeness,
the behavior ofPz-s has been reported, as well. As expected [Fig)]2(he pattern matching
improves as the number of sampl&sof Erpr(u) increases. Howevet, does not further
decreases beyond a threshold valiie=€ 15) slightly above the Nyquist threshol&(y,quisc =

11) even though the corresponding number of array elem&pts; still grows. A sampling
value K betweenk yquisc and 1.5K v, quis¢ tUrns out to be a reliable choice as confirmed by
the behaviour of the plots 0F e (1) — Enpa(u)]? for K = {7,15, 24} [Fig. 3@)], as well.
Indeed, the lowest value ok gives the poorest fittingq| ,_, = 0.91 - Fig. 3(@)], while
satisfactory reconstructions are obtained WHen> Kyyquist (€] 15 = 0.99 x 107%). A
further increment ofX” only marginally enhances the accuragy | _,, = 0.98 x 10~* - Fig.
3@)]

Concerning the sensitivity te?, the integral error has small variations fot < 10~2, while it

sharply increases afterwards [Fig.bfj(as pointed out by the plots ¢fzcs(u) — Erpr(u)|”
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in correspondence with a set of representative values ot ¢fe.,o? = {107°,1072, 1}) [Fig.
3(b)]. More sparse arrays are synthesized in corresponderttelavger values ofr? at the
expense of highef values [Fig. 20)]. Good tradeoffs between accuracy and element reduction
then arise by setting® € [10~2,10~']. Such an outcome indicates that th€'S performances
are significantly less sensitive t& than toX. As a matter of fact, a reduction gfof about

one order in magnitude requires a variationfobf about10 — 20% [Fig. 2(@)], while the same
effect holds true for a variation of? of more than two orders in magnitude [Figb#|( Similar
deductions can be drawn from the behaviour of the integralrerersuss?. Moreover, the
matching error increases almost monotonically wighwhereas lowPz s values are obtained
within the ranges? € [5.0 x 1074,5.0 x 1072] [Fig. 2(c)]. Such a range can be also assumed
as reference guideline since smaHérvalues only marginally improve the matching accuracy
[02 = 1075, & = 4.29 x 107° - Fig. 3(c)], while higher values do not allow reliable syntheses
[02 =1,&=0.1-Fig. 3C)].

Finally, the plots in Figure 2{) are concerned with the sensitivity of tHeC'S on N. By
analyzing the behaviour aPz¢g, it comes out that great care must be exercised on the choice
of NV to obtain a sparse array matching with a good accuracy teeeete one. A good receipt

coming also from other heuristic analyses suggests to &wos [5 x £;100 x £].

3.2 BCS Assessment - Synthesis of Broadside Patterns

The second set of experiments is aimed at assessing in a xtoestive fashion the perfor-
mances of thé&3C'S when dealing with broadside patterns. More specificallypbDeChebyshev
reference patterns with € {9.5\,14.5X,19.5 A} andPSL € {—20, —30, —40} [dB] have been
used and the Pareto fronts of th&'S solutions are shown in Fig. df. As expected, wider
apertures require more elements to reach the accuracyhtidgs= 10~ (e.g., Pscs | o

N =

14, PBch§:14_5 = 20, and PBCSJ§:19_5 = 36). On the contraryPgzcs does not generally

9.5 —

change when varying the peak sidelobe level (ef:s] ps;— s0un = PBCS) psi——s0a5 =
Ppes|psr—_s0a = 26). The BC'S method allows a saving of abod® — 35% of the array
elements with respect to the corresponding unifor%ﬂypaced array still keeping a very ac-

curate pattern matching (i.€5, < 10~*) [Tab. I]. This implies an increasing of the average

12



inter-element distance%ﬁ2 € [1.46, 1.56]) and, usually, of the minimum spacing between ad-
jacent elements% € [1.25,1.56] except for the case with = 19.5X and PSL = —30
[dB]). On the other hand, the array aperture only slightlguees (e.g.,ﬁﬁﬁ = 0.995 when

L =19.5\andPSL = —30 [dB]) since it controls the mainlobe pattern matching.

As far as the “shape” of th8C'S Pareto front is concerned [Fig. &), the plot of the matching
error shows a step-like behaviour whatever the array apedndP .S L conditions. Moreover,

it exists a threshold value dfz-s below which theBC'S cannot provide an accurate matching
for a given Egrpr(u). For example, the case = 19.5\ - PSL = —30 [dB] shows that¢
decreases of more than two orders in magnitude passing g = 24 to Pgcg = 26. This

is visually pointed out in Fig. 4] where the plots of Ezcs(u)|” for Pees = {24,26} are
compared to the reference pattern.

Such a behaviour is further confirmed by the results in Fig) dhere Taylor patterns [1] with
transition index’ = 6 and different sizes (i.el € {9.5\,14.5),19.5\}) and PSLs (i.e.,
PSL € {—20,—30,—40} [dB]) are taken into account. Also in this case, a small emaof
Ppes (Ppeos = 24 — 26) leads to a significant improvement of the reconstructiocueacy
(Elppogmss =811 x 107 = &, oo = 3.13 x 107°). The reliable solutions with < 10~*
provide also for Taylor syntheses an accurate matchingeofdference pattern with negligible
errors confined to very low sidelobes, far from the mainladee[the inset of Fig. df], which

do not contain relevant portions of the radiated power.

As for the element saving with respect to %kspaced arrangement, the values in Tab. | confirm
that% € [0.65, 0.70] as well as the conclusion drawn for the Dolph-Chebyshe\epagton
the distribution of the array elements (i.€.43 < AA—/Lz < 1.55). Concerning the computational
issues, thé3C'S turns out to be very efficient -5 < 0.35 [s] - Tab. I) whatever the broadside
reference pattern, despite the non-optimized implemiemiatf the Matlab code.

In order to complete the analysis of the performance ofRBli&S approach when dealing with
broadside patterns, comparisons with state-of-the-ahinigues have been carried out, as well.

Towards this purpose, th&/ P M approach [7) has been considered because of its efficiency

and the enhanced matching accuracy compared to similaioaieuch as the Prony technique

(6)A MATLAB implementation of theM PM has been used for the numerical testpdgnci | function-
http://www.mathworks.se/matlabcentral/index.hoyl setting the default parameters as suggested in [7].
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[7]. The results from the analysis of different Dolph-Chsbgv references are summarized
in Fig. 5 where the plots of versusP for both BC'S and M PM (") arrays are shown. Let
us consider the test case characterized by a referencerpaite PSL = —30 [dB] defined
over a linear aperture of length = 9.5\ [Fig. 5(@)]. In such a case, thé/PM provides
a more accurate fitting than theéC'S whatever the number of array elements (efg.= 12:
§lpog =702 x 1073 vs. &, py, = 1.04 x 1074 [7]) and theBC'S generally requires a larger
P to satisfy the conditiof < 107 (Ppcs = 14 — £ ppg = 2.62 x 107° vs. Pypyr = 13
— &l pog = 2.76 x 107°). The BC'S performances come closer to those of the”M as
L increases = 14.5\ - Fig. 5b) and L = 19.5)\ - Fig. 5()] and sometimes th&C'S
outperforms theM PM in terms of fitting index for both small and large valuesflFigs.
5(b)-5(c)]. Moreover and with reference to Figs.c{G(e), it results that the efficiency of the
BC'S enhances wheRSL reduces. As a matter of fact, tié P A/ overcomes thésC'S when
L =19.5 AandPSL = —20 [dB] [Fig. 5(d)], while {gcs < &arpas fOr the aperturd, = 19.5
with PSL = —40 [dB] [Fig. 5(e)] as also pictorially pointed out by the plots 8%, 5,,(u) and
Epcs(u) synthesized with the correspondiiy= 26-element arrangement [inset of Fig eg(
As it can be observed, theC'S properly matches the reference pattern within the entsibia
range, while the\/ P M accuracy worsen near the mainlobe and in the far sidelobes.
Similar conclusions hold true when dealing with Taylor refece patterns. The behavior f
versusP (Fig. 6) still indicates that thé/ P outperforms the3C'S concerning the minimum
P to reach the matching threshofd= 10~* when dealing with small arrays and highSLs
[Prupy = 12 — Eypar = 9.89 x 107° VS, Pgeg = 14 — Epeg = 7.82 x 107° - Fig. 6@)],
while the BCS betters theM PM performance for largef. with low peak sidelobe levels
[Prvpy = 26 — Enpar = 2.38 x 1074 VS, Ppeg = 26 — £pcs = 3.62 x 1075 - Fig. 6()]. This
is further confirmed by the patterns of the optimal tradesofiutions displayed in the insets of

the pictures of Fig. 6.

(T Please notice that only thel PM arrays withSV D-truncation parameter below)—> have been reported
in order to guarantee an accurate pattern matching [7].
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3.3 BCS Assessment - Synthesis of Shaped Patterns

In order to evaluate the flexibility of the proposed apprqaunlmerical tests concerned with
shaped patterns have been also performed. The first expsrtlaals with the reconstruction of
flat top patterns defined over an aperturd.of 4.5\ with different PSLs as in [36]. The plots
of £ as a function ofP show that neither thé/ P M nor the BC'S is able to reduce the number
of array elements of the uniform array (beiig\ its inter-element distance) synthesized in
[36] still keeping a good accuracy, although thé€'S [ Pscs = 10 —E&pes = 4.55 x 107 - Fig.
7(a)] reduces the array aperture with respect to [3@5@ < 0.97 - Tab. II). On the contrary,
the M P M defines wider arrangementé&gﬂ = 1.74), as shown in Fig. ®), without yielding

a good matching with the reference patterg £y, > 2.5 x 1073 - Tab. 1l). The enhanced
accuracy of theB(C'S is also pointed out by the plots &frgr(u), Epcs(u), andEy pa(u) in
the insets of Figs. &)-7(c) related to the arrays witRzcs = Py py = 10. For completeness,
the distributions of the array excitations along the arraigesion are given in Fig. @f. As it
can be observed and also predicted in [7], the worseningeopétformances of th&/ PM is
mainly due to the errors in estimating the element posit@ased by the non-negligible values
of the imaginary parts of the non-zero roots of the assodieigenvalue problem.

The second experiment considers as referenc&\ibedwardpattern with = 8.5\ analyzed

in [37]. The plots of versusP show that theBC'S faithfully reconstructs the reference pattern
synthesizing an array dzcs = 12 elements{zcs = 2.79 x 10~° - Fig. 8(@)] with a reduction
of about% of the array elements with respect to the uniform layduty; = 18). As a side effect
of the approximation, the optim@C'S trade-off slightly improves thé S L of the reference
pattern Pgcs = 12 — PSLpcs = —20.2 [dB] vs. PSLyn; = —20 [dB] - Tab. Ill), as
well. On the contrary, both th& P M synthesis in [37] and th&/ PM pattern generated with
Py py = 12 elements do not provide an accurate fittid®[py, = 12 — Eypyr = 4.02 X
103 - Fig. 8@)], unless using more antenna elements (e, = 14), and significantly
worsen thePSL (Pypy = 12 — PSLypy = —13.2 [dB]) as highlighted by the plots of the
associated patterns [Fig. ]. For completeness, the behaviour of the array excitatamd
the corresponding figures of merit are reported in Figc) &hd Tab. 1lI, respectively. As for

the computational costs, theC'S still retains the numerical efficiency proved in synthesigi
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broadside patterns (Tab. IlI).

Similar conclusions can be also drawn when considering wieference apertures. For exam-
ple, with reference to a Woodward reference pattern Wwith 19.5)\ [Fig. 9(a)], the BC'S yields

an accurate approximation with less elements than\itiéM (Pgcs = 26 VS. Pypy = 28).
Moreover, the accuracy of th&l/ PM significantly worsens when using the same number of
active elements of th&C'S solution [P = 26 - &ypyr = 4.81 x 1072, PSLypy = —3.6
[dB] vs. épcs = 3.52 x 107°, PSLpcs = —17.4 - Tab. IV and Fig. 9%)]. As for the array
arrangement, th&C'S provides a more widely-spaced design characterized bydit@ning
parameters2lmin — (0.975 and 2L = 1.56 (Tab. IV).

N2 X2

34 BCS Assessment - Constrained Synthesis

This section is devoted to assess the reliability of B%€S approach in solving constrained
synthesis problems (i.e., matching a reference pattererusoime explicit geometric and/or
radiation constraints). Towards this aim, the synthesis Dblph-Chebyshev pattern with =
19.5X1 and PSL = —30 [dB] under different synthesis constraints has been addtks

The first test case has been formulated by enforcing therpatt@tching constraints in the
angular regionu, ¢ [u,,, uy], beingu,, = 0.5 andu,, = 0.6. As desired, the pattern of the
optimal BC'S trade-off solution{ = 3.71 x 107° - Tab. V) fits in a faithful way the reference
one within the constrained region as well as in the transitegions close to the unconstrained
angular range [Fig. 10f]. It is also of interest to observe that the distributiontioé array
excitations of theBC'S synthesis and those of the uniform array quite significadiffier [Fig.
10@)]-

To further verify the efficiency of th&C'S to include pattern constraints in the synthesis process
without affecting the reliability of the matching in the raming portion of the pattern, the
constraint has been moved in another region of the visiblgeay settingu,, = 0.8 and
uy = 1.0. As expected, the trade-off pattern carefully matches¢fierence in the constrained
region € = 6.81x10~° - Tab. V), while uncontrolled lobes appear for> 0.8 [Fig. 11()]. The
use of a directive element [e.g.¢@s(0) radiating element] might then enable the control of the

sidelobes in the whole visible region [Fig. b)} with a significant saving of active elements
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in comparison with the uniform array synthesizing the enfrolph pattern Pgcs = 21 vs.
Pynr = 40).

The last part of the numerical assessment is aimed at anglyizé capability of the3C'S ap-
proach to also take into account geometrical constrairagards this end and considering the
same reference pattern of the previous experiments, tvierelift aperture-blockage problems
have been definedi)(d,, ¢ [5.3),6.5\] and i) d,, ¢ [0.0\,1.0\]. The plots of the synthe-
sized trade-off arrangements assess the effectivenesebatuility of the BC'S technique in
constraining the element positions to desired locatioig [E2@) and 136&)], while designing
sparse arrangementA (. > \/2 - Tab. V) with reduced apertures -5 < 19.47), as well. It

is also worthwhile to point out that, notwithstanding thenrreegligible reduction of the admis-
sible spatial region for the array elements (more th@¥ in both cases), th&z-s(u) pattern
matches the referendérzr(u) with a great care [Fig. 12§ and Fig. 13§)] as confirmed by

the values of the matching index)[¢ = 5.82 x 10~% and (i) ¢ = 4.81 x 107° - Tab. V].

4 Conclusions

In this paper, theBC'S has been applied to the synthesis of sparse arrays withedesidiation
properties. The pattern matching problem has been propefdymulated in a suitable Bayesian
framework and successively solved with a fast solver. Aremesive numerical validation has
been carried out dealing with different reference patteangy sizes, and constraints to assess
the feasibility and reliability of thé3C'S approach as well as its efficiency, flexibility, and accu-
racy. Selected comparisons with state-of-the-art tealesdpave highlighted the advantages and
limitations of theBC'S synthesis in terms of sensitivity on control parametersfgoeances,

and computational complexity. The proposed technique hass the following main features:

e several tradeoffs solutions can be easily obtained by mefgisple modifications of the

control parameterss€, uy, d,,, ando?) (Sect. 3.1);

e B(C'S favorably compares with state-of-the-art techniques sxsdhe)M PV [7] in terms
of accuracy, array sparseness, and computational burden mhatching reference broad-

side patterns (Sect. 3.2);
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e on average the number of active elements IB@S array turns out to be smaller than
the corresponding uniform arrangemeRg(s ~ 0.7 + 0.65 Py 1) still providing a high

accuracy in matching the reference pattern (e, 107%);
e B(CS usually outperforms/ P M when dealing with shaped beampatterns (Sect. 3.3);

e application-specific constraints on either the radiatiatigrn or the geometrical charac-

teristics of the array can be easily and efficiently taken axtcount (Sect. 3.4).

Subjects of future researches will be the analysis of thaialuoupling effects in the presence
of realistic array elements as well as an enhanced exptitaf directive elements. Further
extensions, out-of-the-scope of the present paper, wiltem with complex excitations and

non-symmetric layouts.
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Appendix

- Sequential Solver for the Maximization of £ (a, o%)
The marginal likelihood maximization algorithm proposad34] is hereinafter customized to
deal with user-defined pattern matching problems. Staftoim the knowledge oE zzr and

U, the following sequence is iteratively being the iteration index) applied:

1. Initialization (r = 0) - Set[oz](’”) = var [Eggr] x o2 and then-th entry of the diagonal

matrix A £ diag (aY), . a%?) as follows

r wn 4
a = Hz ! 210 1 112 (17)
107 Erprll” = (02" [|¢]

if n = 7 andal’ = co otherwises andq,, being randomly picked integers withji, V]

and then-th column ofV, respectively;
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2. Update - Evaluatex(™ = % (A(’”>, [0—2](T)) andu(™ = p <A(’“), [02](T)> to compute the
sparsityfactorss!”’ = VIO ep,,m=1,..., N and thequalityfactorsz\") = VIO Erpr,

n=1,..,NwhereC_, = C — a; “t,op7;

3. Candidate Basis Vector Evaluation - Select the--th candidate basis vectdr,,, n = r,
2
and comput®!’) = (z,@) — s 1f e > 0, then update the value of” by means

of (17), otherwise set!” = oc;

4. Convergence Check - Compute the value o®) Vn € 1,...,N. If el < rvn (r
being thetolerance factorusually set tol0~® [35]), then terminate. Otherwise, update

the iteration index«{ <— r + 1) and go to step 2.

(®)Please refer to [34] for a review of the strategies for caatdicelection.
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FIGURE CAPTIONS

e Figure 1. BCS Sensitivity AnalysigDolph-Chebyshevl = 9.5\, PSL = —20 dB)
- Plot of the representative points of a seti®f'S solutions in the {, Pgcs) plane @).
Power patternsh) and corresponding layouts)(of the reference and of a set of repre-

sentativeBC'S arrays.

e Figure 2. BC'S Sensitivity AnalysigDolph-Chebyshevl = 9.5\, PSL = —20 dB) -

Behaviours of and Ppcs versus &) K, (b) a2, (c) o2, and ¢) N.

e Figure 3. BC'S Sensitivity AnalysigDolph-Chebyshevl = 9.5\, PSL = —20 dB) -
Plots of | Ergr(u) — EBCS(u)|2 of representativé3C'S solutions computed at different

values of ) K, (b) o2, (c) 02, and ¢l) N.

e Figure4. BC'S AssessmetiBroadside Pattern SyntheyisPareto fronts in thef( Pgcs)
plane @)(b) and power patternsc)(d) of representative3C'S solutions when matching

(a)(c) Dolph-Chebyshev andj)(d) Taylor reference patterns.

e Figure5. BC'S Assessmer{Broadside Pattern SyntheyisRepresentative points in the
(&, P) plane of BC'S and M PM solutions synthesized when matching the reference
Dolph-Chebyshepatterns characterized bya)(L = 9.5\ - PSL = —30 [dB], (b)

L = 145\ - PSL = —30 [dB], (¢) L = 19.5\ - PSL = —30 [dB], (d) L = 19.5\ -
PSL =-20[dB],and €) L = 19.5A - PSL = —40 [dB].

e Figure6. BCS Assessmer{Broadside Pattern SynthekisRepresentative points in the
(&, P) plane of BC'S and M PM solutions synthesized when matching the reference
Taylor patterns characterized bya)(L = 9.5\ - PSL = —30 [dB], (b) L = 14.5X -
PSL = —30[dB], (c) L = 19.5\ - PSL = —30 [dB], (d) L = 19.5\ - PSL = —20
[dB], and €) L = 19.5\, PSL = —40 [dB].

e Figure7. BC'S Assessmer{Bhaped Pattern Synthesis:= 5.4\ [36]) - Representative
points in the £, P) plane of BC'S and M P M solutions synthesized when matching the
referenceShapedoatterns [36] characterized bya)(PSL = —20 dB, (b) PSL = —30
[dB], and €) PSL = —40 [dB]. Array excitations ¢).
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e Figure8. BC'S AssessmerfElat-Top Pattern Synthesid: = 8.5\ [37]) - Representative
points in the ¢, P) plane of BC'S and M PM solutions &), optimal trade-off beampat-

terns p), and associated array excitations (

e Figure 9. BC'S Assessmer(fFlat Top Pattern Synthesist = 19.5)) - Representative
points in the {, P) plane of BC'S and M PM solutions &), optimal trade-off beampat-

terns p), and associated array excitations (

e Figure 10. BC'S AssessmerjConstrained Synthesis - Dolph-Chebyshév= 19.5),

uy ¢ (0.45,0.55)] - Array excitations &) and power patterngy.

e Figure 11. BC'S Assessmer(Constrained Synthesis - Dolph-Chebyshév= 19.5),
uy ¢ (0.8,1.0]) - Array excitations §) and power patterns when using isotropic or direc-

tive elementsly).

e Figure 12. BC'S AssessmerjConstrained SynthesisDolph-ChebyshevL = 19.5),
d, ¢ (5.3),6.5))] - Array excitations §) and power patterngdy.

e Figure 13. BC'S AssessmerfConstrained SynthesisDolph-ChebyshevZ = 19.5),
d, ¢ (0.0A,1.0)\)] - Array excitations §) and power patterngdy.

TABLE CAPTIONS

e Tablel. BC'S AssessmerfBroadside Pattern SyntheyisArray performance indexes.

e Tablell. BC'S Assessmer{Shaped Pattern Synthesis: = 5.4\ [36]) - Array perfor-

mance indexes.

e Tablelll. BCS Assessmer{Shaped Pattern Synthesié: = 8.5\ [37]) - Array perfor-

mance indexes.

e TablelV. BC'S AssessmerfShaped Pattern Synthesis:= 19.5)) - Array performance

indexes.
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e Table V. BC'S Assessmen(Constrained SynthesisDolph-ChebysheviL = 19.5)) -

Array performance indexes.
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Dolph-Chebyshev, L=19.5\, PSL=-30 dB, subregion matching
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Dolph Chebyshev, L=19.5\
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Dolph-Chebyshev, L=19.5A, PSL=-30 dB, Constrained Geometry
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Dolph Chebyshev, L=19.5\, Constrained geometry
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Reference Pattern Uniform BCS
Type | L[A] | PSLIAB] | Pyns | 20 | €[x107°] | Zzes | Sgan | QL | Lios | ¢[x107's]
Dolph 9.5 —30 20 1.0 2.62 0.70 1.26 1.46 1.000 1.12
Dolph 14.5 —30 30 1.0 9.98 0.66 1.35 1.52 1.000 2.93
Dolph 19.5 —20 40 1.0 7.10 0.65 1.50 1.56 0.997 2.14
Dolph 19.5 —30 40 1.0 3.03 0.70 0.78 1.42 0.995 1.18
Dolph 19.5 —40 40 1.0 9.09 0.65 1.56 1.56 1.000 1.13
Taylor 9.5 —30 20 1.0 7.82 0.70 1.22 1.46 1.000 1.27
Taylor 14.5 —30 30 1.0 9.64 0.66 1.35 1.52 1.000 3.14
Taylor 19.5 —20 40 1.0 8.53 0.65 1.34 1.55 0.994 1.92
Taylor 19.5 —30 40 1.0 3.13 0.65 0.80 1.43 | 0.993 1.48
Taylor 19.5 —40 40 1.0 3.62 0.65 1.36 1.54 0.990 1.01




Reference Pattern| Method Indexes
L[\ | PSL[dB] 3 P gpee | AL L t [s]
5.4 —20 [36] — 10 1.00 1.00 1.00 —
5.4 —20 BCS | 455 x107¢| 10 0.34 0.96 0.96 | 1.5x 107!
5.4 —20 MPM || 7.82x 1073 | 10 0.99 1.74 1.74 | 3.3 x 1072
5.4 —30 [36] - 10 | 1.00 1.00 | 1.00 -
5.4 —30 BCS | 827x107%| 10 0.39 0.96 096 |1.4x107!
5.4 —30 MPM || 3.45x 1073 | 10 0.99 1.74 1.74 | 2.5 x 1072
5.4 —40 [36] — 10 1.00 1.00 1.00 —
5.4 —40 BCS | 353x107%] 10 0.63 0.97 0.97 | 1.6 x 1071
5.4 —40 MPM | 0.84x 1072 | 10 0.99 1.74 1.74 | 2.9 x 1072

Tablell - G. Oliveri et al., “Bayesian Compressive Sampling for...”
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Uniform BCS MPM MPM [37]
L[N 8.5 8.33 8.36 8.50
PSLI[dB] || —20 —20.2 ~13.2 —14.63
p 18 12 12 9
s - 0.66 0.66 0.50
UNI
ALmin
A — 1.18 < 0.01 1.42
AL
N — 1.51 1.52 2.12
- - 0.980 0.984 1.00
UNI
t [s] - 2.0 x 107" | 2.8 x 107 —
3 — 2.79 x 107° | 4.02 x 1073 | 7.02 x 1073

Tablelll - G. Oliveri et al., “Bayesian Compressive Sampling for...”
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Uniform (W LM) BCS MPM
L[] 19.5 19.5 19.5
PSL[dB] —17.2 —17.4 —3.6
P 40 26 26
P — 0.65 0.65
A — 0.975 <0.01
VT — 1.56 1.56
T — 1.0 1.0
t[s] — 14x 107t | 3.3x 107!
3 3.52 x 1075 | 4.81 x 1072

TablelV - G. Oliveri et al., “Bayesian Compressive Sampling for...”
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Reference Pattern Constraint BC'S Indexes

L[\ | PSL[dB] 1 P | ALnin[A] | AL[N] | L[N | t[x1071s]
19.5 —30 uy ¢ (0.5,0.6) 3.71 x 107° | 26 0.455 0.776 | 19.36 2.17
19.5 —30 up ¢ (0.8,1) 6.81 x 1075 | 21 0.585 0.928 | 19.50 1.40
19.5 —30 d, ¢ (5.3,6.5)[\] || 5.82x 107% | 36 0.067 0.556 | 19.47 1.61
19.5 —30 dy & (0,1)[A] | 481x107°| 30 | 0.029 | 0.670 | 19.44 1.65




