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Abstract  
In this paper, a classification approach for the real-time identification of “occupation” areas (instead of the detection of 
each subsurface object) in sub-surface sensing applications is applied. A suitable SVM-based strategy is developed for 
determining the probability of occurrence of buried targets and to define a “risk map” of the investigation domain. To 
assess the effectiveness of the proposed approach and to evaluate its robustness, selected numerical results related to a 
two-dimensional geometry are presented. 
 
Introduction 
In clearing terrains contaminated or potentially contaminated by landmines and/or unexploded ordnances (UXOs), a 
quick wide-area surveillance is often required. Such a process is inevitably time-expensive and it involves complex 
acquisition procedures. Consequently, high costs should be met. This is one of the main motivation of the growing 
research interest in developing unsupervised techniques able to effectively (in terms of time and resources) repair 
landmine/UXO contaminated areas. 
Several solutions have been proposed based on various methodological approaches (see, for instance, [1] and the 
references cited therein), which consider different sensor modalities such as ground-sensors or synthetic aperture radars. 
In such a framework, electromagnetic approaches based on learning-by-examples (LBE) techniques [2][3] have been 
recently proposed for the on-line (after the training phase, performed once and off-line) detection of subsurface objects.  
However, because of the complexity of the underlying architecture, some difficulties occur when a larger number of 
unknowns is taken into account. As a consequence, LBE regression-based approaches turn out to be very effective for the 
detection of a single (or few) buried object, whereas they are not-so-suitable in dealing with the detection of multiple 
targets. On the other hand, it should be pointed out that the identification of free-areas and the estimation of the 
concentration of subsurface objects (instead of the localization of each buried scatterer) might be enough in several 
situations. Then, the goal of a subsurface sensing technique could be moved from the “object detection” to the “definition 
of a risk map”. Consequently, a classification approach, instead of a regression one, could be employed.  
In this paper, such an approach is preliminary investigated and assessed through a numerical analysis with two-
dimensional geometries in noiseless as well as noisy conditions. 
 
Mathematical Formulation 
Let us consider a half-space subsurface scenario where the upper region presents the same characteristics of the vacuum 
(  and ) and the lossy subsurface region is described by  and . The extension of the investigation 
domain (where the unknown objects lie) below the surface is 

0.11 =rε 0.01 =σ 2rε 2σ
( ){ }2,2 LyxLDI ≤≤−= .  transmitters (T z -directed 

electric line sources) located above the air-ground interface radiate an “incident field” ( )zyxEE incinc ˆ,= . The “scattered 
field”, ( )zyxEE scatscat ˆ,= , is collected by a set of  sensors close to the air-ground interface. R
To define a “risk map”, let us model the investigation domain with a two-dimensional lattice of M . The state  of the 
m-th cell can be either empty (if any scatterer belongs to the cell)  or occupied . Then, the problem is 
recast as “to determine the probability array 
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be solved by means of an approach based on a support-vector-machine (SVM) starting from the knowledge of a set of 
known examples (i.e., input-output relations ( ){ }NnMmm n

mE ,...,1;,...,1;,, )( ==Γ χ  called training set). 
 
SVM-based Classification Approach 
The proposed SVM-based classification approach is formulated as a two-step procedure  
Step 1: to determine a decision function  that correctly classifies an input pattern Φ̂ ( )mE ,Γ  (not-necessarily belonging 
to the training set); 
Step 2: to map the decision function ({ mE ,ˆ ΓΦ )} into an a-posteriori probability { }EΓ= |1Pr χ  
 
Step 1: Definition of the Decision Function 
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At this step, the status  of each cell of the lattice has to be determined. Mathematically, such a problem formulates in 

the definition of a suitable discriminant function 
mχ

Φ̂  that separates the two classes 1=χ  and 1−=χ . SVM defines a 
linear decision function corresponding to a hyperplane that maximizes the separating margin between the classes. Such a 
linear data-fitting is carried out in the “feature space” ( ){ }EΓℵϕ  (different from the original input space { }EΓℜ ) where 

the original examples are mapped through a non-linear operator ( )•ϕ . Consequently, the nonlinear SVM classifier is 
defined as  
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where , ,  are the unknown Lagrange multipliers. Moreover, from the Karush-Khun-
Tucker conditions at the optimality [4],  turns out to be expressed as follows 
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svN  being the number of patterns ( )( )mn
E ,Γ  for which ( ) 0≠n

mα  (called “support vectors”). 

In order to determine ( ){ }MmNnn
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subject to the separability constraints 
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where  are the “slack variables”;  and  indicate the number of training examples for which ( )
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trade-off between the empirical risk and the model complexity to avoid the overfitting. The arising constrained 
optimization problem (3)-(4) is reformulated in a more practical dual form  
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and quadratic function of , it is solved numerically by means of a standard quadratic programming technique (e.g., 

the Platt's SMO algorithm for classification [6]). When the Lagrange multipliers and  are computed, then 
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Step 2:  Mapping of the Decision Function into the A-Posteriori Probability 
Unlike standard SVM classifiers that labels an input pattern according to the following rule [7]  

( )( ){ } Mmmsign Em ,,1,ˆ K=ΓΦ= ϕχ ,          (7) 
the proposed approach is aimed at defining the a-posteriori probability { }EΓ= |1Pr χ . Towards this end, the a-posteriori 
probability is approximated with a sigmoid function 

( ){ }
( )( ){ }

Mm

m
m

E
Em

,,1

,ˆexp1
1,|1Pr

K=

+ΓΦ+
=Γ=

δϕγ
χ

.    (8) 

where γ  and δ  are estimated according to a fitting process. More in detail, a subset of the input patterns of the training 

set is selected ( )( ){ }SsMmm s
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where ( ) ( )( )( )ms
E

s
m ,ˆˆ ΓΦ=Φ ϕ . Successively (9) is minimized according to the numerical procedure proposed in [8]. 

 
Numerical Results 
For the experimental validation, the following scenario has been considered. The relative permittivity and the 
conductivity of the homogeneous subsurface region are  and  [S/m], respectively.  0.42 =rε

3
2 10−=σ

 

-1.0
-0.5

0.0
0.5

1.0
x/λ

-1.0
-0.5

0.0
0.5

1.0

y/λ
0.0

0.25

0.5

Pr(χ=1|ΓE)

 

-1.0 -0.5 0.0 0.5 1.0

x/λ

-1.0

-0.5

0.0

0.5

1.0

y/λ
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Figure 1. Risk map for the two-targets scenario: (a) three-dimensional and (b) contour level representation 
 
The investigation domain is a λλ 0.20.2 ×  region partitioned in a lattice of 36=M  square cells. The buried objects, 
modeling UXOs or landmines, are lossless circular cylinders of diameter 6λ=d  with a relative permittivity 

.  receivers are equally-spaced along an observation line 0.5=UXOε 16=R λ0.2  in length and parallel to the air-ground 
interface λ6.0=d  above the surface. The probing source ( 1=t ) is located at  and 0.0=tx 67λ=ty . The training is 
composed of  patterns related to two and three-targets configurations. These patterns have been also used 
during the validation test for defining the a-posteriori fitting model (

2484=N
533.0−=γ  and 272.1=δ ). Concerning the SVM 

structure, Gaussian kernel functions were adopted and their parameters selected according to [9]. 
Within the numerical validation, the first experiment deals with a test set of 2484=P  patterns (related to examples 
different from those of the training phase and concerned with two- and three-scatterers configurations,  and 1260)2( =P

1224)3( =P ) and noiseless conditions. Figs. 1(a)-(b) and 2(a)-(b) show the risk maps obtained for two examples of the 
test set. The first example (Fig. 1) refers to a two-targets configuration where the UXOs are located as indicated in Fig. 
1(b).  



The second example (Fig. 2) is related to a three-scatterers configuration. The objects are adjacent and lie at the bottom 
of the investigation domain. As expected, when the targets are buried far from the surface, the localization of the 
“dangerous zones” is more difficult. 
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Figure 2. Risk map for the three-targets scenario: (a) three-dimensional and (b) contour level representation. 
 
The second numerical experiment considers a more critical scenario where a single target is supposed to be located in the 
investigation domain ( ). It should be pointed out that such a configuration does not belong to the training set. 
As an example, the risk map for a sample of the test set is shown in Fig. 3.  
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Figure 3. Risk map for the single-target scenario: (a) three-dimensional and (b) contour level representation. 
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