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Synthesis of Large Monopulse Linear Arrays through a

Tree-Based Optimal Excitations Matching

P. Rocca, .. Manica, A. Martini, and A. Massa

Abstract

In this paper, the synthesis of large arrays for monopulse tracking applications
is addressed by means of a simple and effective sub-arraying technique. Towards
this purpose, the synthesis problem is recast as the search of an optimal path in a
non-complete binary tree by exploiting some relationships between independently-
optimal sum and difference excitations. Because of a suitable reduction of the solu-
tion space and the implementation of a fast path-searching algorithm, the compu-
tational issues arising in dealing with large array aperture are properly addressed.
Some numerical experiments are provided in order to assess the feasibility and the

computational effectiveness of the tree-based approach.

Key words: Large Linear Arrays, Monopulse Antennas, Sum and Difference Pattern

Synthesis, Tree-Searching Algorithm.



1 Introduction

The synthesis of monopulse antennas is not a trivial task because of the need of generating
two different patterns (namely, a sum and a different pattern) by means of the same array
structure. Such a difficulty further increases for large arrays. As a matter of fact, the
optimal solution of implementing two independent feed networks is almost impracticable
due to the required costs, the architecture complexity, and the spatial extension especially
when dealing with large structures. As an indication regarding the practical aspects of the
actual realization on large arrays, let us consider that when dealing with phased systems
for beamforming purposes, time delay units are typically placed at the output of a sub-
array due to the high cost of placing a time delay unitn at each element of the array
[1].

Alternatively, some methods based on sub-arraying techniques have been proposed |[2]-
[5]. As a reference, McNamara presented in [2| the so-called excitation matching method
aimed at obtaining the “best compromise” difference pattern starting from a set of optimal
sum excitations. Unfortunately, the reliability of such an approach reduces when large
arrays are taken into account due to the inversion of the arising ill-conditioned solution
matrix. Optimization approaches [3]-[5] based on the minimization of a suitable cost
function overcome this drawback. In such a framework, Ares et al. proposed in [3| a
Simulated Annealing-based technique where, starting from a fixed configuration of sub-
arrays, the sub-arrays weights are determined through the minimization of a suitable
cost function that penalizes side-lobe levels (SLLs) exceeding a prescribed threshold.
Unlike [3], the simultaneous optimization of sub-arrays partitions and their weights has
been addressed in [4] and |5] by applying a Genetic Algorithm (G As) and a Differential
Evolution (DFE) algorithm, respectively.

However, although optimization methods are not affected by the ill-conditioning issue
and perform very well in facing with both multi-constrained and multi-variable (i.e.,
real /discrete/binary unknowns) problems, they are usually time-consuming when dealing
with large arrays. In such a case, even though the solution space is efficiently sampled,

its dimension is very large and several iterations are needed for reaching a reliable and



satisfactory solution. In order to avoid such an event, this letter deals with a simple and
computationally-effective resolution method. By considering that an optimal sub-arraying
can be obtained by exploiting the similarity properties between independently-optimum
sum and difference excitations, the problem is recast as the search of an optimal path in
an incomplete binary tree carried out by a simple swapping algorithm.

The paper is organized as follows. The mathematical formulation of the tree-based ap-
proach is described in Sect. 2, whereas some representative results from a set of numerical
experiments are presented and discussed in Sect. 3. Eventually (Sect. 4), some conclu-

sions are drawn.

2 Mathematical Formulation

Let us consider a linear uniform array of N = 2M elements where the sum and difference
patterns are obtained staring from symmetric A = {a,, = a_,,; m =1,..., M} and anti-
symmetric B = {b,, = —b_,,; m =1,..., M} real excitations, respectively. Thanks to
the symmetries, only one half of the elements of the array S = {&,; m=1,..., M} is
considered dealing with the monopulse synthesis problem.

As far as ideal conditions are concerned, the optimal excitations sets (i.e., optimal sum
AP = {a,,; m =1,..., M} and optimal difference B = {3,,; m = 1, ..., M} coefficients)
are computed by using analytical methods based on Chebyshev’s [6] and Zolotarev’s [7][8]
polynomials, respectively.

On the other hand, sub-arraying techniques [2], starting from the optimal sum pattern (by
assuming a,, = a,,; m = 1,..., M), generate a sub-optimal difference pattern by means
of a suitable grouping of the M array elements in () different sub-arrays. Mathematically,
the sub-arrays solution is described in terms of the grouping vector C [5] of M positive
integers ¢, € [1, @], which identifies the membership of each element to a sub-array, and
by the difference excitations given by b,, = weau, (m =1,..,M; ¢ = 1,...,Q) where
Wing = OenqWq (0c,q = 11 ¢y = @, 0¢,,q = 0 otherwise) is the weight coefficient associated
to the m-th array element belonging to the g-th sub-array.

The proposed synthesis approach is aimed at defining a sub-array configuration C,,, such
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that the compromise difference excitation set B is as close as possible to B*. Towards

this end, let us observe that, although the total number of sub-array configurations is

M-1
Q-1

by avoiding “empty” or “equivalent”™ sub-arrays configurations. Such a set of solutions

equal to U = QM, the number of “allowed” solutions reduces to U®ee) =

can be usefully represented by means of a binary tree (or “solution tree”) of depth M
by properly sorting the array elements. More in detail, let us define a set of reference

parameters V. = {v,,; m =1, ..., M} called “optimal gains”

_ Bm

=1,..M 1
o mt, 1

Um

in correspondence with each element of S. Then, the values of the v,, parameters are
orderedinalist L = {l,,; m=1,..., M}, where [; <1, i =1,..., M—1,1; = min,, {v.},
and ly; = maz,, {v,}, in order to build the solution tree shown in Fig. 1 (M =5 and
() = 3) where the positive integer ¢ inside a node at the [,,-th level indicates that the
array element identified by [,, is a member of the ¢-th sub-array. Such an architecture
guarantees that elements grouped in the same sub-array have close v, values. Moreover,
according to this representation, it is possible to recast the problem solution (i.e., Qopt)
as the search of an optimal path inside the tree. Towards this end, let us define a suitable
cost function (or metric) ¥ that quantifies the closeness of each candidate/trial solution

C to the optimal one

vi{c} = Z_:l (vm — dm {C})*, (2)

where the estimated parameters d,, (C) are computed as follows

M
i, (C) = Ze=tled¥s (3)

= M
2821 505‘1

Consequently, C,, is identified as the result of a sequence of trial solutions that min-

(1) As an example, C; = {3,1,1,2,1,3,2,2} is equivalent to C; = {1,2,2,3,2,1,3,3}.



imizes the cost function ¥ (i.e., C,, = arg[ming—, .. gV {Cy}], k being the iteration
index) and the sub-array weights are assumed to be equal to the optimal values of the

“computed gains” d,, (Qopt)

Wy = Oepglm {Cope} 4 =1,-,Q. (4)

It should be noticed that the sub-arrays weights {w,; ¢ = 1, ..., Q} are analytically-computed
once the sub-array membership of each element is determined and they are not involved
in the optimization process.

As far as the generation of the sequence of trial solutions {C}; k =1,..., K} is con-
cerned, let us observe that only some elements of the list L are candidate to change
their sub-array membership without violating the sorting condition of the allowed sub-
array configurations. These array elements (called “border elements”) are identified by
the [,, indexes whose adjacent list values [,,_; or/and [, 1 belong to a different sub-
array. Therefore, C,, is found starting from an initial path C9 randomly-chosen among
the set of paths of the solution tree, and iteratively updating the candidate solution
C} «— Cj41 just modifying the membership of the border elements, until a maximum

number of iterations K (i.e., k > K) or a stationary condition for the fitness value (i.e.,
- K _
Kwindow‘l’(k D_ E j:wlzndow @)

opt opt
(k)
\Ilopt

fixed numerical threshold, respectively) is satisfied.

<1, Kyindow and n being a fixed number of iterations and a

3 Numerical Results

In order to assess the effectiveness of the proposed method in dealing with large arrays,
some numerical simulations have been performed. Since, likewise |2|, such an approach
belongs to the class of synthesis techniques aimed at determining the “best compromaise”
difference pattern, let us define some indexes for allowing a quantitative evaluation of
the closeness of sub-optimal compromises to optimal patterns. In particular, the pattern

matching A



o _ ST AF @~ [AF W)1| dv
I§ 1AF () [7F" dy) ’

where ¢ = (2nd/\) sinf, 6 € [0,7/2], (A and d being the free-space wavelength and

(5)

the inter-element spacing, respectively), |AF (v)|”" and |AF (¥)|" are the optimal and
synthesized difference pattern, respectively. Moreover, the beamwidth By, and the power

slope Py, that numerically “describe” the pattern slope on the boresight direction

Pao =2 x |max (AF (0)],) % s — [ |AF <¢>|ndw] , (6)
0

Ymaz being the angular position of the maximum of the array pattern.

In the numerical assessment, a linear array of N equally-spaced (d = %) elements has
been considered. Concerning the optimal reference setup, sum and difference excitations
have been chosen to generate a Dolph-Chebyshev pattern |6] with SLL = —25dB and
a Zolotarev pattern [8] with SLL = —30dB. Moreover, in order to evaluate the perfor-
mance of the tree-based method versus the array dimension, N has been varied from 20
(small/medium arrays, i.e. M < 50) up to 500 (large arrays, i.e. M > 50) and different
array partitions (¢ € [3, 10]) have been considered.

The plot of A versus M for different values of ) is shown in Figure 2. As it can be
observed, for a fixed number @) of sub-arrays, the distance between the optimal difference
pattern and the compromise one does not significantly vary as the number of elements M
increases (M > 50) ranging from A = 0.15 (Q = 10) up to A = 0.36 (@ = 3). Moreover,
as expected, for each array aperture (i.e., M = cost), the synthesized difference patterns
get closer and closer to the optimal one when the value of @ grows (QQ — M).

As a representative result, sum and compromise difference patterns when N = 500 and
() = 3 are shown (Fig. 3) as well as the corresponding sets of excitations (Fig. 4). For
completeness, the number of elements of each sub-array, n,, and the sub-arrays weights
are reported in Tab. I. Notwithstanding the value of ¥4 ~ 83 (i.e., a limited number
of large sub-arrays), it turns out that the differences in terms of Py, and B, between

compromise pattern and optimal difference target are less than 1.5% and 2% (being A <



0.4), respectively.

As far as the computational issues are concerned, let us firstly analyze the dimension
of the solution space U of the tree-based method as shown in Fig. 5. As stated
in Sect. 2, U*®) hehaves as a binomial function of M and Q, while the total number
of configurations U (i.e., the dimension of the solution space sampled by optimization
algorithms) grows exponentially with M (U = Q™). Thanks to the reduced dimension
of U®) and because of the computational simplicity of the swapping algorithm, the
number of iterations k,, needed to reach the final solution turns out to be acceptable
whatever the array aperture (maxys, g {koth M,Q} < 90) especially taking into account
that the C PU-time t; for evaluating a trial solution (on a 3 GHz Pentium 4 and 512 M B
of RAM ) is lower than max {t;} = 0.81 [sec] (M = 250 and @ = 10 - Fig. 7) and, as an

example, it reduces to 0.12 [sec|] when M = 100.

4 Conclusions

In this paper, the synthesis of large array monopulse antennas has been dealt with a
tree-based sub-arraying method. In order to reach an optimal matching between syn-
thesized and independently-optimum sum and difference patterns and by exploiting some
relationships among admissible aggregations, the synthesis problem has been recast as the
search of the minimum-cost path in a non-complete binary tree. Towards this purpose,
a simple and affective swapping algorithm that considers the presence of border elements
more suitable to change sub-array membership, has been used. Some representative re-
sults from an exhaustive set of numerical experiments confirmed the potentialities of the

approach in dealing with large arrays both in terms of computational costs and accuracy.
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FIGURE CAPTIONS

e Figure 1. Solution-Tree structure (M = 10, @ = 3).

e Figure 2. Large Arrays (d = %) - Behavior of A versus M for various values of Q.

e Figure 3. Large Arrays (M = 250, d = %, @ = 3) - (a) Optimal sum pattern
(Dolph-Chebyshev pattern 6] - SLL = —30dB) and (b) compromise difference pat-

tern.
e Figure 4. Large Arrays (M =250, d = %, Q = 3) - Excitations coefficients.

e Figure 5. Computational Analysis - Behavior of U versus M for various values of

Q.

e Figure 6. Computational Analysis - Behavior of k., versus M for various values

of Q.

e Figure 7. Computational Analysis - Behavior of ¢, versus M for various values of

Q.
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TABLE CAPTIONS

e Table I. Large Arrays (M = 250, d = %, @@ = 3) - Number of elements per sub-

array, n,, and sub-array weights, w,.
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Fig. 1 - P. Rocca et al., “Synthesis of large monopulse linear arrays ...
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Fig. 2 - P. Rocca et al., “Synthesis of large monopulse linear arrays ...
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Fig. 5 - P. Rocca et al., “Synthesis of large monopulse linear arrays ...
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Fig. 6 - P. Rocca et al., “Synthesis of large monopulse linear arrays ...
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Fig. 7 - P. Rocca et al., “Synthesis of large monopulse linear arrays ...
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ng| 93 | 105 | 52
w,| 159 | 7.29 | 14.50

Tab. I - P. Rocca et al., “Synthesis of large monopulse linear arrays ...”
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