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Abstract

In the framework of the inverse scattering methodologieis, paper is aimed at preliminarily assessing
the integration between the Iterative Multi-Scaling Apgech and the Level-Set-based method. In order to
enhance the potentialities of the Level-Set-based mirititin, a multi-resolution procedure is employed for
allowing a finer discretization only in those regions of net& where the scatterers are located thus reducing
the whole computational burden with respect to a singeluéisa approach. In order to demonstrate the
effectiveness of the IMSA Level Set technique, a set of regmeative numerical results are presented and
discussed.
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1. INTRODUCTION

The reconstruction of inaccessible scenarios by meanwyefse scattering techniques is a challenging problem useca
of the limited amount of information that can be collectethia scattering experiments and the ill-posedness of thezsev
problem. Due to the band limited nature of the scattered figlch significant and independent set of data is not availabl
and the necessary spatial resolution of the object undiecaasbe obtained by means of the exploitation of the availabl
a-priori information [2][3] or using effective iterativethniques.

To help with the solution, recent developments reportechim literature suggest to split the original problem into a
series of successive sub-problems according to the gestemgdgy of “divide and conquer”. Following these guiden

this paper deals with the analysis of potentialities andtéitions of the integration between a multi-resolution mygeh
[4][9] and an effective minimization technique based onpghdeformation [2][5][6]. The former is a multi-resolution
strategy [called Iterative Multi-Scaling Approach (IMSA)imed at improving at each step of a multi-step proceduge th
resolution accuracy in a subset of the whole investigatmmain. More in detail, starting from a “coarse” represeotat

of the scatterer profile, the region of interest (Rol) isatarely focused onto the area where the unknown scatterer is
supposed to be located by processing the information aheuwtielectric distribution estimated at the previous stfepa
consequence, the spatial resolution is improved only edie Rols, keeping in each sub-problem a lower ratio between
problem unknowns and independent field samples thus regltiointhe occurrence of the local minima [7][8].

At each step, the dielectric profile in the Rol is estimategbuigh the Level-Set-based method. As a matter of fact,
starting from the a-priori knowledge of the homogeneous$terer under test, the shape is a sufficient parameter for the
characterization of the unknown object therefore an eiffedtevel Set representation can be profitably used.

2. MATHEMATICAL FORMULATION

Let us consider a cylindrical two-dimensional geometry rehe set ofi” transverse-magnetic plane wavgy, .(x, y)2
(withv =1,...,V)at afixed frequency successively illuminates an investigation domdir}). An unknown homoge-
neous dielectric object with known relative permittivity and conductivityr but unknown shape and position occupies



an aredl’ € D;. The background is an homogeneous and lossless mediumhgitbléctromagnetic properties of the
vacuum(eg, 1o, 0 = 0). The regionD; is described by the object functiotiz, y) given by

_J e (wyeX
T(@y) = { 75 Otherwise (1)

wheretp = 0 and7c = j2nfeg(ec — 1) — j5= f are the object functions of the background and of the object,

respectively. Starting from the knowledge of the scattémﬂld E?. ...(xz,y)z collected in an observation domalpy, at
M (v) measurement points = 1,..., V) uniformly distributed on a circle of radiysand the incident fieldz?, .(z, )2
in Dy, the inverse scattering problem can be recast as the soliftitne following integral equations

Elcart (E) =
=j2nfuo [p, 7 (r) Bipy (1) Gop (r, 1) dr’ )
r € Do
By (r) = Ef, (1) —
+i2mfro [p, (') By (r') Gop (r, 1) dr’ ®)
re Dy

whereGsp is the2D free-space Green’s function,= (z,y), andE}, (r) = E},. (r) + EY.... (r) is the total electric
field.

Since a closed-form solution of the scattering equatiopsui@ (3) is not available, a suitable discretization/gf has

to be performed so as to get a numerical solution. Moreoterjriformation content of scattering data is limited [7].
Therefore, a multi-resolution strategy has to be consui@reorder to achieve a fine resolution of the unknown object,
keeping a limited number of unknown and fully exploiting fheited amount of data.

Towards this end, the “Iterative Multi-Scaling ApproachiViSA) is employed [4]. Such a strategy consists of a sequence
of S steps (withs = 1, ..., S) aimed at reconstructing the region of interest. More iradeat the first stepq = 1)

the region of interesk,_,) corresponds to the arda;. According to the method of moment&,_,, is discretized in
Niamsa Sub-domains.

The sth region of interest is analyzed by means of the Level-&std technique [2]. To this end, at the first multi-
resolution step (i.es = 1), a Level Sety,_,) defined inR(,_, is initialized according to an oriented distance function

b(s) ( Ton(s) ) =

_mmd(s):l,...,D(S) {pn(s)d(s)}

if 70 (2,5)) = 7C (4)
B +mind(5)— s Ds) {pn (s)d( s)}
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wherep,,5)q(s) represents the distance betwegn,, = (a:n(s),yn(s)), being the center of the(s)th square cell with
sidel(,), andry(, which is thedth border-cell {(s) = 1,..., D)) of the initial trial solutionry. Then, an iterative
procedure is considered for minimizing through the evoluiof ¢, the following multi-resolution cost function

V v
> =1 H[ESM \’{ D) (hy) }H
O (¢(s)(k.)) = . ()
Ev:l H[ESC]H
wherek;, is the iteration index in theth step and = 1,..., Ig. Ir = sis the maximum or current resolution index.
In (5), [E%,,] is aM(v) x 1 array whose elements afe,, (Em(u)) [m(v) =1,..., M(v)] representing the measured

data collected by the:(v)th probe.
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Figure 1. Choice of the optimak¢. Reconstruction of a cylinder having rading2 with A¢ = 0.01.

S {[dey k)] } indicates thel/ (v) x 1 vector of the computed scattered fie{lﬂ?gc (i)(ki)} which depends on the Level

Set functiong;(x,) (according to the matrix representati({m(i)(ki)] = {(ﬁ(i)(;ﬂ) (gn(i)) ;n(i)=1,... ,NIMSA} isa
Nipsa x 1 array).

The first stage ofth iteration at the step is concerned with the computation of the electrical fieldatesl to the trial
solution7((x,). In particular, the array of the total electric fie[d?;;t’(s)(ks)} = {Et“ot (r);ir€ Ry, i=1,... ,]R} is
computed through the operatg¥ -}

[Efot,(s)(ks)} =x{[T@w)]} =

(6)
= [Breio] (1= [Gineo) A{ [Py D™

whereA {-} returns the object function diagonal matfivgs)(ks)} , whose nonzero elements z{rﬁs)(ks) (r);re Ry, i=1,...

More in detail,[T(S)(ks)] is calculated using the multi-resolution expansion a®fed

T(s)(ky) (1) =

(7
I N
=il DSt Ty (k) (fnu))
with
(i) (k:) (fno:)) =
_} e T ¥hk) (fnu)) <0 ®
0 otherwise

and

ok (Tac) =
i) (ky) (tn(i)) ifi=s )

. 1< s
¢(i)(k)i,opt) (zn(l)) if { E”n(z) € R(z)

ki opt DeINg the last iteration ath multi-resolution processes. In equation (@i}mu(s)} is the internal Green’s matrix at
sth resolution level.



Thus, the scattered field is computed by means of the op&kdtpintroduced in (5), which is defined ﬁs{ [gb(i)(,w)] } =
{Egcy(i)(ki) (gm(v)) sm(v) =1,..., M(v)}. Ec iy (fm(v)) is calculated through the solution of a direct problem
starting from the total electric fieldy,, ., (En(i)) and the contrast function;)x,) (gn(i)),with n(@)=1,...,Nrmsa.
After [E40] = S0 S {[61) ]+ has been determined, the fitness valueaf.) is evaluated using (5).

The second stage deals with the computation of the vel@éitys 1 x 1 array [V(S)(ks)} in order to update the Level Set
function ¢ (x.) inside R,). Following the guidelines suggested in [@V(g)(k )} is calculated through the solution of
an adjoint problem, which considers an electric field disttion given byE?,, (rm(v)) = ESc (5)(ks) (gm(v)) in the
M (v) measurement points @,.

The last stage of the minimization procedure is concerndld thve update of the Level Set through a numerical version of
the Hamilton-Jacobi equation in order to get) (s, +1)-

Finally the iteration index is incremented (= k,; + 1) and the iterative optimization is carried on until a stogpi
criterion is verified. More in detail, at each iteratién of the sth step, each valug., ) (En(i)) of the current contrast
function is compared with that in the same position at presib- iterations. Eaclith comparison{=1,..., J;) returns

a number of changed p|xep§,) If the numberqa(j) Vj, are smaller than a fixed threshojd, the contrast function is
considered as stationary. Moreover, the fitness functietai:iaonary if the normalized error is lower than a fixed vajge
for Jg iterations. The Level-Set-based minimization is stoppeateiterationk,,. when the stability conditions of both
the fitness and contrast functions become true. Otherwisgp@amum number of iterations, ,,: = K4 iS Needed.
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Figure 2. Choice of the optimak¢. Reconstruction of a cylinder having radidg2 with At = At

opt,(s)-

Starting from the information achieved ith reconstruction step? 1) is then defined as the area where the unknown

scatterer has been detected: towards this end, the baeydeYe, ., Yc .., ) and the sidel(,.,) of the (s + 1)th
region of interest have to be computed at each step accalihg IMéA formulatlon [4]. ThusR, ) is discretized in
Niasa sub-domains and a new minimization process is consideredlar to achieve an upgraded profile of the problem
unknownr (7).

The iterative multi-resolution procedure is repeatedluhé achieved reconstruction becomes stationars (so,:) or a
maximum number of steps & S,,..) is reached.



3. NUMERICAL RESULTS

The first result deals with the choice of the proper time-s¥p which is used inside the numerical Hamilton-Jacobi
equation to perform the finite difference. The time-stepespnts a key parameter for the Level-Set-based optiroizati
because itis concerned with the update of the Level Setifumch wrong choice ofA¢ could involve too fast an evolution
of the Level Set (i.e., the real solution is never achieveddo the contrary, useless computations.
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Figure 3. Choice of the optimaht. Comparison between the behavior of the fitness functlon£ 0.01 —, At =
Atopt,(s) o )

In order to perform the choice df¢ when using the multi-resolution approach, a known scerw#obeen considered. In
particular, a cylindrical object of radius/4 [whose barycenter is located@t/6, A/6)] is set within a square investigation
domainD; of sidelp, = A [2]. The scenario is illuminated by means¥f= 10 TM plane-wave sources and the data
are collected inV/ (v) = 10 measurement pointdXp) located on a circumference of radips= A centered at the origin
of the Cartesian coordinate system. The working frequeffitiyeoelectromagnetic sources is setfte= 10 [GHZ.

As far as the electromagnetic properties are concernedrtben dielectric relative permettivity of the unknown non-
dissipative object isc = 1.8.

A first trial has been performed by using a constant valueNfoduring the multi-step procedure. The optimal vale=
At,,: = 1072 has been chosen after several numerical experiments petbwith a single-resolution technique. The
results achieved have been compared with those given byablatime-step related to the cell sitg (i = 1,..., Ir),
according toAt = Aty 5y = C - Iy, With C' = Aty /', wherel” = 1.43 - 1072\ is the cell side used in [2] for
At = At,, = 1072. The reconstructions obtained at step; = 3 with At = 0.01 and At = Atopt,(s) are shown

in Figs. 1 and 2, respectively. The multi-resolution pressshave been carried out witfi; ;54 = 81 and a cell
sidel,,,,) = A/14 has been used at the latest stgp . Moreover, no stopping criterion has been employed for the
optimization and the final results have been achieved by &mgd<,,... = 100. In order to avoid the inverse crime, the
discretization in the direct problem i§; = 2601.

When usingAt = At () (Fig. 2, where the actual scatterer is indicated by the ddite), the reconstruction shows
a better estimation of the shape of the cylinder, while a doodlization was achieved in both cases. Choogvig=
At,pe,(s) SEEMS 1O be the best option, since a lower value of the fitnessién (5) can be obtained: in Fig. 3 the behavior

of the normalized error is shown with respectite- S/, k;.

In order to perform a numerical validation of the IMSA LevedtSthe same scenario has been considered with noisy
data. The scattered field collected in the observation domgj has been corrupted by an additive Gaussian noise
characterized by different signal-to-noise rati6§\{Rs). According to the criterion suggested in [7][8] and takinto
account the amount of a-priori information in the problerhand, the resolution insidg ) has been increased by using
Nipsa = 225. The parameters employed for the convergence checks arplan Section 2 ardy = J,. = 10,

vg = 1-107%, andy, = 1 (K, = 100). In this case, the Level-Set-based minimization is stdgpsy by the criterion
concerned with the normalized error.

The result of multi-resolution approach f6/V R = 5[dB] is shown in Fig. 44,,: = 2): a good accuracy (i.e., localization
and shape reconstruction) has been achieved, althouglzéhefdhe cylinder is underestimated.
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Figure 4. Reconstruction of a cylinder having radivg using the IMSAlp, = A\, SNR = 5[dB]).
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Figure 5. Reconstruction of a cylinder having radiug& using the BARE approachf, = A\, SN R = 5[dB]).

The result of Fig. 4 has been compared with the single-réisolueconstruction. In particular, let us call “BARE
approach”the Level-Set-based minimization with the dékés Arr = (s,,,)- The number of view¥” and measurement
pointsM (v) is the same as used in multi-resolution approach, whereasle-stepA¢ is computed ad\t = C - lparE.
For the adopted scenarif,, ., = \/31 and thereforeVp4rr = 961. As far as the stopping criterion is concerned,
the BARE approach employs the same parameters as IMSA{huUt = 300. The result given by the single-resolution
approach is shown in Fig. 5. The object is correctly localibat the shape is better estimated when using the IMSA.

A different scenario is now considered. The object to baeedd is always a circular cylinder of rading4 set within an
investigation domain of sid2\ (p = 2)) and centered ii141/30, —14A/30). This configuration should be considered
as more critical to be inverted, since the object is smalflantin the previous scenario and consequently the disatietiz
grid for the first step of IMSA has to be chosen carefully.

Again, the guidelines suggested in [7][8] have been folldiveorder to determine the optimal; ;4. In particular, let
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Figure 6. Reconstruction of a cylinder having radivug using the IMSAlp, = 2X, SN R = 5[dB)).
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Figure 7. Reconstruction of a cylinder having radiug using the BARE approach{, = 2\, SN R = 5[dB]).

us chooseV (v) = 20, V = 20, andNyys4 = 169 (i.e., the cell side at first step of IMSA is equalltg_,) = %)- As
far as the stopping criterion is concerned, the followingapaeters have been considerdd: = .J, = 50, ¢ = 2- 1071,
andy, =2-1072 (K,qz = 500).

The result of the inversion of noisy datd y R = 5[dB]) achieved by the multi-resolution procedure at steg- 3
(I(s,,.) = A/23) is reported in Fig. 6. A better shape detection is providét vespect to the result of BARE approach

As far as the behavior of the error (Fig. 8) is concerned, aelovalue of the cost function is reached by IMSA when
the algorithms stop, although a greater number of iterddoreeded. However, since the complexity of Level-Set-thase
optimization is abou® (2 X /\/3) at each iteration, witt\" € {Nrars4, Npare}, the multi-resolution approach turns
out to be less computationally expensive than the singlelsdion method.
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Figure 8. Comparison between the behavior of the fitnesgitmfiMSA —, BARE- -).
4. CONCLUSION

In this work a preliminary analysis of the integration betmethe Iterative Multi-Scaling Approach and the Level-Set-
based method has been proposed. The results obtained appearfirm the feasibility as well as the robustness of the
integration, since an higher resolution of the object utesgtris achieved without increasing the computational dexity

of the inversion procedure and allowing a non-negligilestisaving.
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