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Synthesis of Large Monopulse Linear Arrays through aTree-Based Optimal Ex
itations Mat
hing
P. Ro

a, L. Mani
a, A. Martini, and A. Massa

Abstra
tIn this paper, the synthesis of large arrays for monopulse tra
king appli
ationsis addressed by means of a simple and e�e
tive sub-arraying te
hnique. Towardsthis purpose, the synthesis problem is re
ast as the sear
h of an optimal path in anon-
omplete binary tree by exploiting some relationships between independently-optimal sum and di�eren
e ex
itations. Be
ause of a suitable redu
tion of the solu-tion spa
e and the implementation of a fast path-sear
hing algorithm, the 
ompu-tational issues arising in dealing with large array aperture are properly addressed.Some numeri
al experiments are provided in order to assess the feasibility and the
omputational e�e
tiveness of the tree-based approa
h.
Key words: Large Linear Arrays, Monopulse Antennas, Sum and Di�eren
e PatternSynthesis, Tree-Sear
hing Algorithm. 2



1 Introdu
tionThe synthesis of monopulse antennas is not a trivial task be
ause of the need of generatingtwo di�erent patterns (namely, a sum and a di�erent pattern) by means of the same arraystru
ture. Su
h a di�
ulty further in
reases for large arrays. As a matter of fa
t, theoptimal solution of implementing two independent feed networks is almost impra
ti
abledue to the required 
osts, the ar
hite
ture 
omplexity, and the spatial extension espe
iallywhen dealing with large stru
tures. As an indi
ation regarding the pra
ti
al aspe
ts of thea
tual realization on large arrays, let us 
onsider that when dealing with phased systemsfor beamforming purposes, time delay units are typi
ally pla
ed at the output of a sub-array due to the high 
ost of pla
ing a time delay unitn at ea
h element of the array[1℄.Alternatively, some methods based on sub-arraying te
hniques have been proposed [2℄-[5℄. As a referen
e, M
Namara presented in [2℄ the so-
alled ex
itation mat
hing methodaimed at obtaining the �best 
ompromise� di�eren
e pattern starting from a set of optimalsum ex
itations. Unfortunately, the reliability of su
h an approa
h redu
es when largearrays are taken into a

ount due to the inversion of the arising ill-
onditioned solutionmatrix. Optimization approa
hes [3℄-[5℄ based on the minimization of a suitable 
ostfun
tion over
ome this drawba
k. In su
h a framework, Ares et al. proposed in [3℄ aSimulated Annealing-based te
hnique where, starting from a �xed 
on�guration of sub-arrays, the sub-arrays weights are determined through the minimization of a suitable
ost fun
tion that penalizes side-lobe levels (SLLs) ex
eeding a pres
ribed threshold.Unlike [3℄, the simultaneous optimization of sub-arrays partitions and their weights hasbeen addressed in [4℄ and [5℄ by applying a Geneti
 Algorithm (GAs) and a Di�erentialEvolution (DE) algorithm, respe
tively.However, although optimization methods are not a�e
ted by the ill-
onditioning issueand perform very well in fa
ing with both multi-
onstrained and multi-variable (i.e.,real/dis
rete/binary unknowns) problems, they are usually time-
onsuming when dealingwith large arrays. In su
h a 
ase, even though the solution spa
e is e�
iently sampled,its dimension is very large and several iterations are needed for rea
hing a reliable and3



satisfa
tory solution. In order to avoid su
h an event, this letter deals with a simple and
omputationally-e�e
tive resolution method. By 
onsidering that an optimal sub-arraying
an be obtained by exploiting the similarity properties between independently-optimumsum and di�eren
e ex
itations, the problem is re
ast as the sear
h of an optimal path inan in
omplete binary tree 
arried out by a simple swapping algorithm.The paper is organized as follows. The mathemati
al formulation of the tree-based ap-proa
h is des
ribed in Se
t. 2, whereas some representative results from a set of numeri
alexperiments are presented and dis
ussed in Se
t. 3. Eventually (Se
t. 4), some 
on
lu-sions are drawn.2 Mathemati
al FormulationLet us 
onsider a linear uniform array of N = 2M elements where the sum and di�eren
epatterns are obtained staring from symmetri
 A = {am = a
−m; m = 1, ...,M} and anti-symmetri
 B = {bm = −b

−m; m = 1, . . . ,M} real ex
itations, respe
tively. Thanks tothe symmetries, only one half of the elements of the array S = {ξm; m = 1, ...,M} is
onsidered dealing with the monopulse synthesis problem.As far as ideal 
onditions are 
on
erned, the optimal ex
itations sets (i.e., optimal sum
Aopt = {αm; m = 1, ...,M} and optimal di�eren
e Bopt = {βm; m = 1, ...,M} 
oe�
ients)are 
omputed by using analyti
al methods based on Chebyshev's [6℄ and Zolotarev's [7℄[8℄polynomials, respe
tively.On the other hand, sub-arraying te
hniques [2℄, starting from the optimal sum pattern (byassuming am = αm; m = 1, ...,M), generate a sub-optimal di�eren
e pattern by meansof a suitable grouping of theM array elements in Q di�erent sub-arrays. Mathemati
ally,the sub-arrays solution is des
ribed in terms of the grouping ve
tor C [5℄ of M positiveintegers cm ∈ [1, Q], whi
h identi�es the membership of ea
h element to a sub-array, andby the di�eren
e ex
itations given by bm = wmqαm (m = 1, ...,M ; q = 1, ..., Q) where
wmq = δcmqwq (δcmq = 1 if cm = q, δcmq = 0 otherwise) is the weight 
oe�
ient asso
iatedto the m-th array element belonging to the q-th sub-array.The proposed synthesis approa
h is aimed at de�ning a sub-array 
on�guration Copt su
h4



that the 
ompromise di�eren
e ex
itation set B is as 
lose as possible to Bopt. Towardsthis end, let us observe that, although the total number of sub-array 
on�gurations isequal to U = QM , the number of �allowed � solutions redu
es to U (tree) =









M − 1

Q− 1







by avoiding �empty� or �equivalent�(1) sub-arrays 
on�gurations. Su
h a set of solutions
an be usefully represented by means of a binary tree (or �solution tree�) of depth Mby properly sorting the array elements. More in detail, let us de�ne a set of referen
eparameters V = {vm; m = 1, ...,M} 
alled �optimal gains�
vm =

βm
αm

m = 1, ...,M (1)in 
orresponden
e with ea
h element of S. Then, the values of the vm parameters areordered in a list L = {lm; m = 1, ...,M}, where li ≤ li+1, i = 1, ...,M−1, l1 = minm {vm},and lM = maxm {vm}, in order to build the solution tree shown in Fig. 1 (M = 5 and
Q = 3) where the positive integer q inside a node at the lm-th level indi
ates that thearray element identi�ed by lm is a member of the q-th sub-array. Su
h an ar
hite
tureguarantees that elements grouped in the same sub-array have 
lose vm values. Moreover,a

ording to this representation, it is possible to re
ast the problem solution (i.e., Copt)as the sear
h of an optimal path inside the tree. Towards this end, let us de�ne a suitable
ost fun
tion (or metri
) Ψ that quanti�es the 
loseness of ea
h 
andidate/trial solution
C to the optimal one

Ψ {C} =
M
∑

m=1

(vm − dm {C})
2 , (2)where the estimated parameters dm (C) are 
omputed as follows

dm (C) =

∑M
s=1 δcsqvs

∑M
s=1 δcsq

m = 1, . . . ,M. (3)Consequently, C(opt) is identi�ed as the result of a sequen
e of trial solutions that min-
(1) As an example, Ci = {3, 1, 1, 2, 1, 3, 2, 2} is equivalent to Cj = {1, 2, 2, 3, 2, 1, 3, 3}.5



imizes the 
ost fun
tion Ψ (i.e., Copt = arg [mink=1,...,KΨ {Ck}], k being the iterationindex) and the sub-array weights are assumed to be equal to the optimal values of the�
omputed gains� dm (

Copt

)

wq = δcmqdm
{

Copt

}

q = 1, ..., Q. (4)It should be noti
ed that the sub-arrays weights {wq; q = 1, ..., Q} are analyti
ally-
omputedon
e the sub-array membership of ea
h element is determined and they are not involvedin the optimization pro
ess.As far as the generation of the sequen
e of trial solutions {Ck; k = 1, ..., K} is 
on-
erned, let us observe that only some elements of the list L are 
andidate to 
hangetheir sub-array membership without violating the sorting 
ondition of the allowed sub-array 
on�gurations. These array elements (
alled �border elements�) are identi�ed bythe lm indexes whose adja
ent list values lm−1 or/and lm+1 belong to a di�erent sub-array. Therefore, Copt is found starting from an initial path C(0), randomly-
hosen amongthe set of paths of the solution tree, and iteratively updating the 
andidate solution
Ck ← Ck+1 just modifying the membership of the border elements, until a maximumnumber of iterations K (i.e., k > K) or a stationary 
ondition for the �tness value (i.e.,
∣

∣

∣
KwindowΨ

(k−1)
opt −

∑Kwindow
j=1

Ψ
(j)
opt

∣

∣

∣

Ψ
(k)
opt

≤ η, Kwindow and η being a �xed number of iterations and a�xed numeri
al threshold, respe
tively) is satis�ed.3 Numeri
al ResultsIn order to assess the e�e
tiveness of the proposed method in dealing with large arrays,some numeri
al simulations have been performed. Sin
e, likewise [2℄, su
h an approa
hbelongs to the 
lass of synthesis te
hniques aimed at determining the �best 
ompromise�di�eren
e pattern, let us de�ne some indexes for allowing a quantitative evaluation ofthe 
loseness of sub-optimal 
ompromises to optimal patterns. In parti
ular, the patternmat
hing ∆ 6



∆ =

∫ π
0

∣

∣

∣|AF (ψ)|optn − |AF (ψ)|recn

∣

∣

∣ dψ
∫ π
0 |AF (ψ)|optn dψ

, (5)where ψ = (2πd/λ) sinθ, θ ∈ [0, π/2], (λ and d being the free-spa
e wavelength andthe inter-element spa
ing, respe
tively), |AF (ψ)|optn and |AF (ψ)|recn are the optimal andsynthesized di�eren
e pattern, respe
tively. Moreover, the beamwidth BW and the powerslope Pslo that numeri
ally �des
ribe� the pattern slope on the boresight dire
tion
Pslo = 2×

[

max
ψ

(|AF (ψ)|n)× ψmax −
∫ ψmax

0
|AF (ψ)|n dψ

]

, (6)
ψmax being the angular position of the maximum of the array pattern.In the numeri
al assessment, a linear array of N equally-spa
ed (d = λ

2
) elements hasbeen 
onsidered. Con
erning the optimal referen
e setup, sum and di�eren
e ex
itationshave been 
hosen to generate a Dolph-Chebyshev pattern [6℄ with SLL = −25 dB anda Zolotarev pattern [8℄ with SLL = −30 dB. Moreover, in order to evaluate the perfor-man
e of the tree-based method versus the array dimension, N has been varied from 20(small/medium arrays, i.e. M < 50) up to 500 (large arrays, i.e. M ≥ 50) and di�erentarray partitions (Q ∈ [3, 10]) have been 
onsidered.The plot of ∆ versus M for di�erent values of Q is shown in Figure 2. As it 
an beobserved, for a �xed number Q of sub-arrays, the distan
e between the optimal di�eren
epattern and the 
ompromise one does not signi�
antly vary as the number of elements Min
reases (M > 50) ranging from ∆ ∼= 0.15 (Q = 10) up to ∆ ∼= 0.36 (Q = 3). Moreover,as expe
ted, for ea
h array aperture (i.e., M = cost), the synthesized di�eren
e patternsget 
loser and 
loser to the optimal one when the value of Q grows (Q→M).As a representative result, sum and 
ompromise di�eren
e patterns when N = 500 and

Q = 3 are shown (Fig. 3) as well as the 
orresponding sets of ex
itations (Fig. 4). For
ompleteness, the number of elements of ea
h sub-array, nq, and the sub-arrays weightsare reported in Tab. I. Notwithstanding the value of M
Q
≃ 83 (i.e., a limited numberof large sub-arrays), it turns out that the di�eren
es in terms of Pslo and Bw between
ompromise pattern and optimal di�eren
e target are less than 1.5% and 2% (being ∆ <7



0.4), respe
tively.As far as the 
omputational issues are 
on
erned, let us �rstly analyze the dimensionof the solution spa
e U (tree) of the tree-based method as shown in Fig. 5. As statedin Se
t. 2, U (tree) behaves as a binomial fun
tion of M and Q, while the total numberof 
on�gurations U (i.e., the dimension of the solution spa
e sampled by optimizationalgorithms) grows exponentially with M (U = QM). Thanks to the redu
ed dimensionof U (tree) and be
ause of the 
omputational simpli
ity of the swapping algorithm, thenumber of iterations kopt needed to rea
h the �nal solution turns out to be a

eptablewhatever the array aperture (maxM,Q

{

kopt⌋M,Q

}

< 90) espe
ially taking into a

ountthat the CPU-time tk for evaluating a trial solution (on a 3GHz Pentium 4 and 512MBof RAM ) is lower than max {tk} = 0.81 [sec] (M = 250 and Q = 10 - Fig. 7) and, as anexample, it redu
es to 0.12 [sec] when M = 100.4 Con
lusionsIn this paper, the synthesis of large array monopulse antennas has been dealt with atree-based sub-arraying method. In order to rea
h an optimal mat
hing between syn-thesized and independently-optimum sum and di�eren
e patterns and by exploiting somerelationships among admissible aggregations, the synthesis problem has been re
ast as thesear
h of the minimum-
ost path in a non-
omplete binary tree. Towards this purpose,a simple and a�e
tive swapping algorithm that 
onsiders the presen
e of border elementsmore suitable to 
hange sub-array membership, has been used. Some representative re-sults from an exhaustive set of numeri
al experiments 
on�rmed the potentialities of theapproa
h in dealing with large arrays both in terms of 
omputational 
osts and a

ura
y.A
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FIGURE CAPTIONS
• Figure 1. Solution-Tree stru
ture (M = 10, Q = 3).
• Figure 2. Large Arrays (d = λ

2
) - Behavior of ∆ versus M for various values of Q.

• Figure 3. Large Arrays (M = 250, d = λ
2
, Q = 3) - (a) Optimal sum pattern(Dolph-Chebyshev pattern [6℄ - SLL = −30 dB) and (b) 
ompromise di�eren
e pat-tern.

• Figure 4. Large Arrays (M = 250, d = λ
2
, Q = 3) - Ex
itations 
oe�
ients.

• Figure 5. Computational Analysis - Behavior of U versus M for various values of
Q.
• Figure 6. Computational Analysis - Behavior of kopt versus M for various valuesof Q.
• Figure 7. Computational Analysis - Behavior of tk versus M for various values of
Q.
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TABLE CAPTIONS
• Table I. Large Arrays (M = 250, d = λ

2
, Q = 3) - Number of elements per sub-array, nq, and sub-array weights, wq.
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q 1 2 3

nq 93 105 52

wq 1.59 7.29 14.50

Tab. I - P. Ro
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