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Abstract

In the framework of the inverse scattering methodologies, this paper is aimed at preliminarily assessing
the integration between the Iterative Multi-Scaling Approach and the Level-Set-based method. In order to
enhance the potentialities of the Level-Set-based minimization, a multi-resolution procedure is employed for
allowing a finer discretization only in those regions of interest where the scatterers are located thus reducing
the whole computational burden with respect to a singe-resolution approach. In order to demonstrate the
effectiveness of the IMSA Level Set technique, a set of representative numerical results are presented and
discussed.

Key words: inverse scattering, multi-resolution technique, level set.

1. INTRODUCTION

The reconstruction of inaccessible scenarios by means of inverse scattering techniques is a challenging problem, because
of the limited amount of information that can be collected inthe scattering experiments and the ill-posedness of the inverse
problem. Due to the band limited nature of the scattered field[1], a significant and independent set of data is not available
and the necessary spatial resolution of the object under test can be obtained by means of the exploitation of the available
a-priori information [2][3] or using effective iterative techniques.

To help with the solution, recent developments reported in the literature suggest to split the original problem into a
series of successive sub-problems according to the generalstrategy of “divide and conquer”. Following these guidelines,
this paper deals with the analysis of potentialities and limitations of the integration between a multi-resolution approach
[4][9] and an effective minimization technique based on shape deformation [2][5][6]. The former is a multi-resolution
strategy [called Iterative Multi-Scaling Approach (IMSA)] aimed at improving at each step of a multi-step procedure the
resolution accuracy in a subset of the whole investigation domain. More in detail, starting from a “coarse” representation
of the scatterer profile, the region of interest (RoI) is iteratively focused onto the area where the unknown scatterer is
supposed to be located by processing the information about the dielectric distribution estimated at the previous step.As a
consequence, the spatial resolution is improved only inside the RoIs, keeping in each sub-problem a lower ratio between
problem unknowns and independent field samples thus reducing the the occurrence of the local minima [7][8].

At each step, the dielectric profile in the RoI is estimated through the Level-Set-based method. As a matter of fact,
starting from the a-priori knowledge of the homogeneous scatterer under test, the shape is a sufficient parameter for the
characterization of the unknown object therefore an effective Level Set representation can be profitably used.

2. MATHEMATICAL FORMULATION

Let us consider a cylindrical two-dimensional geometry where a set ofV transverse-magnetic plane wavesEv
inc(x, y)ẑ

(with v = 1, . . . , V ) at a fixed frequencyf successively illuminates an investigation domain (DI ). An unknown homoge-
neous dielectric object with known relative permittivityǫC and conductivityσC but unknown shape and position occupies



an areaΥ ∈ DI . The background is an homogeneous and lossless medium with the electromagnetic properties of the
vacuum(ǫ0, µ0, σ = 0). The regionDI is described by the object functionτ(x, y) given by

τ(x, y) =

{

τC

τB

(x, y) ∈ Υ
otherwise (1)

whereτB = 0 and τC = j2πfǫ0 (ǫC − 1) − j σC

2πfε0
are the object functions of the background and of the object,

respectively. Starting from the knowledge of the scatteredfield Ev
scatt(x, y)ẑ collected in an observation domainDO at

M(v) measurement points (v = 1, . . . , V ) uniformly distributed on a circle of radiusρ and the incident fieldEv
inc(x, y)ẑ

in DI , the inverse scattering problem can be recast as the solution of the following integral equations

Ev
scatt (r) =

= j2πfµ0

∫

DI
τ (r)Ev

tot (r′) G2D (r, r′) dr′

r ∈ DO

(2)

Ev
inc (r) = Ev

tot (r)−

+j2πfµ0

∫

DI
τ (r′)Ev

tot (r′)G2D (r, r′) dr′

r ∈ DI

(3)

whereG2D is the2D free-space Green’s function,r = (x, y), andEv
tot (r) = Ev

inc (r) + Ev
scatt (r) is the total electric

field.

Since a closed-form solution of the scattering equations (2) and (3) is not available, a suitable discretization ofDI has
to be performed so as to get a numerical solution. Moreover, the information content of scattering data is limited [7].
Therefore, a multi-resolution strategy has to be considered in order to achieve a fine resolution of the unknown object,
keeping a limited number of unknown and fully exploiting thelimited amount of data.

Towards this end, the “Iterative Multi-Scaling Approach” (IMSA) is employed [4]. Such a strategy consists of a sequence
of S steps (withs = 1, . . . , S) aimed at reconstructing the region of interest. More in detail, at the first step (s = 1)
the region of interestR(s=1) corresponds to the areaDI . According to the method of moments,R(s=1) is discretized in
NIMSA sub-domains.

The sth region of interest is analyzed by means of the Level-Set-based technique [2]. To this end, at the first multi-
resolution step (i.e.,s = 1), a Level Setφ(s=1) defined inR(s=1) is initialized according to an oriented distance function

φ(s)

(

rn(s)

)

=

=























−mind(s)=1,...,D(s)

{

ρn(s)d(s)

}

if τ0

(

rn(s)

)

= τC

+mind(s)=1,...,D(s)

{

ρn(s)d(s)

}

if τ0

(

rn(s)

)

6= τC

(4)

whereρn(s)d(s) represents the distance betweenrn(s) =
(

xn(s), yn(s)

)

, being the center of then(s)th square cell with
side l(s), andrd(s), which is thedth border-cell (d(s) = 1, . . . , D(s)) of the initial trial solutionτ0. Then, an iterative
procedure is considered for minimizing through the evolution ofφ(s)(ks) the following multi-resolution cost function

Θ
(

φ(s)(ks)

)

=

∑V

v=1

∥

∥

∥
[Ev

SM ] −
∑IR

i=1 ℑ
{[

φ(i)(ki)

]}

∥

∥

∥

2

∑V

v=1 ‖[E
v
SC ]‖2

(5)

whereks is the iteration index in thesth step andi = 1, . . . , IR. IR = s is the maximum or current resolution index.

In (5), [Ev
SM ] is aM(v) × 1 array whose elements areEv

SM

(

rm(v)

)

[m(v) = 1, . . . , M(v)] representing the measured

data collected by them(v)th probe.
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Figure 1. Choice of the optimal∆t. Reconstruction of a cylinder having radiusλ/2 with ∆t = 0.01.

ℑ
{[

φ(i)(ki)

]}

indicates theM(v) × 1 vector of the computed scattered field
[

Ev
SC,(i)(ki)

]

which depends on the Level

Set functionφ(i)(ki) (according to the matrix representation,
[

φ(i)(ki)

]

=
{

φ(i)(ki)

(

rn(i)

)

; n(i) = 1, . . . , NIMSA

}

is a

NIMSA × 1 array).

The first stage ofksth iteration at the steps is concerned with the computation of the electrical fields related to the trial

solutionτ(s)(ks). In particular, the array of the total electric field
[

Ev
tot,(s)(ks)

]

=
{

Ev
tot (r) ; r ∈ R(i), i = 1, . . . , IR

}

is

computed through the operatorχ {·}

[

Ev
tot,(s)(ks)

]

= χ
{[

Ψ(i)(ki)

]}

=

=
[

Ev
inc,(s)

]

(

1 −
[

Gint,(s)

]

Λ
{[

Ψ(i)(ki)

]})−1
(6)

whereΛ {·} returns the object function diagonal matrix
[

τ(s)(ks)

]

, whose nonzero elements are
{

τ(s)(ks) (r) ; r ∈ R(i), i = 1, . . . , IR

}

.
More in detail,

[

τ(s)(ks)

]

is calculated using the multi-resolution expansion as follows

τ(s)(ks) (r) =

=
∑IR

i=1

∑NIMSA

n(i)=1 τ(i)(ki)

(

rn(i)

) (7)

with
τ(i)(ki)

(

rn(i)

)

=

=

{

τC if Ψ(i)(ki)

(

rn(i)

)

≤ 0

0 otherwise

(8)

and
Ψ(i)(ki)

(

rn(i)

)

=

=











φ(i)(ki)

(

rn(i)

)

if i = s

φ(i)(ki,opt)

(

rn(i)

)

if

{

i < s
rn(i) ∈ R(i)

(9)

ki,opt being the last iteration ofith multi-resolution processes. In equation (6),
[

Gint,(s)

]

is the internal Green’s matrix at
sth resolution level.



Thus, the scattered field is computed by means of the operatorℑ (·) introduced in (5), which is defined asℑ
{[

φ(i)(ki)

]}

=
{

Ev
SC,(i)(ki)

(

rm(v)

)

; m(v) = 1, . . . , M(v)
}

. Ev
SC,(i)(ki)

(

rm(v)

)

is calculated through the solution of a direct problem

starting from the total electric fieldEv
tot,(i)(ki)

(

rn(i)

)

and the contrast functionτ(i)(ki)

(

rn(i)

)

, with n(i) = 1, . . . , NIMSA.

After [Ev
SC ] =

∑IR

i=1 ℑ
{[

φ(i)(ki)

]}

has been determined, the fitness value ofφ(s)(ks) is evaluated using (5).

The second stage deals with the computation of the velocityNIMSA × 1 array
[

V(s)(ks)

]

in order to update the Level Set
functionφ(s)(ks) insideR(s). Following the guidelines suggested in [2],

[

V(s)(ks)

]

is calculated through the solution of

an adjoint problem, which considers an electric field distribution given byEv
SM

(

rm(v)

)

− Ev
SC,(s)(ks)

(

rm(v)

)

in the

M(v) measurement points ofDO.

The last stage of the minimization procedure is concerned with the update of the Level Set through a numerical version of
the Hamilton-Jacobi equation in order to getφ(s)(ks+1).

Finally the iteration index is incremented (ks = ks + 1) and the iterative optimization is carried on until a stopping

criterion is verified. More in detail, at each iterationks of thesth step, each valueτ(s)(ks)

(

rn(i)

)

of the current contrast

function is compared with that in the same position at previousJτ iterations. Eachjth comparison (j = 1, . . . , Jτ ) returns
a number of changed pixelsp(j)

N . If the numbersp(j)
N , ∀j, are smaller than a fixed thresholdγτ , the contrast function is

considered as stationary. Moreover, the fitness function isstationary if the normalized error is lower than a fixed valueγℑ
for Jℑ iterations. The Level-Set-based minimization is stopped at the iterationkopt when the stability conditions of both
the fitness and contrast functions become true. Otherwise, amaximum number of iterationsks,opt = Kmax is needed.
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Figure 2. Choice of the optimal∆t. Reconstruction of a cylinder having radiusλ/2 with ∆t = ∆topt,(s).

Starting from the information achieved insth reconstruction step,R(s+1) is then defined as the area where the unknown
scatterer has been detected: towards this end, the barycenter

(

XC(s+1)
, YC(s+1)

)

and the sideL(s+1) of the (s + 1)th
region of interest have to be computed at each step accordingto the IMSA formulation [4]. Thus,R(s+1) is discretized in
NIMSA sub-domains and a new minimization process is considered inorder to achieve an upgraded profile of the problem
unknownτ (r).

The iterative multi-resolution procedure is repeated until the achieved reconstruction becomes stationary (s = sopt) or a
maximum number of steps (s = Smax) is reached.



3. NUMERICAL RESULTS

The first result deals with the choice of the proper time-step∆t, which is used inside the numerical Hamilton-Jacobi
equation to perform the finite difference. The time-step represents a key parameter for the Level-Set-based optimization
because it is concerned with the update of the Level Set function. A wrong choice of∆t could involve too fast an evolution
of the Level Set (i.e., the real solution is never achieved) or, on the contrary, useless computations.
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Figure 3. Choice of the optimal∆t. Comparison between the behavior of the fitness function (∆t = 0.01 —, ∆t =
∆topt,(s) · · ·).

In order to perform the choice of∆t when using the multi-resolution approach, a known scenariohas been considered. In
particular, a cylindrical object of radiusλ/4 [whose barycenter is located at(λ/6, λ/6)] is set within a square investigation
domainDI of sidelDI

= λ [2]. The scenario is illuminated by means ofV = 10 TM plane-wave sources and the data
are collected inM(v) = 10 measurement points (DO) located on a circumference of radiusρ = λ centered at the origin
of the Cartesian coordinate system. The working frequency of the electromagnetic sources is set tof = 10 [GHz].

As far as the electromagnetic properties are concerned, theknown dielectric relative permettivity of the unknown non-
dissipative object isǫC = 1.8.

A first trial has been performed by using a constant value for∆t during the multi-step procedure. The optimal value∆t =
∆topt = 10−2 has been chosen after several numerical experiments performed with a single-resolution technique. The
results achieved have been compared with those given by a variable time-step related to the cell sidel(i) (i = 1, . . . , IR),
according to∆t = ∆topt,(s) = C · l(i), with C = ∆topt/ l′, wherel′ = 1.43 · 10−2λ is the cell side used in [2] for
∆t = ∆topt = 10−2. The reconstructions obtained at stepsopt = 3 with ∆t = 0.01 and∆t = ∆topt,(s) are shown
in Figs. 1 and 2, respectively. The multi-resolution processes have been carried out withNIMSA = 81 and a cell
side l(sopt)

∼= λ/14 has been used at the latest stepsopt . Moreover, no stopping criterion has been employed for the
optimization and the final results have been achieved by imposingKmax = 100. In order to avoid the inverse crime, the
discretization in the direct problem isNd = 2601.

When using∆t = ∆topt,(s) (Fig. 2, where the actual scatterer is indicated by the dotted line), the reconstruction shows
a better estimation of the shape of the cylinder, while a goodlocalization was achieved in both cases. Choosing∆t =
∆topt,(s) seems to be the best option, since a lower value of the fitness function (5) can be obtained: in Fig. 3 the behavior

of the normalized error is shown with respect tok =
∑IR

i=1 ki.

In order to perform a numerical validation of the IMSA Level Set, the same scenario has been considered with noisy
data. The scattered field collected in the observation domain DO has been corrupted by an additive Gaussian noise
characterized by different signal-to-noise ratios (SNRs). According to the criterion suggested in [7][8] and taking into
account the amount of a-priori information in the problem athand, the resolution insideR(s) has been increased by using
NIMSA = 225. The parameters employed for the convergence checks explained in Section 2 areJℑ = Jτ = 10,
γℑ = 1 ·10−5, andγτ = 1 (Kmax = 100). In this case, the Level-Set-based minimization is stopped only by the criterion
concerned with the normalized error.

The result of multi-resolution approach forSNR = 5[dB] is shown in Fig. 4 (sopt = 2): a good accuracy (i.e., localization
and shape reconstruction) has been achieved, although the size of the cylinder is underestimated.
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Figure 4. Reconstruction of a cylinder having radiusλ/2 using the IMSA (lDI
= λ, SNR = 5[dB]).
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Figure 5. Reconstruction of a cylinder having radiusλ/2 using the BARE approach (lDI
= λ, SNR = 5[dB]).

The result of Fig. 4 has been compared with the single-resolution reconstruction. In particular, let us call “BARE
approach” the Level-Set-based minimization with the cell sidelBARE = l(sopt). The number of viewsV and measurement
pointsM(v) is the same as used in multi-resolution approach, whereas the time-step∆t is computed as∆t = C · lBARE .
For the adopted scenario,l(sopt)

∼= λ/31 and thereforeNBARE = 961. As far as the stopping criterion is concerned,
the BARE approach employs the same parameters as IMSA, butKmax = 300. The result given by the single-resolution
approach is shown in Fig. 5. The object is correctly localized but the shape is better estimated when using the IMSA.

A different scenario is now considered. The object to be retrieved is always a circular cylinder of radiusλ/4 set within an
investigation domain of side2λ (ρ = 2λ) and centered in(14λ/30,−14λ/30). This configuration should be considered
as more critical to be inverted, since the object is smaller than in the previous scenario and consequently the discretization
grid for the first step of IMSA has to be chosen carefully.

Again, the guidelines suggested in [7][8] have been followed in order to determine the optimalNIMSA. In particular, let
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Figure 6. Reconstruction of a cylinder having radiusλ/2 using the IMSA (lDI
= 2λ, SNR = 5[dB]).
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Figure 7. Reconstruction of a cylinder having radiusλ/2 using the BARE approach (lDI
= 2λ, SNR = 5[dB]).

us chooseM(v) = 20, V = 20, andNIMSA = 169 (i.e., the cell side at first step of IMSA is equal tol(s=1) = λ
6.5 ). As

far as the stopping criterion is concerned, the following parameters have been considered:Jℑ = Jτ = 50, γℑ = 2 · 10−1,
andγτ = 2 · 10−2 (Kmax = 500).

The result of the inversion of noisy data (SNR = 5[dB]) achieved by the multi-resolution procedure at steps = 3
(l(sopt) = λ/23) is reported in Fig. 6. A better shape detection is provided with respect to the result of BARE approach
with NBARE = 2209 (Fig. 7).

As far as the behavior of the error (Fig. 8) is concerned, a lower value of the cost function is reached by IMSA when
the algorithms stop, although a greater number of iterationis needed. However, since the complexity of Level-Set-based
optimization is aboutO

(

2 ×N 3
)

at each iteration, withN ∈ {NIMSA, NBARE}, the multi-resolution approach turns
out to be less computationally expensive than the single-resolution method.
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Figure 8. Comparison between the behavior of the fitness function (IMSA —, BARE· · ·).

4. CONCLUSION

In this work a preliminary analysis of the integration between the Iterative Multi-Scaling Approach and the Level-Set-
based method has been proposed. The results obtained appearto confirm the feasibility as well as the robustness of the
integration, since an higher resolution of the object undertest is achieved without increasing the computational complexity
of the inversion procedure and allowing a non-negligible time-saving.
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