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Design of Compromise Sum-Difference Patterns through the

Iterative Contiguous Partition Method

P. Rocca, L. Manica, A. Martini, and A. Massa

Abstract

In this paper, an innovative approach for the synthesis bfatwayed monopulse linear
arrays is presented. A compromise difference pattern igilodd through an optimal ex-
citations matching method based on the contiguous partteghnique integrated in an
iterative procedure ensuring, at the same time, the opditioiz of the sidelobe level (or
other beam pattern features). The flexibility of such an eaph allows one to synthesize
various difference patterns characterized by differeatdroff between angular resolution
and noise/interferences rejection in order to match the-deskned requirements. On the
other hand, thanks to its computational efficiency, syngh@®blems concerned with large
arrays are easily managed, as well. An exhaustive numeratalation assesses the re-
liability and accuracy of the method pointing out the imprents upon state-of-the-art

sub-arraying techniques.

Key words: Linear Arrays, Monopulse Antennas, Sum and DifferencédPaSynthesis, Con-

tiguous Partition.



1 Introduction

The design of monopulse radar systems [1][2] requires théhegis of both a sum pattern and a
difference pattern, which satisfy some specifications sischarrow beamwidth, low side-lobe-
level (SLL), and high directivity. In order to avoid an expensive impéntation of independent
feed networks for obtaining optimal sum [3]-[7] and difface [8]-[11] excitation coefficients,
compromise solutions based on sub-arraying techniqueslesn successfully proposed [12]-
[18]. The sum pattern is fixed to the optimal one, while diéfece excitations are obtained from
the sum coefficients by properly grouping the array elemantsby weighting each sub-array
in order to satisfy the user-defined constraints. In suchraest, two different methodological
approaches might be recognized. The former (indicatedamatowing as ‘bptimal matching)

is aimed at determining théoest compromisealifference pattern, which is as close as possible
to the optimum in the Dolph-Chebyshev sense [19] (i.e.,avaest first null beamwidth and
largest normalized difference slope on the boresight fqgexdied sidelobe level). The other,
denoted asféature optimizatiofy where the beam pattern parameters (usually,Shé. [13]-
[15] or the directivity [20]) are controlled by including ¢m in a cost function to minimize
according to a global optimization stochastic procedure.

Concerning the 6ptimal matchinf techniquesMcNamaraproposed in [12] the Excitation
Matchindg method (£ M M) based on an expansion in terms of Zolotarev polynomialsgyhe
for each possible grouping, the corresponding sub-arr&fficents are iteratively computed
through pseudo-inversion of an overdetermined systenmefli equations. Since such an ap-
proach does not allow the control of the beam pattefrd., a constrained version of the method
has been also introduced ([12], Sect. 5) in order to redueggthting lobes effects and lead
to sub-optimal difference patterns with a suitable compsenbetweert L L, beamwidth, and
slope on boresight. Unfortunately, when the ratio betweesyaelements and number of sub-
arrays gets larger, the M M is not always reliable/efficient because of the ill-coratiing of
the matrix system as well as the large computational codiseoérising exhaustive evaluation
process.

As far as the feature optimizatiohclass of sub-arraying methods is concernéaes et al.

considered in [13] the application of a simulated annea(itig) algorithm for defining the



optimal sub-array weights (i.e., aimed at obtaining a d#fee pattern that satisfies a fixed
constraint on theS'L L) starting from an assigned sub-array configuration. On therchand,
taking advantage of the problem convexity with respect ®leights of the subarrays and
following the same line of the reasoning as in [21], a tw@dstgbrid optimization strategy has
been proposed in [16][17]. By optimizing at the same timehkgartition functions (i.e., those
functions that define the membership of the array elemergac¢h sub-array) and the sub-array
coefficientsLopez et al[14] proposed a Genetic Algorithni(4) based technique. In a similar
fashion, a Differential Evolution/p F) algorithm has been used in [15].

Although the optimization of elements membership and sulyaweights significantly im-
proved the performance of sum-difference optimizationtradblogies, some drawbacks still
remain. As a matter of fact, such techniques are usually-tiaresuming especially when deal-
ing with large arrays since the dimension of the solutiorceagnificantly enlarges. Moreover,
“feature optimizatiohapproaches are usually formulated in terms of single-cibje problems
and the control of multiple features of the beam pattern (6.5L, beamwidth, difference slope
on boresight) would require the use of customized and coxpldti-objective strategies.

In the framework of optimal matching techniques, the présentribution is aimed at proposing
a new approach for synthesizing best compromise pattertis S¥i L control. Towards this
end, following the guidelines of thE M M, the proposed approach determines the difference
solution close to the optimal Dolph-Chebyshev patternuglothe search of the minimum
cost-path in the non-complete binary tree of the possibigeggtions by satisfying th€L L
constraints through an iterative procedure (unlike gladgatimization methods that directly
define aSLL penalty term in the cost function [13]-[15]).

The remaining of the paper is organized as follows. The ks mathematically formulated
in Section 2 where the proposed synthesis procedure isidedcin detail. Section 3 deals
with an exhaustive numerical validation aimed at asseg$iagffectiveness of the proposed
technique and at providing a comparison with state-ofatiesolutions. Conclusions and final

remarks are drawn in Section 4.



2 Mathematical Formulation

Let us consider a linear uniform array 8f = 2M elements and let us assume that the sum and
difference patterns are obtained through a symmeie; {a,, = a_,,; m =1, ..., M}, and an
anti-symmetricB = {b,, = —b_,,; m = 1,..., M}, real excitations set, respectively. Thanks
to these symmetry properties, only one half of the array el@siis considered.

According to the guidelines of sub-arraying techniques silim pattern is obtained by fixing the
sum excitations to the ideal one&i® = {q,,; m = 1, ..., M} [3][4][5], while the difference

excitations set is synthesized starting from the sum modiellasvs

b = Y @ (Gepqq) s m=1,..., M, (@D)

where() is the number of sub-arrays, is the weight associated to tieth sub-array in the
difference feed network, and _, is the Kronecker delta whose value is determined according t
the sub-array membership of each element of the afay & 1 if ¢, = ¢, J.,,, = 0 otherwise,

cm € [1, Q) being the sub-array index of the-th array element).

In order to obtain the best compromise difference exciteti@.e., a set of excitations giving a
pattern as close as possible to the ideal one in the DolplnGhev sense that satisfies at the
same time a constraint on tl$4. L), an innovative adaptive searching technique, indicated a
Iterative Contiguous Partition Method C'P M), is applied. It consists of an inner loop aimed
at ensuring the closeness of the trial solution toederencé ideal pattern and by an outer loop
devoted at satisfying the requirements on $tel, (or another beam pattern feature).

With reference to Fig. 1, the main steps of the iterative pdure are described in the following:

e Step0 - Initialization. The external iteration index is initialized & 0), the optimal sum
excitationsA® = {q,,: m =1,..., M} are computed [3][4][5], and the user-desired

sidelobe level threshold is st L ;

e Stepl - Reference Difference Pattern Selection. At the first iteration ¢ = 1), an optimal
- in the Dolph-Chebyshev sense - difference excitationBé%I: {6}5); m=1,.., M}
that generates a beam pattern with a sidelobe Iﬁsldl,(i)f = SLLy is computed as in

[8] and assumed as reference in the inner loop. Then, for el@rhent of the array, an

5



identification parameter is evaluated according to one ofdifferent strategies, namely

the Gain Sorting(G'S) algorithm

(e)
e) _ ﬁm o ) )
{Um ](Gs) T m=1,...,M, [Optimal Gain] (2)

or theResidual Error Sortind RE'S) algorithm

{vﬁs)} =——" m=1,..,M, [Optimal Residual Error] 3)
(RES) @(ﬁ)
respectively. The identification index§®§§>; m=1,..., M} are ordered in a sorted

listL = {l,,; m=1,...,M} (i.e., an ensemble wheig < [, ,;, k =1,...,M — 1,

Iy = min {vﬁ,ﬁj)}, andly; = max {v,(ﬁ)});

Step2 - Computation of the Compromise Solution. With reference to the-th target
pattern, the approximation algorithm based on@ustiguous Partitiortechnique is run
until a suitable termination criteriorf is satisfied. Accordingly, the following steps are

performed:

— Step2.a - Solution Initialization. The internal iteration counter is initializet(§) =

0] and a starting trial groupin@(¢) = {ci@- m=1,..., M}, corresponding to a

Contiguous Partitioft) of Lin Q subsetPge) = {Lj}e); g=1,.. .Q}, is randomly
generated and assumed as the optimal gro@fffé = C¥©), Successively, the sub-

array weightsW© = {wi®); ¢ =1,...,Q} are analytically computed according

to

q

M
[w’(e)hcs) = mzz:l Ocpmglm (C’(e)) ,q=1,...Q [Estimated Gain] (4)

(MWwith reference to [22], it can be easily shown that, once tammetersv,(ﬁ) have been ordered in the

sorted listL = {l,,; m =1, ..., M}, the grouping minimizing the cost function (7) correspotma Contiguous
Partition. A grouping of array elements isGontiguous Patrtitiorif the generian ;-th array element belongs to the
g-th sub-array only when two elements, namely#heth element and the:,,-th one, belong to the same sub-array

and the condition” < v§e) < v holds true.



if the GS algorithm is adopted or

[Estimated Residual Error]

(5)
when theRE S algorithm is usedd,, (Ci@) being an estimate of the identification

parameten ) given by

sy M (6)

] M 25 (e)
s=1 as CsCm

Step2.b - Cost Function Evaluation. The closeness to the target pattern of the cur-
rent candidate solutioB“® (or in an equivalent fashion, the couple of coefficients

C©) andW®) is quantified through the following cost function
) M
w{C} =3 o [of) —dn (€)' ™

The cost function valud(®) = ¥ {C"(e)} is compared to the best value attained
i(e)—11 _ : h(e) ; i(e) i(e)—1
up till now, ¥ {Copt } = h(e):r?.lg(e) [\If } and if ¥ {C } < v {Copt }

then the optimal trial solution is updat%ift) = B9, Cf)gft = Ci) andWOpt =

Wi as well as the optimal cost function valu.s, = w©);

Step2.c - Termination Criterion Check. If a maximum number of iterations is

reached or a stationary conditioif{) = ](m] for the cost function value,

z(e) 1 t(e)
‘Kwindow opt Z window \Ijopt

\Ijz(e) — 77’

opt

holds true (.40, @ndn being a fixed number of iterations and a fixed numerical
threshold, respectively), then the inner loop is stoppetitae following setting is
assumedC(), = CL9, W), = W (i.e., BY), = Bi®)), and0), = v The
procedure goes to Step Otherwise, the Step.d is performed;

Step2.d - Aggregation Updating. The inner index is updated(p) « i(e) + 1]

and a new grouping vecta€*® is defined. More in detail, a new contiguous
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partition Pge) is derived from the previous onEge)_1 just modifying the sub-
array memberships of thtBorder Elements” defined as followd,, € Li(e) A
{(tn-1 € L) V (Inar € L)}t € [1; Q). The corresponding sub-array weights
Wi are then analytically computed as in (4) or (5). The procedyges to Step

2.b;

e Step3 - Side-Lobe-Level Check. The descriptive parameters of the beam pattern gener-

ated by the coefficienthi,)t are computed as well as ti$d. L, SLLg;)t = SLL {Bf,?t}

If SLL(()?t < SLL, and the ‘tlegree of closenesto the reference pattern is satisfactory
(e.g., some constraints on the beamwidth/directivity atesBed), then the whole pro-
cess ends and the final solution i€.,,, = C', W,,, = W) (i.e., B, = B(),

Vot = \Ifﬁ?t Otherwise, the outer iteration index is updated e + 1) and another
reference pattern that satisfies the condimﬁ?f < SLLff;}l) is chosen. Then, the
procedure restarts from Stépuntil e = E, E being a fixed number of outer-loop itera-

tions.

It is worth noting that theContiguous Partitiortechnique applied in the inner loop allows a
non-negligible saving of computational resources as pdiout in Section 3 by means of some
numerical experiments. As a matter of fact, according todhservation that the grouping
minimizing (7) is a contiguous partition and that changihg sub-array membership of the
Border Elementgnsures to obtain another contiguous partition, it turrtstoat the number of

possible aggregations reduces from= Q" (the total number of sub-array configurations) to
2

M-—1
Ules) = : ®)

Q-1

(2) Dividing the ordered lisL into Q sub-arrays is equivalent to selegt— 1 “division” points inside any of
the M — 1 intervals between adjacent elements.



3 Numerical Results

In this section, representative results from selecteddases are reported for assessing the
effectiveness of théC'PM in providing a suitable trade-off between desitedL, directivity,
and beamwidthQect. 3.} as well as in dealing with smalleBéct. 3.3 and larger arraysSect.
3.3). Comparisons with state-of-the-art synthesis techrigue presentedsécts. 3.2-3.8 as
well.

In order to quantify the optimality and accuracy of the obé&al solutions, some quantitative
indexes are introduced. They are expressed in terms of thdarvariable) = (27d/\) sind,

0 € [0,7/2], A andd being the free-space wavelength and the inter-elementrgpaespec-
tively. As far as the secondary lobes of the difference patége concerned, thiMaximum

Level of the Sidelobes’yLL, and the Grating Lobes Area”

A = /w AF ()], dv 9)

1 being the angular position of the first null of the beam pattare evaluated. Moreover, the
characteristics of the main lobe are described through 8¢ Beamwidth’, B,, [deg], and

the“Slope Area” defined as follows

Ymaz
Ao =2 [ (AP (D] % o [ 1AF ()], 1] 10)

where|AF (¢)|, and,,,, are the normalized array pattern and the angular positiothef
maximum, respectively.

Concerning the computational costs, the total number dafifterations [, = >°2, 19, the
CPU-time needed for reaching the final soluti@ih,and the total number of possible sub-array

configurations{/, are analyzed.

3.1 ICPM Performance Analysis

This section is aimed at analyzing the behavior of the ikegai L L control procedure in pro-

viding a suitable trade-off betweé&. L, directivity, and beamwidth. Towards this end, a linear
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configuration ofN = 2 x M = 20 elements with\ /2 inter-element spacing is chosen and the
sum excitations\ ¥ have been set to those of the linear Villeneuve pattern [ wi= 4 and
25 dB sidelobe ratio. Then, for fixed values @f(Q) = 2, 4, 7), the IC PM has been applied
by setting the sidelobe threshold$d.L, = —25 dB and requiring a main lobe width smaller
than B'¢/ = 6.0°. The adaptive searching procedure has been carried outrnsidesing a
succession of different reference excitation {8, ¢ = 1, ., 3, [19] with SLL!, = —25dB,
SLLY, = —30dB, andSLL'Y, = —40 dB, respectively.

Figure 2 shows the results obtained by applying the sidetmmgrol procedure. As can be
observed, the beam patterns synthesized by applying ateeiciteration theContiguous Par-
tition technique show a trade-off between the angular resoluttonracy and noise rejection
capabilities depending on the reference excitatiBf{§. As a matter of fact, when the differ-
ence main lobes get narrower, more power is wasted in thel@ids, and vice versa as con-
firmed by the values of the indexes reported in Tab. I. On therdtand, as expected, thé.L

of the synthesized patterns get closer and closer to theerefe oneSLLﬁ‘;)Jf when (@ grows
(e.9., SLLy)| oo, = —16:20dB vs. SLLS’,HQ:? ~31.30dB whenSLLY), = —40dB).
Consequently, it turns out that tH€’ P M more successfully applies (i.e., satisfying theL
and bandwidth requirements) whénis not very small > 2). As a matter of fact, the
iterative ¢ = 1,..., E) procedure yields a satisfactory solutioneat= 2 when@ = 4 (be-

ing SLLEj,tJ _, = —2230dB and B§3>J = 5.1622°) andQ = 7 (being SLLoth

—28.80dB and Bl(f)JQ:7 = 5.1555°), while for Q = 2, whatever the iteratiore(= 1, 2, 3), the
fulfillment of the S L L criterion is not met.

As far as the computational issues are concerned, it is wantimg that the/C'PM allows a
significant reduction of the dimension of the solution spd¢&**) vs. U - Tab. 1). Moreover,

although the number of possible aggregations chan@@éS(J =9, U(“S)JQ = 84, and

Q=2
U(“S)JQ_7 = 84) for different values of), the computational cost for reaching the termination

criterion of the inner loop remains almost the same. In ta,({ﬁ,, = 2 inner iterations are usually
enough for determlnlnﬁsopt, except for the case @) = 7 Whenlﬁmt = 3.
Another interesting observation is concerned with the @alfithe cost function at the inner

loop convergence [i.e., wheite) = s(fgt]. For a fixed reference pattern, it monotonically
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decreases as the number of sub-arr@ysnds tal/ (e.g.,\IfS,)tJQ =3.81x107! \I/OthQ T
9.53x1072 and\Ifoth _ =2.29x 10~3) pointing out asymptotically a more accurate matching

between the sub-optimal difference mode and the referenee o

3.2 Comparative Assessment

In this section, a comparative analysis between the prapagproach and state-of-the-art tech-
niques, based on the optimization of a suitable cost funatimnstructed with reference to a
SLL with a prescribed value, is carried out. Both fixed-partiti@est Case } and global-

synthesisTest Case 2 problems have been considered.

Test Case 1. Fixed-Partition Synthesis

The first test case deals with the synthesis of a fixed suly-aaafiguration. With reference to
the same benchmark in [23] and addressediss et al.with a S A-based technique [13][23],
alinear array ofV = 2 x M = 20 equally-spacedd(= A\/2) elements and) = 3 is consid-
ered. The optimal sum excitations have been fixed to that ablplBChebyshev pattern with
SLL = —35dB and a Zolotarev difference pattern witti.L,.; = —35 dB has been chosen as
reference.

In Figure 3, the difference patterns synthesized withdl$eand RE'S algorithms are compared
with that shown in [23]. Moreover, the corresponding sulaagrouping and weights are given
in Tab. Il. Both theGS and RE S techniques outperform theA-based solution in terms of the
maximum value the sidelobe IeveTLLgif = —19.74dB [23] vs. SLLYS = _2525dB

opt

andSLLf)ﬁtEs —21.31 dB) and the gain sorting strategy allows a three fold reduatittine
SA)

side lobe power (i.e; ﬁgS)J ~ 3). Nevertheless the solution of ti&F'S has aSLL 4 d B above

sll
(SA)

that of theG.S, it is worth notice that (RES)J ~ 2. Moreover, by imposing the compromise

.sll

patterns having a maximumlV close to that of thes A-based techniqued(°4) = 5.5528°),

the solutions from th&7S and RES algorithms are shown in Fig. 3 (i.eGS* and RES*
- SLL,.; = —33.75dB), while the corresponding sub-array configurations andyhsi are
summarized in Tab. Il. In such a situation, only th¢ is able to find a better compromise

pattern with aSLL below that in [23] of abou6.5dB (SLL\ ' = —20.21dB - B(5") =
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5.4947° SLLYFS) = —19.03dB - B{RFS") = 5.3558°).

Test Case 2. Simultaneous Global-Synthesis

The second test case is devoted to the comparative asseésghendealing with the simulta-
neous optimization of the sub-array membership and suyaveights. Towards this purpose,
the proposed method is compared with fhé-based method [14] and tHeFE algorithm [15].
The first comparison is concerned with t§é. L minimization of the difference pattern in a
linear array ofN = 2x M = 20 elements withl = )\ /2 inter-element spacing. The optimal sum
excitations have been fixed to generate a linear Villeneatem [5] withm = 4 and sidelobe
ratio of 25 dB. Moreover, the number of sub-arrays has been sét te 3 for considering the
same example dealt with in [14]. Concerning &P M, the reference difference pattern has
been chosen to be equal to a Zolotarev pattern [19] Witlh,.; = —35dB.

The results of the synthesis process are shown in Figure 4ewhe reference difference pat-
tern and those obtained with tlieA [14] and the constrained M M [12] are displayed, as
well. Concerning the comparison with tlig4-based method, both tleéS and RE'S schemes
outperform the result in [14]3LL£§tA) = —26.18 dB) with a maximum side-lobe level equal
to SLLE%S) = —28.60dB and SLLf)ﬁtEs) = —28.30dB, respectively [Tab. Ill], and similar
bandwidths B(¢4 = 5.7934°, B(“%) = 5.8004°, and B(FF%) = 5.8011°). It is interest-
ing to observe that the sub-array configuration determinetidih GS and RES algorithms
(.,e.,C = {1,2,0,3,3,3,3,0,2,1}) is the same obtained in [14], but the sub-arrays weights
are different W4 = {0.3260, 0.6510, 1.2990}, W) = {0.2456, 0.6018, 1.2580}, and
W(RES) — 102408, 0.6018, 1.2531}). Such an event is due to the fact that in [14] the sub-
array gains are part of the optimization process, while &' P M-based method they are
analytically computed once the sub-array configurationbdesen found. This allows a reduc-
tion of the number of unknowns (i.e., only the aggregatiossdad of weights and aggregations)
and, indirectly, of the possibility the solution being tpaal in local minima of the cost function.
As far as the computational costs are concerned, thanksetoetfuction of the number of
possible aggregationg/(¢4) = 3'° vs. U(***) = 36) and the searching limited to the sub-

array membership, the number of iterations needed for regahe final solution turns out to

12



be significantly Iowered]égf) =1 §§f 9 =3vs. 1 ﬁ? = 500 [14]) with a huge computational

saving (7PM) < 0.085 [sec]).

In order to obtain a different trade-off between sidelobeleand beamwidth, exploiting the
flexibility of the proposed method, a different referencétgra could be chosen (as highlighted
through the analysis iBect. 3.]). As an example and for a further comparison now with an-
other “optimal matchin§jtechnique instead of th€ A, let us relax the requirement on thd. L
and request th&11 of the compromise patterns being as close as possible tothia¢ con-
strainedEEM M [12]. Towards this aim, a Zolotarev pattern [19] Wit L,.; = —18.87dB
has been used as reference difference pattern. The syzgtidseam patterns are shown in
Figure 5. As far as the main lobe is concerned, the beamwidtea>S* pattern is narrower
(BG9) = 4.5961°) than that of the unconstrain€ds and very close to that bylcNamarg[12]
(B(Const=EMM) — 4 6090°). On the other hand, as expected, the performances in tdrf50
getworse £17.25 dB vs. —28.60 dB), but they are still better than that of tlsd. L-constrained
EMM (Tab. IllI). Concerning the? £.S-based method, although the trade-off solution has nar-
rower beamwidth and higher sidelobes, it has not been degsilit the bandwidth requirement
(i.e., BUES) > p(Const=EMM) _Tap_||I).

The second example addresses the same problem consid¢i&d{17] concerned with 0-
elements linear array with = 4 and(@ = 6, where the sum pattern is of Dolph-Chebyshev
type and characterized byL L. = —20dB. By assuming reference Zolotarev patterns with
SLL,.; =—-30dB (Q =4)andSLL,.; = —35dB (Q = 6), the optimized difference patterns
are shown in Fig. 6, while the final sub-array configurationd aeights are summarized in
Tab. IV.

The contiguous partitiormethod is more effective than both ther-based approach [15] and
the two-step procedure proposed in [17] (indicated in figuaed tables a&l ybrid — SA ap-
proach) in minimizing the level of the sidelobes as graphicghown in Fig. 6 and quan-
titatively confirmed by the behavior of the beam pattern xegein Tab. V. Similar conclu-
sions hold true in dealing with the required computationaiden ( Tab. V) and”’PU-time
(T < 0.2 [sec]).

For completeness, thie -constrained problem has been also addressed. AccorgthglyL L

13



minimization has been performed by requiring a beamwidthevalose to that in [15] and [17]
(Tab. V). The patterns computed with the sub-array configuma and weights given in Tab.
IV and synthesized by means of ti&* and RES* algorithms @ = 4 - SLLZj" " =
—27.50dB, Q = 6 - SLLZY**** = —33.00 dB) are shown in Fig. 6. Moreover, the corre-

sponding pattern indexes are summarized in Tab. V.

3.3 Extension to Large Arrays

The numerical study ends with analysis of the synthesis mjelarray patternsi( > 50)
where usually local minima problems, unmanageable (or adficult) increasing computa-
tional costs, and ill-conditioning issues unavoidablgariln such a framework, the first exper-
iment is concerned with & = 2 x M = 100 elements arrayd = \/2) with sum pattern fixed
to the Taylor distribution [4] withm = 12 andSLL = —35dB. For comparison purposes, the
case of) = 4 sub-arrays [13]-[15][17] is dealt with. Dealing with sucls@enario, thd C PM
has been applied by considering a reference Zolotarevrpdft8] with sidelobe level equal to
SLL,.; = —40dB. In the following, only the solutions obtained with tli&S are reported,
since as shown in Sect. 3.2 the performance ofRtlk&5 get worse when the number of array
elements increases with respect to the number of sub-guagsoidable for large arrays).
The synthesized difference patterns are shown in Fig. 7lewthe sub-array grouping and
weights are given in Tab. VI. By observing both Fig. 7 and TeH, it turns out that theS
approach outperforms other single-step techniques arldkeuithe caselM = 10, its perfor-
mances are quite similar (in terms of sidelobe level) to ttidhe two-step method even though
it is much more computationally effective. Moreover, alilgh it achieves the minimum value
of SLL, the corresponding main lobe beamwidth does not signifigaiiffer from that of the
other methods (Tab. VII).
In the second experiment, the same array geometry of thegmeease is analyzed, but with
() = 3 sub-arrays analogous to [14]. The sub-array configuratr@hvaeights obtained with
the GS-based strategy are reported in Tab. VIII. Also in this cdke,GS difference pattern
presents & L L lower than that shown in [14}S(LL£§tS) = —30.25 vs. SLLEStA) = —29.50)
(GA)

and confirms its effectiveness in terms of computationaluese since[ﬁ%) = 250.

stat
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Finally, the last experiment is concerned with a very langaysof N = 200 elementsd = \/2).

In such a case, the sum pattern excitations have been chmgeaduce a Dolph-Chebyshev
pattern [3] withSLL = —25dB, while reference difference excitations able to generate a
Zolotarev pattern [19] wittbLL,.; = —30 dB have been assumed. Moreover, the number of
sub-arrays has been sgt= 6.

The beam pattern synthesized with td& algorithm is shown in Fig. 8. As it can be noticed,
although the ratio between the number of elements and théeauof sub-arrays is not negligi-
ble (4 ~ 17), the obtained solution ensuresSé,ngts) = —25.15dB assessing the reliability

of the proposed method in dealing with large structureskarthe £ M M, which suffers in this

framework from the severe ill-conditioning of the matrixssgm.

4 Conclusions and Discussions

In this paper, an innovative approach for the synthesis afcbeand-track antennas and beam
patterns for monopulse radar applications has been pegeiihe proposed method consists
of an adaptive searching procedure whose result is a compesolution as close as possible
to an optimal one in the Dolph-Chebyshev sense, which alisatisfactory trade-off between
angular resolution and reduction of noise and interfersemdfects. In particular, the narrowest
beamwidth and the largest slope around the boresight aireate looked for by applying the
optimal excitation matching method based on the contigymarstion technique, while the
fulfillment of the requirements on th€L L (or other beam pattern features) is ensured by an
outer iterative loop.

The obtained results have proved the effectiveness of thigoged approach in providing dif-
ference patterns with a satisfactory trade-off among beattem features dealing with large
arrays, as well. Although the iterative contiguous pantitmethod is aimed at synthesizing the
“best compromise” matching an optimal (in the Dolph-Chélgyssense) reference pattern, the
obtained solutions positively compare with state-of-dineapproaches in the related literature
in a number of measures where only thi& L minimization is required, thus showing how the
proposed approach, which is numerically efficient, worlkificiently well. As a matter of fact,

the proposed technique allows one to overcome some drawlidioth theZ M M approach
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proposed byMcNamara(i.e., ill-conditioning and the exhaustive evaluation loé twhole set
of aggregations) and the synthesis techniques based drastacoptimization algorithms (i.e.,
single-objective optimization and low convergence ratemwhdealing with very large arrays).
For the sake of completeness and to have a complete overVithe oomparisons between the
proposed method and the state-of-the-art techniquese§&Xland X summarize the achieved
performance in terms &f L L and B,, when dealing with the synthesis of small and large arrays.
On the other hand, definite conclusions about the relativieeance of thef C P M cannot be
drawn from the presented comparisons, since the various@es deal with different synthesis
problems and/or optimization criteria. This means thapes&ling on the selected feature, the
IC PM performs differently even though keeping a great compoaii efficiency. Moreover,
since the proposed procedure is an adaptive searchingdeehit does not guarantee to always
obtain better solutions than those from global optimizatechniques. As a matter of fact, these
latter should outperform any other approach when optingizngiven functional, unless the
optimum is not actually achieved, which is likely to happdrew exploiting global optimization

algorithms in large size problems.
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FIGURE CAPTIONS

e Figure 1. Flow chart of thdterative Contiguous Partition Method

e Figure 2. IC'PM Performance AnalysiéM = 10, d = g) - Normalized difference
patterns wheng) Q =2, (b) Q =4,and €) Q = 7.

e Figure 3. Comparative Assessmegiit/ = 10, d = % @ = 3) - Normalized difference
patterns synthesized with thie€’PM — G S, theICPM — RES, and theS A algorithm
[23].

e Figure 4. Comparative Assessmefit/ = 10, d = % @ = 3) - Reference pattern
(SLL,.; = —35dB) and normalized difference patterns synthesized with/th&’ N/ —
GS,thelCPM — RES, theG A-based method [14], and the constrairedl/ M [12].

e Figure 5. Comparative Assessmegit/ = 10, d = % @ = 3) - Normalized difference
patterns synthesized with tHi€’PM — G S, theICPM — RES, the G A-based method
[14], and the constrained M M [12].

e Figure 6. Comparative Assessmeiit/ = 10, d = %) - Normalized difference patterns
synthesized with théeC PM — G S, theICPM — RES, the Hybrid — S A approach [17],
and theD E algorithm [15] when &) Q = 4 and p) @) = 6.
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e Figure 7. Extension to Large Array&V/ = 50, d = g @ = 4) - Normalized difference
patterns synthesized with td€’PM — GS (SLL,.; = —40dB), theS A algorithm [23],
the Hybrid — S A approach [17], théF A-based method [14], and tHeFE algorithm [15].

e Figure 8. Extension to Large Array§V/ = 100, d = % @ = 6) - Normalized difference
patterns synthesized with ti€'PM — GS (SLL,.; = —30dB).

TABLE CAPTIONS

e Table I. IC PM Performance AnalysieV = 10,d = g) - Difference pattern quantitative

indexes and computational indicators for different valokg.

e Table Il. Comparative Assessmegitl = 10, d = g Q =3,SLL,.; = —35dDB) - Sub-
array configuration and weights synthesized with ti&PM — GS and thelCPM —
RES.

e Table Ill. Comparative Assessmgit/ = 10, d = g @ = 3) - Quantitative indexes of
the reference patter$(CL,.; = —35 dB) and of the difference patterns synthesized with
theICPM — GS,theICPM — RES, theG A-based method [14], and the constrained
EMM [12].

e Table IV. Comparative Assessmefit/ = 10, d = g) - Sub-array configuration and

weights synthesized with the”’PM — GS and thelCPM — RES, when@ = 4 and
Q =6.

e Table V. Comparative Assessmdidt! = 10,d = %) - Quantitative indexes and computa-
tional indicators for the solutions obtained with the PM — G'S, theICPM — RES,
the Hybrid — SA®) approach [17], and th® E algorithm [15] when) = 4 andQ = 6.

e Table VI. Extension to Large Array§V/ = 50, d = g Q

4) - Sub-array configuration

and weights synthesized with thie'PM — GS.

() I.ar = 25 indicates the number &f A iterations (i.e., first step), no indications on the conveogpam-
ming procedure (i.e., second step) are available.
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Table VII. Extension to Large Array§V = 50, d = % @ = 4) - Quantitative indexes
and computational indicators for the solutions obtainethtie/C PM —GS (SLL,.; =
—40dB), the Hybrid — SA®), the SA algorithm [23], theG A-based method [14], and
the D E algorithm [15].

Table VIII. Extension to Large Array§V = 50, d = g @ = 3) - Sub-array configura-
tion and weights synthesized with thé'PM — G'S.

Table IX. ResumdM = 10, d = g) - Quantitative indexes for the solutions obtained

with the /C P M based approaches and state of the art techniques.

Table X. ResuméM = 50,d = %) - Quantitative indexes for the solutions obtained with

the IC'PM based approaches and state of the art techniques.
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Q=2 Q=4 Q=7
e 1 2 3 1 2 3 1 2 3
SLLY, || —25dB | —30dB | —40dB —25dB | —30dB | —40dB —25dB | —30dB | —40dB
Ao 0.1773 0.1865 0.1953 0.1759 0.1840 0.1981 0.1753 0.1844 0.1955
B, [deg] | 4.9239 5.2356 5.7661 4.8910 5.1622 5.7976 4.8547 5.1555 5.7217
W 0.6458 0.7474 0.8463 0.6226 0.7043 0.8653 0.6197 0.6753 0.8368
Ay 0.1761 0.1722 0.1333 0.1112 0.0780 0.0375 0.0938 0.0495 0.0179
SLL) —14.80 —16.70 ~16.20 —15.80 —22.30 —26.90 —24.35 —28.80 —31.30
19, 2 2 2 2 2 2 3 2 2
|1 3.81 x 1071 [ 4.62 x 1071 | 2.76 x 107 || 9.53 x 1072 | 110 x 10~ | 3.89 x 1072 || 2.29 x 1073 | 9.93 x 104 | 5.45 x 103
Uess) 9 84 84
U 1024 1048580 2.8247 x 108




M=10|Cl%)=cli¥ | 1122233330

Q=3 wio? 0.2804 | 0.5839 | 1.3971
WO 10,1943 0.4505 | 1.3807
Q=3 wios) 0.4618 | 2.1607 | 2.9448
W) 10,2833 | 1.1443 | 1.3971

Tab. Il - P. Roccaet al., “Compromise sum-difference optimization ...”
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Agio By [deg] | Agy SLL
Reference Dif ference[19] || 0.1933 | 5.7668 | 0.0273 | —35.00
GS 0.2046 | 5.8004 | 0.0382| —28.60
RES 0.2046 | 5.8011 |0.0378 | —28.30
Reference Dif ference® [19] || 0.1645 | 4.4747 | 0.1526 | —18.87
GS* 0.1690 | 4.5961 | 0.1453 | —17.25
RES* 0.1759 | 5.1615 | 0.1530 | —17.34
GA Optimization [14] 0.2038 | 5.7934 |0.0440 | —26.18
Constrained EMM [12] 0.1715 | 4.6090 |0.2223 | —16.50

Tab. 11l - P. Rocca et al., “Compromise sum-difference optimization ...
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M=10| c? 1234444431
cEF) 1234444331
cls) 1233444431
(RES) 1233444432
Q=4 | W& | 02201 0.4601 0.6932 0.9568
WES) 101837 04549 [0.7423|  0.9080
wio) 10.3593| 07882 |1.5351|  2.0122
WES) 10,1564 0.3851 0.7732 1.0104
M=10| c? 1234564321
cEF) 1345666542
clo) 1235666431
(R 1356666542
Q=6 | WS | 01714 0.5075 | 0.7332 | 0.9083 | 0.9901 | 0.9926
wiEES) 10,1632 | 0.2613 | 0.4606 | 0.7021 | 0.8831 | 1.0049
WS 10,1876 | 0.4765 | 0.6894 | 0.8189 | 0.8914 | 0.9857
WIRES) 10,1685 | 0.2024 | 0.4765 | 0.6321 | 0.7576 | 0.9579
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Ago | By [deg] | Agu SLL U Lot
Q =
Reference Dif ference [19] | 0.1786 | 5.1496 | 0.0510 | —30.00 — —
GS 0.1809 | 5.2247 |0.0564 | —25.40 || 84 2
RES 0.1894 | 5.3228 |0.0537 | —25.01| 84 2
Reference Dif ference® [19] || 0.1803 | 5.0000 | 0.0694 | —27.50 — -
GS* 0.1863 | 5.1449 |0.0748 | —24.30| 84 2
RES* 0.1742 | 4.9585 |0.0936 | —20.00 | 84 1
Hybrid — SA[17] 0.1844 | 5.1442 | 0.0919 | —24.10 | O (10%) | 25
DE Algorithm [15] 0.1878 | 5.1834 | 0.1107 | —21.30 | O (10%) | 9
Q=
Reference Dif ference [19] || 0.1929 | 5.4188 | 0.0281 | —35.00 — —
GS 0.1948 | 5.4928 |0.0291 | —31.56 || 126 2
RES 0.1855 | 5.1728 |0.0500 | —28.09 || 126 2
Reference Dif ference* [19] | 0.1897 | 5.3138 | 0.0355 | —33.00 — —
GS* 0.1893 | 5.2694 |0.0356 | —29.52 || 126 2
RES* 0.1848 | 5.3827 |0.0446 | —27.35|| 126 2
Hybrid — SA[17] 0.1884 | 5.2615 | 0.0439 | —29.50 | O (10°) | 25
DE Algorithm [15] 0.1942 | 5.3872 | 0.0727 | —21.66 | O (10°) | 7
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Synthesis Approach SLLoy | Aqi | By [deg] | Asio U Isar | T [sec]

SA Optimization [13] | —25.56 | 0.0432 | 1.0745 |0.0329 | O (10%) | — —
GA Optimization [14] | —31.00 | 0.0504 | 1.3585 | 0.0529 | O (10%°) | 500 | ~ 15
DE Algorithm [15] —30.00 | 0.0361 | 1.3256 | 0.0361 || O (10°°) | 804 | ~ 20

Hybrid — SA Method [17] | —32.00 | 0.0305 | 1.2776 |0.0401 | O (10%)| 25 | —
GS —32.10 | 0.0363 | 1.2952 |0.0444 || 18424 | 5 | 1.0785
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M| Q Synthesis Approach SLLyy [dB] | By [deg] || Fig. § | Tab. §
10 3 SA[13] 1974 | 55528 || 3 -
ICPM — GS* —20.21 5.4947 3 —
ICPM — RES* —19.03 5.3558 3 —
10| 3 GA[14] 9618 | 5.7934 4 111
ICPM -GS —28.60 5.8004 4 117
ICPM — RES —28.30 5.8011 4 111
10 | 3 | Constrained EM M [12] —16.50 4.6090 ) 117
ICPM — GS* —17.25 4.5961 ) 117
ICPM — RES* —17.34 5.1615 ) 117
10| 4 DE[15] 2130 | 51834 || 6(a) | V
Hybrid — SA[17] —24.10 | 5.1442 || 6(a) | V
ICPM — GS* —2430 | 51449 || 6(a) | V
ICPM — RES* —20.00 4.9585 6(a) V
10| 6 DE [15] —21.66 0.3872 6(b) V
Hybrid — SA[17] —2050 | 52615 || 6(b) | V
ICPM — GS* —29.52 5.2694 6(b) V
ICPM — RES* —27.35 5.3827 6(b) Vv
10| 8 DE [15] 2159 | 6.3820 || 3[24] | I[24]
Hybrid — SA[17] ~36.50 | 5.8202 || 3[24] | I[24]
ICPM -GS —40.85 5.8605 || 3[24] | I[24]

Tab. IX - P. Roccaet al., “Compromise sum-difference optimization ...”
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M Synthesis Approach | SLLyy [dB] | By [deg] | Fig. §| Tab. §

50 GA [14] 9950 | 1.2753 || — _
ICPM — GS —30.25 1.2880 — —

50 SA[13] —25.56 1.0745 7 VII

GA [14] 3100 | 1.3585 | 7 | VII

DE [15] 23000 | 13256 | 7 | VII

Hybrid — SA[L7] 3200 | 12776 | 7 | VII

ICPM — GS —32.10 1.2952 7 VII

Tab. X - P. Roccaet al., “Compromise sum-difference optimization ...”
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