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Design of Compromise Sum-Difference Patterns through the

Iterative Contiguous Partition Method

P. Rocca, L. Manica, A. Martini, and A. Massa

Abstract

In this paper, an innovative approach for the synthesis of sub-arrayed monopulse linear

arrays is presented. A compromise difference pattern is obtained through an optimal ex-

citations matching method based on the contiguous partition technique integrated in an

iterative procedure ensuring, at the same time, the optimization of the sidelobe level (or

other beam pattern features). The flexibility of such an approach allows one to synthesize

various difference patterns characterized by different trade-off between angular resolution

and noise/interferences rejection in order to match the user-defined requirements. On the

other hand, thanks to its computational efficiency, synthesis problems concerned with large

arrays are easily managed, as well. An exhaustive numericalvalidation assesses the re-

liability and accuracy of the method pointing out the improvements upon state-of-the-art

sub-arraying techniques.

Key words: Linear Arrays, Monopulse Antennas, Sum and Difference Pattern Synthesis, Con-

tiguous Partition.
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1 Introduction

The design of monopulse radar systems [1][2] requires the synthesis of both a sum pattern and a

difference pattern, which satisfy some specifications suchas narrow beamwidth, low side-lobe-

level (SLL), and high directivity. In order to avoid an expensive implementation of independent

feed networks for obtaining optimal sum [3]-[7] and difference [8]-[11] excitation coefficients,

compromise solutions based on sub-arraying techniques have been successfully proposed [12]-

[18]. The sum pattern is fixed to the optimal one, while difference excitations are obtained from

the sum coefficients by properly grouping the array elementsand by weighting each sub-array

in order to satisfy the user-defined constraints. In such a context, two different methodological

approaches might be recognized. The former (indicated in the following as “optimal matching”)

is aimed at determining the “best compromise” difference pattern, which is as close as possible

to the optimum in the Dolph-Chebyshev sense [19] (i.e., narrowest first null beamwidth and

largest normalized difference slope on the boresight for a specified sidelobe level). The other,

denoted as “feature optimization”, where the beam pattern parameters (usually, theSLL [13]-

[15] or the directivity [20]) are controlled by including them in a cost function to minimize

according to a global optimization stochastic procedure.

Concerning the “optimal matching” techniques,McNamaraproposed in [12] the “Excitation

Matching” method (EMM) based on an expansion in terms of Zolotarev polynomials where,

for each possible grouping, the corresponding sub-array coefficients are iteratively computed

through pseudo-inversion of an overdetermined system of linear equations. Since such an ap-

proach does not allow the control of the beam patternSLL, a constrained version of the method

has been also introduced ([12], Sect. 5) in order to reduce the grating lobes effects and lead

to sub-optimal difference patterns with a suitable compromise betweenSLL, beamwidth, and

slope on boresight. Unfortunately, when the ratio between array elements and number of sub-

arrays gets larger, theEMM is not always reliable/efficient because of the ill-conditioning of

the matrix system as well as the large computational costs ofthe arising exhaustive evaluation

process.

As far as the “feature optimization” class of sub-arraying methods is concerned,Ares et al.

considered in [13] the application of a simulated annealing(SA) algorithm for defining the
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optimal sub-array weights (i.e., aimed at obtaining a difference pattern that satisfies a fixed

constraint on theSLL) starting from an assigned sub-array configuration. On the other hand,

taking advantage of the problem convexity with respect to the weights of the subarrays and

following the same line of the reasoning as in [21], a two-step hybrid optimization strategy has

been proposed in [16][17]. By optimizing at the same time both partition functions (i.e., those

functions that define the membership of the array elements toeach sub-array) and the sub-array

coefficients,Lopez et al.[14] proposed a Genetic Algorithm (GA) based technique. In a similar

fashion, a Differential Evolution (DE) algorithm has been used in [15].

Although the optimization of elements membership and sub-array weights significantly im-

proved the performance of sum-difference optimization methodologies, some drawbacks still

remain. As a matter of fact, such techniques are usually time-consuming especially when deal-

ing with large arrays since the dimension of the solution space significantly enlarges. Moreover,

“ feature optimization” approaches are usually formulated in terms of single-objective problems

and the control of multiple features of the beam pattern (e.g.,SLL, beamwidth, difference slope

on boresight) would require the use of customized and complex multi-objective strategies.

In the framework of optimal matching techniques, the present contribution is aimed at proposing

a new approach for synthesizing best compromise patterns with SLL control. Towards this

end, following the guidelines of theEMM , the proposed approach determines the difference

solution close to the optimal Dolph-Chebyshev pattern through the search of the minimum

cost-path in the non-complete binary tree of the possible aggregations by satisfying theSLL

constraints through an iterative procedure (unlike globaloptimization methods that directly

define aSLL penalty term in the cost function [13]-[15]).

The remaining of the paper is organized as follows. The problem is mathematically formulated

in Section 2 where the proposed synthesis procedure is described in detail. Section 3 deals

with an exhaustive numerical validation aimed at assessingthe effectiveness of the proposed

technique and at providing a comparison with state-of-the-art solutions. Conclusions and final

remarks are drawn in Section 4.
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2 Mathematical Formulation

Let us consider a linear uniform array ofN = 2M elements and let us assume that the sum and

difference patterns are obtained through a symmetric,A = {am = a−m; m = 1, ...,M}, and an

anti-symmetric,B = {bm = −b−m; m = 1, ...,M}, real excitations set, respectively. Thanks

to these symmetry properties, only one half of the array elements is considered.

According to the guidelines of sub-arraying techniques, the sum pattern is obtained by fixing the

sum excitations to the ideal ones,A
ideal = {αm; m = 1, ...,M} [3][4][5], while the difference

excitations set is synthesized starting from the sum mode asfollows

bm =
Q

∑

q=1

αm (δcmqwq) ; m = 1, ...,M, (1)

whereQ is the number of sub-arrays,wq is the weight associated to theq-th sub-array in the

difference feed network, andδcmq is the Kronecker delta whose value is determined according to

the sub-array membership of each element of the array (δcmq = 1 if cm = q, δcmq = 0 otherwise,

cm ∈ [1, Q] being the sub-array index of them-th array element).

In order to obtain the best compromise difference excitations (i.e., a set of excitations giving a

pattern as close as possible to the ideal one in the Dolph-Chebyshev sense that satisfies at the

same time a constraint on theSLL), an innovative adaptive searching technique, indicated as

Iterative Contiguous Partition Method(ICPM), is applied. It consists of an inner loop aimed

at ensuring the closeness of the trial solution to a “reference” ideal pattern and by an outer loop

devoted at satisfying the requirements on theSLL (or another beam pattern feature).

With reference to Fig. 1, the main steps of the iterative procedure are described in the following:

• Step0 - Initialization. The external iteration index is initialized (e = 0), the optimal sum

excitationsAideal = {αm; m = 1, ...,M} are computed [3][4][5], and the user-desired

sidelobe level threshold is set,SLLd;

• Step1 - Reference Difference Pattern Selection. At the first iteration (e = 1), an optimal

- in the Dolph-Chebyshev sense - difference excitations setB
(e)
ref =

{

β(e)
m ; m = 1, ...,M

}

that generates a beam pattern with a sidelobe levelSLL
(e)
ref = SLLd is computed as in

[8] and assumed as reference in the inner loop. Then, for eachelement of the array, an
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identification parameter is evaluated according to one of two different strategies, namely

theGain Sorting(GS) algorithm

[

v(e)
m

]

(GS)
=
β(e)
m

αm
, m = 1, ...,M, [Optimal Gain] (2)

or theResidual Error Sorting(RES) algorithm

[

v(e)
m

]

(RES)
=
αm − β

(e)
m

β
(e)
m

, m = 1, ...,M, [Optimal Residual Error] (3)

respectively. The identification indexes
{

v(e)
m ; m = 1, . . . ,M

}

are ordered in a sorted

list L = {lm; m = 1, . . . ,M} (i.e., an ensemble wherelk ≤ lk+1, k = 1, . . . ,M − 1,

l1 = min
m

{

v(e)
m

}

, andlM = max
m

{

v(e)
m

}

);

• Step2 - Computation of the Compromise Solution. With reference to thee-th target

pattern, the approximation algorithm based on theContiguous Partitiontechnique is run

until a suitable “termination criterion“ is satisfied. Accordingly, the following steps are

performed:

– Step2.a - Solution Initialization. The internal iteration counter is initialized [i(e) =

0] and a starting trial groupingCi(e) =
{

ci(e)m ; m = 1, . . . ,M
}

, corresponding to a

Contiguous Partition(1) of L inQ subsetsPi(e)
Q =

{

L
i(e)
q ; q = 1, . . .Q

}

, is randomly

generated and assumed as the optimal groupingC
i(e)
opt = C

i(e). Successively, the sub-

array weightsWi(e) =
{

wi(e)q ; q = 1, . . . , Q
}

are analytically computed according

to
[

wi(e)q

]

(GS)
=

M
∑

m=1

δcmqdm
(

C
i(e)

)

, q = 1, ..., Q [EstimatedGain] (4)

(1)With reference to [22], it can be easily shown that, once the parametersv(e)
m have been ordered in the

sorted listL = {lm; m = 1, ..., M}, the grouping minimizing the cost function (7) correspondsto aContiguous
Partition. A grouping of array elements is aContiguous Partitionif the genericmj-th array element belongs to the
q-th sub-array only when two elements, namely themi-th element and themn-th one, belong to the same sub-array
and the conditionv(e)

i < v
(e)
j < v

(e)
n holds true.
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if theGS algorithm is adopted or

[

wi(e)q

]

(RES)
=

M
∑

m=1

1

1 + δcmqdm (Ci(e))
, q = 1, ..., Q [EstimatedResidual Error]

(5)

when theRES algorithm is used,dm
(

C
i(e)

)

being an estimate of the identification

parameterv(e)
m given by

dm
(

C
i(e)

)

=

∑M
s=1 α

2
sδcscmv

(e)
s

∑M
s=1 α

2
sδcscm

, m = 1, ...,M ; (6)

– Step2.b - Cost Function Evaluation. The closeness to the target pattern of the cur-

rent candidate solutionBi(e) (or in an equivalent fashion, the couple of coefficients

C
i(e) andW

i(e)) is quantified through the following cost function

Ψ
{

C
i(e)

}

=
M
∑

m=1

α2
m

[

v(e)
m − dm

(

C
i(e)

)]2
. (7)

The cost function valueΨi(e) = Ψ
{

C
i(e)

}

is compared to the best value attained

up till now, Ψ
{

C
i(e)−1
opt

}

= min
h(e)=1,...,i(e)−1

[

Ψh(e)
]

, and ifΨ
{

C
i(e)

}

< Ψ
{

C
i(e)−1
opt

}

,

then the optimal trial solution is updated,B
i(e)
opt = B

i(e), Ci(e)
opt = C

i(e), andW
i(e)
opt =

W
i(e) as well as the optimal cost function value,Ψ

i(e)
opt = Ψi(e);

– Step2.c - Termination Criterion Check. If a maximum number of iterationsI is

reached or a stationary condition [i(e) = I
(e)
stat] for the cost function value,

∣

∣

∣
KwindowΨ

i(e)−1
opt −

∑Iwindow
t=1

Ψ
t(e)
opt

∣

∣

∣

Ψ
i(e)
opt

≤ η,

holds true (Iwindow andη being a fixed number of iterations and a fixed numerical

threshold, respectively), then the inner loop is stopped and the following setting is

assumed:C(e)
opt = C

i(e)
opt , W

(e)
opt = W

i(e)
opt (i.e.,B(e)

opt = B
i(e)), andΨ

(e)
opt = Ψ

i(e)
opt . The

procedure goes to Step3. Otherwise, the Step2.d is performed;

– Step2.d - Aggregation Updating. The inner index is updated [i(e) ← i(e) + 1]

and a new grouping vectorCi(e) is defined. More in detail, a new contiguous
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partition P
i(e)
Q is derived from the previous onePi(e)−1

Q just modifying the sub-

array memberships of the“Border Elements” defined as followslm ∈ L
i(e)
t ∧

{(

lm−1 ∈ L
i(e)
t−1

)

∨
(

lm+1 ∈ L
i(e)
t+1

)}

, t ∈ [1;Q]. The corresponding sub-array weights

W
i(e) are then analytically computed as in (4) or (5). The procedure goes to Step

2.b;

• Step3 - Side-Lobe-Level Check. The descriptive parameters of the beam pattern gener-

ated by the coefficientsB(e)
opt are computed as well as theSLL, SLL(e)

opt = SLL
{

B
(e)
opt

}

.

If SLL(e)
opt ≤ SLLd and the “degree of closeness” to the reference pattern is satisfactory

(e.g., some constraints on the beamwidth/directivity are satisfied), then the whole pro-

cess ends and the final solution is:Copt = C
(e)
opt, Wopt = W

(e)
opt (i.e., Bopt = B

(e)
opt),

Ψopt = Ψ
(e)
opt. Otherwise, the outer iteration index is updated (e ← e + 1) and another

reference pattern that satisfies the conditionSLL
(e)
ref < SLL

(e−1)
ref is chosen. Then, the

procedure restarts from Step1 until e = E, E being a fixed number of outer-loop itera-

tions.

It is worth noting that theContiguous Partitiontechnique applied in the inner loop allows a

non-negligible saving of computational resources as pointed out in Section 3 by means of some

numerical experiments. As a matter of fact, according to theobservation that the grouping

minimizing (7) is a contiguous partition and that changing the sub-array membership of the

Border Elementsensures to obtain another contiguous partition, it turns out that the number of

possible aggregations reduces fromU = QM (the total number of sub-array configurations) to

(2)

U (ess) =









M − 1

Q− 1









. (8)

(2) Dividing the ordered listL into Q sub-arrays is equivalent to selectQ− 1 “division” points inside any of
theM − 1 intervals between adjacent elements.
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3 Numerical Results

In this section, representative results from selected testcases are reported for assessing the

effectiveness of theICPM in providing a suitable trade-off between desiredSLL, directivity,

and beamwidth (Sect. 3.1) as well as in dealing with smaller (Sect. 3.2) and larger arrays (Sect.

3.3). Comparisons with state-of-the-art synthesis techniques are presented (Sects. 3.2-3.3), as

well.

In order to quantify the optimality and accuracy of the obtained solutions, some quantitative

indexes are introduced. They are expressed in terms of the angular variableψ = (2πd/λ) sinθ,

θ ∈ [0, π/2], λ andd being the free-space wavelength and the inter-element spacing, respec-

tively. As far as the secondary lobes of the difference pattern are concerned, the“Maximum

Level of the Sidelobes”,SLL, and the “Grating Lobes Area”

Asll =
∫ π

ψ1

|AF (ψ)|n dψ (9)

ψ1 being the angular position of the first null of the beam pattern, are evaluated. Moreover, the

characteristics of the main lobe are described through the “−3 dB Beamwidth”, Bw [deg], and

the“Slope Area” defined as follows

Aslo = 2×

[

max
ψ

(|AF (ψ)|n)× ψmax −
∫ ψmax

0
|AF (ψ)|n dψ

]

(10)

where |AF (ψ)|n andψmax are the normalized array pattern and the angular position ofthe

maximum, respectively.

Concerning the computational costs, the total number of inner iterations,Itot =
∑E
e=1 I

(e)
stat, the

CPU-time needed for reaching the final solution,T , and the total number of possible sub-array

configurations,U , are analyzed.

3.1 ICPM Performance Analysis

This section is aimed at analyzing the behavior of the iterative SLL control procedure in pro-

viding a suitable trade-off betweenSLL, directivity, and beamwidth. Towards this end, a linear
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configuration ofN = 2×M = 20 elements withλ/2 inter-element spacing is chosen and the

sum excitationsAideal have been set to those of the linear Villeneuve pattern [5] withn = 4 and

25 dB sidelobe ratio. Then, for fixed values ofQ (Q = 2, 4, 7), theICPM has been applied

by setting the sidelobe threshold toSLLd = −25 dB and requiring a main lobe width smaller

thanBref
w = 6.0o. The adaptive searching procedure has been carried out by considering a

succession of different reference excitation setsB
(e)
ref , e = 1, ., 3, [19] with SLL(1)

ref = −25 dB,

SLL
(2)
ref = −30 dB, andSLL(3)

ref = −40 dB, respectively.

Figure 2 shows the results obtained by applying the sidelobecontrol procedure. As can be

observed, the beam patterns synthesized by applying at eache-th iteration theContiguous Par-

tition technique show a trade-off between the angular resolution accuracy and noise rejection

capabilities depending on the reference excitationsB
(e)
ref . As a matter of fact, when the differ-

ence main lobes get narrower, more power is wasted in the sidelobes, and vice versa as con-

firmed by the values of the indexes reported in Tab. I. On the other hand, as expected, theSLL

of the synthesized patterns get closer and closer to the reference oneSLL(e)
ref whenQ grows

(e.g., SLL(3)
opt

⌋

Q=2
= −16.20 dB vs. SLL(3)

opt

⌋

Q=7
= −31.30 dB whenSLL(3)

ref = −40 dB).

Consequently, it turns out that theICPM more successfully applies (i.e., satisfying theSLL

and bandwidth requirements) whenQ is not very small (Q > 2). As a matter of fact, the

iterative (e = 1, ..., E) procedure yields a satisfactory solution ate = 2 whenQ = 4 (be-

ing SLL
(2)
opt

⌋

Q=4
= −22.30 dB andB(2)

w

⌋

Q=4
= 5.1622o) andQ = 7 (being SLL(2)

opt

⌋

Q=7
=

−28.80 dB andB(2)
w

⌋

Q=7
= 5.1555o), while forQ = 2, whatever the iteration (e = 1, 2, 3), the

fulfillment of theSLL criterion is not met.

As far as the computational issues are concerned, it is worthnoting that theICPM allows a

significant reduction of the dimension of the solution space(U (ess) vs. U - Tab. I). Moreover,

although the number of possible aggregations changes (U (ess)
⌋

Q=2
= 9, U (ess)

⌋

Q=4
= 84, and

U (ess)
⌋

Q=7
= 84) for different values ofQ, the computational cost for reaching the termination

criterion of the inner loop remains almost the same. In fact,I
(e)
stat = 2 inner iterations are usually

enough for determiningB(e)
opt, except for the case ofQ = 7 whenI(1)

stat = 3.

Another interesting observation is concerned with the value of the cost function at the inner

loop convergence [i.e., wheni(e) = I
(e)
stat]. For a fixed reference pattern, it monotonically
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decreases as the number of sub-arraysQ tends toM (e.g.,Ψ(1)
opt

⌋

Q=2
= 3.81×10−1, Ψ

(1)
opt

⌋

Q=4
=

9.53×10−2, andΨ
(1)
opt

⌋

Q=7
= 2.29×10−3) pointing out asymptotically a more accurate matching

between the sub-optimal difference mode and the reference one.

3.2 Comparative Assessment

In this section, a comparative analysis between the proposed approach and state-of-the-art tech-

niques, based on the optimization of a suitable cost function constructed with reference to a

SLL with a prescribed value, is carried out. Both fixed-partition (Test Case 1) and global-

synthesis (Test Case 2) problems have been considered.

Test Case 1. Fixed-Partition Synthesis

The first test case deals with the synthesis of a fixed sub-array configuration. With reference to

the same benchmark in [23] and addressed byAres et al.with aSA-based technique [13][23],

a linear array ofN = 2 ×M = 20 equally-spaced (d = λ/2) elements andQ = 3 is consid-

ered. The optimal sum excitations have been fixed to that of a Dolph-Chebyshev pattern with

SLL = −35 dB and a Zolotarev difference pattern withSLLref = −35 dB has been chosen as

reference.

In Figure 3, the difference patterns synthesized with theGS andRES algorithms are compared

with that shown in [23]. Moreover, the corresponding sub-array grouping and weights are given

in Tab. II. Both theGS andRES techniques outperform theSA-based solution in terms of the

maximum value the sidelobe level (SLL(SA)
opt = −19.74 dB [23] vs. SLL(GS)

opt = −25.25 dB

andSLL(RES)
opt = −21.31 dB) and the gain sorting strategy allows a three fold reductionof the

side lobe power (i.e.,A
(SA)
sll

A
(GS)
sll

⌋

≃ 3). Nevertheless the solution of theRES has aSLL 4 dB above

that of theGS, it is worth notice that A
(SA)
sll

A
(RES)
sll

⌋

≃ 2. Moreover, by imposing the compromise

patterns having a maximumBW close to that of theSA-based technique (B(SA)
w = 5.5528o),

the solutions from theGS andRES algorithms are shown in Fig. 3 (i.e.,GS∗ andRES∗

- SLLref = −33.75 dB), while the corresponding sub-array configurations and weights are

summarized in Tab. II. In such a situation, only theGS is able to find a better compromise

pattern with aSLL below that in [23] of about0.5 dB (SLL(GS∗)
opt = −20.21 dB - B(GS∗)

w =
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5.4947o; SLL(RES∗)
opt = −19.03 dB - B(RES∗)

w = 5.3558o).

Test Case 2. Simultaneous Global-Synthesis

The second test case is devoted to the comparative assessment when dealing with the simulta-

neous optimization of the sub-array membership and sub-array weights. Towards this purpose,

the proposed method is compared with theGA-based method [14] and theDE algorithm [15].

The first comparison is concerned with theSLL minimization of the difference pattern in a

linear array ofN = 2×M = 20 elements withd = λ/2 inter-element spacing. The optimal sum

excitations have been fixed to generate a linear Villeneuve pattern [5] withn = 4 and sidelobe

ratio of 25 dB. Moreover, the number of sub-arrays has been set toQ = 3 for considering the

same example dealt with in [14]. Concerning theICPM , the reference difference pattern has

been chosen to be equal to a Zolotarev pattern [19] withSLLref = −35 dB.

The results of the synthesis process are shown in Figure 4 where the reference difference pat-

tern and those obtained with theGA [14] and the constrainedEMM [12] are displayed, as

well. Concerning the comparison with theGA-based method, both theGS andRES schemes

outperform the result in [14] (SLL(GA)
opt = −26.18 dB) with a maximum side-lobe level equal

to SLL(GS)
opt = −28.60 dB andSLL(RES)

opt = −28.30 dB, respectively [Tab. III], and similar

bandwidths (B(GA)
w = 5.7934o, B(GS)

w = 5.8004o, andB(RES)
w = 5.8011o). It is interest-

ing to observe that the sub-array configuration determined by bothGS andRES algorithms

(i.e., C = {1, 2, 0, 3, 3, 3, 3, 0, 2, 1}) is the same obtained in [14], but the sub-arrays weights

are different (W(GA) = {0.3260, 0.6510, 1.2990}, W
(GS) = {0.2456, 0.6018, 1.2580}, and

W
(RES) = {0.2408, 0.6018, 1.2531}). Such an event is due to the fact that in [14] the sub-

array gains are part of the optimization process, while in the ICPM-based method they are

analytically computed once the sub-array configuration hasbeen found. This allows a reduc-

tion of the number of unknowns (i.e., only the aggregations instead of weights and aggregations)

and, indirectly, of the possibility the solution being trapped in local minima of the cost function.

As far as the computational costs are concerned, thanks to the reduction of the number of

possible aggregations (U (GA) = 310 vs. U (ess) = 36) and the searching limited to the sub-

array membership, the number of iterations needed for reaching the final solution turns out to
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be significantly lowered (I(GS)
stat = I

(RES)
stat = 3 vs. I(GA)

stat = 500 [14]) with a huge computational

saving (T (ICPM) < 0.085 [sec]).

In order to obtain a different trade-off between sidelobe level and beamwidth, exploiting the

flexibility of the proposed method, a different reference pattern could be chosen (as highlighted

through the analysis inSect. 3.1). As an example and for a further comparison now with an-

other “optimal matching” technique instead of theGA, let us relax the requirement on theSLL

and request theBW of the compromise patterns being as close as possible to thatof the con-

strainedEMM [12]. Towards this aim, a Zolotarev pattern [19] withSLLref = −18.87 dB

has been used as reference difference pattern. The synthesized beam patterns are shown in

Figure 5. As far as the main lobe is concerned, the beamwidth of theGS∗ pattern is narrower

(B(GS∗)
w = 4.5961o) than that of the unconstrainedGS and very close to that byMcNamara[12]

(B(Const−EMM)
w = 4.6090o). On the other hand, as expected, the performances in terms of SLL

get worse (−17.25 dB vs.−28.60 dB), but they are still better than that of theSLL-constrained

EMM (Tab. III). Concerning theRES-based method, although the trade-off solution has nar-

rower beamwidth and higher sidelobes, it has not been possible to fit the bandwidth requirement

(i.e.,B(RES)
w > B(Const−EMM)

w - Tab. III).

The second example addresses the same problem considered in[15][17] concerned with a20-

elements linear array withQ = 4 andQ = 6, where the sum pattern is of Dolph-Chebyshev

type and characterized bySLL = −20 dB. By assuming reference Zolotarev patterns with

SLLref = −30 dB (Q = 4) andSLLref = −35 dB (Q = 6), the optimized difference patterns

are shown in Fig. 6, while the final sub-array configurations and weights are summarized in

Tab. IV.

Thecontiguous partitionmethod is more effective than both theDE-based approach [15] and

the two-step procedure proposed in [17] (indicated in figures and tables asHybrid − SA ap-

proach) in minimizing the level of the sidelobes as graphically shown in Fig. 6 and quan-

titatively confirmed by the behavior of the beam pattern indexes in Tab. V. Similar conclu-

sions hold true in dealing with the required computational burden ( Tab. V) andCPU-time

(T (GS) < 0.2 [sec]).

For completeness, theBw-constrained problem has been also addressed. Accordingly, theSLL

13



minimization has been performed by requiring a beamwidth value close to that in [15] and [17]

(Tab. V). The patterns computed with the sub-array configurations and weights given in Tab.

IV and synthesized by means of theGS∗ andRES∗ algorithms (Q = 4 - SLLZolotarevref =

−27.50 dB, Q = 6 - SLLZolotarevref = −33.00 dB) are shown in Fig. 6. Moreover, the corre-

sponding pattern indexes are summarized in Tab. V.

3.3 Extension to Large Arrays

The numerical study ends with analysis of the synthesis of large array patterns (M ≥ 50)

where usually local minima problems, unmanageable (or verydifficult) increasing computa-

tional costs, and ill-conditioning issues unavoidably arise. In such a framework, the first exper-

iment is concerned with aN = 2×M = 100 elements array (d = λ/2) with sum pattern fixed

to the Taylor distribution [4] withn = 12 andSLL = −35 dB. For comparison purposes, the

case ofQ = 4 sub-arrays [13]-[15][17] is dealt with. Dealing with such ascenario, theICPM

has been applied by considering a reference Zolotarev pattern [19] with sidelobe level equal to

SLLref = −40 dB. In the following, only the solutions obtained with theGS are reported,

since as shown in Sect. 3.2 the performance of theRES get worse when the number of array

elements increases with respect to the number of sub-arrays(unavoidable for large arrays).

The synthesized difference patterns are shown in Fig. 7, while the sub-array grouping and

weights are given in Tab. VI. By observing both Fig. 7 and Tab.VII, it turns out that theGS

approach outperforms other single-step techniques and, unlike the caseM = 10, its perfor-

mances are quite similar (in terms of sidelobe level) to thatof the two-step method even though

it is much more computationally effective. Moreover, although it achieves the minimum value

of SLL, the corresponding main lobe beamwidth does not significantly differ from that of the

other methods (Tab. VII).

In the second experiment, the same array geometry of the previous case is analyzed, but with

Q = 3 sub-arrays analogous to [14]. The sub-array configuration and weights obtained with

theGS-based strategy are reported in Tab. VIII. Also in this case,theGS difference pattern

presents aSLL lower than that shown in [14] (SLL(GS)
opt = −30.25 vs. SLL(GA)

opt = −29.50)

and confirms its effectiveness in terms of computational resource sinceI
(GA)
stat

I
(GS)
stat

= 250.

14



Finally, the last experiment is concerned with a very large array ofN = 200 elements (d = λ/2).

In such a case, the sum pattern excitations have been chosen to produce a Dolph-Chebyshev

pattern [3] withSLL = −25 dB, while reference difference excitations able to generate a

Zolotarev pattern [19] withSLLref = −30 dB have been assumed. Moreover, the number of

sub-arrays has been setQ = 6.

The beam pattern synthesized with theGS algorithm is shown in Fig. 8. As it can be noticed,

although the ratio between the number of elements and the number of sub-arrays is not negligi-

ble (M
Q
≃ 17), the obtained solution ensures aSLL(GS)

opt = −25.15 dB assessing the reliability

of the proposed method in dealing with large structures, unlike theEMM , which suffers in this

framework from the severe ill-conditioning of the matrix system.

4 Conclusions and Discussions

In this paper, an innovative approach for the synthesis of search-and-track antennas and beam

patterns for monopulse radar applications has been presented. The proposed method consists

of an adaptive searching procedure whose result is a compromise solution as close as possible

to an optimal one in the Dolph-Chebyshev sense, which allowsa satisfactory trade-off between

angular resolution and reduction of noise and interferences effects. In particular, the narrowest

beamwidth and the largest slope around the boresight direction are looked for by applying the

optimal excitation matching method based on the contiguouspartition technique, while the

fulfillment of the requirements on theSLL (or other beam pattern features) is ensured by an

outer iterative loop.

The obtained results have proved the effectiveness of the proposed approach in providing dif-

ference patterns with a satisfactory trade-off among beam pattern features dealing with large

arrays, as well. Although the iterative contiguous partition method is aimed at synthesizing the

“best compromise” matching an optimal (in the Dolph-Chebyshev sense) reference pattern, the

obtained solutions positively compare with state-of-the-art approaches in the related literature

in a number of measures where only theSLL minimization is required, thus showing how the

proposed approach, which is numerically efficient, works sufficiently well. As a matter of fact,

the proposed technique allows one to overcome some drawbacks of both theEMM approach
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proposed byMcNamara(i.e., ill-conditioning and the exhaustive evaluation of the whole set

of aggregations) and the synthesis techniques based on stochastic optimization algorithms (i.e.,

single-objective optimization and low convergence rate when dealing with very large arrays).

For the sake of completeness and to have a complete overview of the comparisons between the

proposed method and the state-of-the-art techniques, Tables IX and X summarize the achieved

performance in terms ofSLL andBw when dealing with the synthesis of small and large arrays.

On the other hand, definite conclusions about the relative performance of theICPM cannot be

drawn from the presented comparisons, since the various examples deal with different synthesis

problems and/or optimization criteria. This means that, depending on the selected feature, the

ICPM performs differently even though keeping a great computational efficiency. Moreover,

since the proposed procedure is an adaptive searching technique, it does not guarantee to always

obtain better solutions than those from global optimization techniques. As a matter of fact, these

latter should outperform any other approach when optimizing a given functional, unless the

optimum is not actually achieved, which is likely to happen when exploiting global optimization

algorithms in large size problems.
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[8] McNamara, D.A.: ’Discretēn-distributions for difference patterns’,Electron. Lett., 1986,

22, (6), pp. 303-304

[9] McNamara, D.A.: ’Performance of Zolotarev and modified-Zolotarev difference pattern

array distributions’,IEE Proc. Microwave Antennas Propagat., 1994, 141, (1), pp. 37-44

[10] Willis, A.J., and Baker, C.J.: ’Approximation to Zolotarevpolynomial ideal difference

beams for linear arrays’,Electron. Lett., 2006, 42, (10), pp. 561-563

[11] Bucci, O.M., D’Urso, M., and Isernia, T.: ’Optimal synthesis of difference patterns subject

to arbitrary sidelobe bounds by using arbitrary array antennas’, IEE Proc. Microwave

Antennas Propagat., 2005, 152, pp. 129-137

[12] McNamara, D.A.: ’Synthesis of sub-arrayed monopulse linear arrays through matching of

independently optimum sum and difference excitations’,IEE Proc. H, 1988, 135, (5), pp.

371-374

17



[13] Ares, F., Rengarajan, S.R., Rodriguez J.A., and Moreno, E.:’Optimal compromise

among sum and difference patterns through sub-arraying’,Proc. IEEE. Antennas Prop-

agat. Symp., Baltimore, USA, July 1996, pp. 1142-1145

[14] Lopez, P., Rodriguez, J.A., Ares, F., and Moreno, E.: ’Subarray weighting for differ-

ence patterns of monopulse antennas: joint optimization ofsubarray configurations and

weights’,IEEE Trans. Antennas Propagat., 2001, 49, (11), pp. 1606-1608

[15] Caorsi, S., Massa, A., Pastorino, M., and Randazzo, A.: ’Optimization of the differ-

ence patterns for monopulse antennas by a hybrid real/integer-coded differential evolution

method’,IEEE Trans. Antennas Propagat., 2005, 53, (1), pp. 372-376

[16] D’Urso, M., and Isernia, T.: ’Solving some array synthesis problems by means of an

effective hybrid approach’,IEEE Trans. Antennas Propagat., 2007, 55, (3), pp. 750-759

[17] D’Urso, M., Isernia, T., and Meliadò, E.F.: ’An effective hybrid approach for the optimal

synthesis of monopulse antennas’,IEEE Trans. Antennas Propagat., 2007, 55, (4), pp.

1059-1066

[18] Fondevila, J., Brégains, J.C., Ares, F., and Moreno E.: ’Application of the time modulation

in the synthesis of sum and difference patterns by using linear arrays’,Microwave Optical

Technol. Lett., 2006, 48, (5), pp. 829-832

[19] McNamara, D.A.: ’Direct synthesis of optimum difference patterns for discrete linear

arrays using Zolotarev distribution’,IEE Proc. H, 1993, 140, (6), pp. 445-450

[20] Massa, A., Pastorino, M., and Randazzo, A.: ’Optimization of the directivity of a

monopulse antenna with a subarray weighting by a hybrid differential evolution method’,

IEEE Antennas Wireless Propagat. Lett., 2006, 5, (1), pp. 155-158

[21] Isernia, T., Ares-Pena, F., Bucci, O.M., D’Urso, M., Gomez,X.F., and Rodriguez, A.: ’A

hybrid approach for the optimal synthesis of pencil beams thorugh array antennas’,IEEE

Trans. Antennas Propagat., 2004, pp. 2912-2918

18



[22] Fisher, W.D.: ’On grouping for maximum homogeneity’,American Statistical Journal,

1958, pp. 789-798

[23] Ares, F., Rodriguez, J.A., Moreno, E., and Rengarajan, S.R.: ’Optimal compromise among

sum and difference patterns’,J. Electromagn. Waves Applicat., 1996, 10, (11), pp. 1543-

1555

[24] Rocca, P., Manica, L. , and Massa, A.: ’Synthesis of monopulse antennas through iterative

contiguous partition method,’,Electron. Lett., 2007, 43, (16), pp. 854-856

FIGURE CAPTIONS

• Figure 1. Flow chart of theIterative Contiguous Partition Method.

• Figure 2. ICPM Performance Analysis(M = 10, d = λ
2
) - Normalized difference

patterns when (a) Q = 2 , (b) Q = 4, and (c) Q = 7.

• Figure 3. Comparative Assessment(M = 10, d = λ
2
, Q = 3) - Normalized difference

patterns synthesized with theICPM −GS, theICPM − RES, and theSA algorithm

[23].

• Figure 4. Comparative Assessment(M = 10, d = λ
2
, Q = 3) - Reference pattern

(SLLref = −35 dB) and normalized difference patterns synthesized with theICPM −

GS, theICPM −RES, theGA-based method [14], and the constrainedEMM [12].

• Figure 5. Comparative Assessment(M = 10, d = λ
2
, Q = 3) - Normalized difference

patterns synthesized with theICPM −GS, theICPM − RES, theGA-based method

[14], and the constrainedEMM [12].

• Figure 6. Comparative Assessment(M = 10, d = λ
2
) - Normalized difference patterns

synthesized with theICPM−GS, theICPM−RES, theHybrid−SA approach [17],

and theDE algorithm [15] when (a) Q = 4 and (b) Q = 6.
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• Figure 7. Extension to Large Arrays(M = 50, d = λ
2
, Q = 4) - Normalized difference

patterns synthesized with theICPM −GS (SLLref = −40 dB), theSA algorithm [23],

theHybrid−SA approach [17], theGA-based method [14], and theDE algorithm [15].

• Figure 8. Extension to Large Arrays(M = 100, d = λ
2
, Q = 6) - Normalized difference

patterns synthesized with theICPM −GS (SLLref = −30 dB).

TABLE CAPTIONS

• Table I. ICPM Performance Analysis(M = 10, d = λ
2
) - Difference pattern quantitative

indexes and computational indicators for different valuesof Q.

• Table II. Comparative Assessment(M = 10, d = λ
2
, Q = 3, SLLref = −35 dB) - Sub-

array configuration and weights synthesized with theICPM − GS and theICPM −

RES.

• Table III. Comparative Assessment(M = 10, d = λ
2
, Q = 3) - Quantitative indexes of

the reference pattern (SLLref = −35 dB) and of the difference patterns synthesized with

theICPM − GS, theICPM − RES, theGA-based method [14], and the constrained

EMM [12].

• Table IV. Comparative Assessment(M = 10, d = λ
2
) - Sub-array configuration and

weights synthesized with theICPM − GS and theICPM − RES, whenQ = 4 and

Q = 6.

• Table V. Comparative Assessment(M = 10, d = λ
2
) - Quantitative indexes and computa-

tional indicators for the solutions obtained with theICPM − GS, theICPM − RES,

theHybrid− SA(3) approach [17], and theDE algorithm [15] whenQ = 4 andQ = 6.

• Table VI. Extension to Large Arrays(M = 50, d = λ
2
,Q = 4) - Sub-array configuration

and weights synthesized with theICPM −GS.

(3) Istat = 25 indicates the number ofSA iterations (i.e., first step), no indications on the convex program-
ming procedure (i.e., second step) are available.
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• Table VII. Extension to Large Arrays(M = 50, d = λ
2
, Q = 4) - Quantitative indexes

and computational indicators for the solutions obtained with theICPM−GS (SLLref =

−40 dB), theHybrid − SA(3), theSA algorithm [23], theGA-based method [14], and

theDE algorithm [15].

• Table VIII. Extension to Large Arrays(M = 50, d = λ
2
, Q = 3) - Sub-array configura-

tion and weights synthesized with theICPM −GS.

• Table IX. Resume(M = 10, d = λ
2
) - Quantitative indexes for the solutions obtained

with theICPM based approaches and state of the art techniques.

• Table X. Resume(M = 50, d = λ
2
) - Quantitative indexes for the solutions obtained with

theICPM based approaches and state of the art techniques.
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Q = 2 Q = 4 Q = 7

e 1 2 3 1 2 3 1 2 3

SLL
(e)
ref −25 dB −30 dB −40 dB −25 dB −30 dB −40 dB −25 dB −30 dB −40 dB

Aslo 0.1773 0.1865 0.1953 0.1759 0.1840 0.1981 0.1753 0.1844 0.1955

Bw [deg] 4.9239 5.2356 5.7661 4.8910 5.1622 5.7976 4.8547 5.1555 5.7217

ψ1 0.6458 0.7474 0.8463 0.6226 0.7043 0.8653 0.6197 0.6753 0.8368

Asll 0.1761 0.1722 0.1333 0.1112 0.0780 0.0375 0.0938 0.0495 0.0179

SLL
(e)
opt −14.80 −16.70 −16.20 −15.80 −22.30 −26.90 −24.35 −28.80 −31.30

I
(e)
stat 2 2 2 2 2 2 3 2 2

Ψ
(e)
opt 3.81 × 10−1 4.62 × 10−1 2.76 × 10−1 9.53× 10−2 1.10 × 10−1 3.89× 10−2 2.29 × 10−3 9.93 × 10−4 5.45 × 10−3

U (ess) 9 84 84

U 1024 1048580 2.8247× 108
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M = 10 C
(GS)
opt = C

(RES)
opt 1 1 2 2 2 3 3 3 3 0

Q = 3 W
(GS)
opt 0.2804 0.5839 1.3971

W
(RES)
opt 0.1943 0.4505 1.3897

Q = 3 W
(GS∗)
opt 0.4618 2.1607 2.9448

W
(RES∗)
opt 0.2833 1.1443 1.3971

Tab. II - P. Roccaet al., “Compromise sum-difference optimization ...”
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Aslo Bw [deg] Asll SLL

Reference Difference [19] 0.1933 5.7668 0.0273 −35.00

GS 0.2046 5.8004 0.0382 −28.60

RES 0.2046 5.8011 0.0378 −28.30

Reference Difference∗ [19] 0.1645 4.4747 0.1526 −18.87

GS∗ 0.1690 4.5961 0.1453 −17.25

RES∗ 0.1759 5.1615 0.1530 −17.34

GA Optimization [14] 0.2038 5.7934 0.0440 −26.18

Constrained EMM [12] 0.1715 4.6090 0.2223 −16.50

Tab. III - P. Rocca et al., “Compromise sum-difference optimization ...”
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M = 10 C
(GS)
opt 1 2 3 4 4 4 4 4 3 1

C
(RES)
opt 1 2 3 4 4 4 4 3 3 1

C
(GS∗)
opt 1 2 3 3 4 4 4 4 3 1

C
(RES∗)
opt 1 2 3 3 4 4 4 4 3 2

Q = 4 W
(GS)
opt 0.2201 0.4601 0.6932 0.9568

W
(RES)
opt 0.1837 0.4549 0.7423 0.9080

W
(GS∗)
opt 0.3593 0.7882 1.5351 2.0122

W
(RES∗)
opt 0.1564 0.3851 0.7732 1.0104

M = 10 C
(GS)
opt 1 2 3 4 5 6 4 3 2 1

C
(RES)
opt 1 3 4 5 6 6 6 5 4 2

C
(GS∗)
opt 1 2 3 5 6 6 6 4 3 1

C
(RES∗)
opt 1 3 5 6 6 6 6 5 4 2

Q = 6 W
(GS)
opt 0.1714 0.5075 0.7332 0.9083 0.9901 0.9926

W
(RES)
opt 0.1632 0.2613 0.4606 0.7021 0.8831 1.0049

W
(GS∗)
opt 0.1876 0.4765 0.6894 0.8189 0.8914 0.9857

W
(RES∗)
opt 0.1685 0.2024 0.4765 0.6321 0.7576 0.9579

Tab.
IV
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Aslo Bw [deg] Asll SLL U Istat

Q = 4

Reference Difference [19] 0.1786 5.1496 0.0510 −30.00 − −

GS 0.1809 5.2247 0.0564 −25.40 84 2

RES 0.1894 5.3228 0.0537 −25.01 84 2

Reference Difference∗ [19] 0.1803 5.0000 0.0694 −27.50 − −

GS∗ 0.1863 5.1449 0.0748 −24.30 84 2

RES∗ 0.1742 4.9585 0.0936 −20.00 84 1

Hybrid− SA [17] 0.1844 5.1442 0.0919 −24.10 O
(

103
)

25

DE Algorithm [15] 0.1878 5.1834 0.1107 −21.30 O
(

103
)

9

Q = 6

Reference Difference [19] 0.1929 5.4188 0.0281 −35.00 − −

GS 0.1948 5.4928 0.0291 −31.56 126 2

RES 0.1855 5.1728 0.0500 −28.09 126 2

Reference Difference∗ [19] 0.1897 5.3138 0.0355 −33.00 − −

GS∗ 0.1893 5.2694 0.0356 −29.52 126 2

RES∗ 0.1848 5.3827 0.0446 −27.35 126 2

Hybrid− SA [17] 0.1884 5.2615 0.0439 −29.50 O
(

105
)

25

DE Algorithm [15] 0.1942 5.3872 0.0727 −21.66 O
(

105
)

7
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M = 50 C
(GS)
opt 11112223333304444444444444444444303333232222211111

Q = 4 W
(GS)
opt 0.1624 0.5162 0.8579 1.1736
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Synthesis Approach SLLopt Asll Bw [deg] Aslo U Istat T [sec]

SA Optimization [13] −25.56 0.0432 1.0745 0.0329 O
(

1030
)

− −

GA Optimization [14] −31.00 0.0504 1.3585 0.0529 O
(

1030
)

500 ∼ 15

DE Algorithm [15] −30.00 0.0361 1.3256 0.0361 O
(

1030
)

804 ∼ 20

Hybrid− SA Method [17] −32.00 0.0305 1.2776 0.0401 O
(

1030
)

25 −

GS −32.10 0.0363 1.2952 0.0444 18424 5 1.0785
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M = 50 C
(GS)
opt 11111222202000333333333333303300002222222211111111

Q = 3 W
(GS)
opt 0.2437 0.7079 1.0976
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M Q Synthesis Approach SLLopt [dB] Bw [deg] Fig. ♯ Tab. ♯

10 3 SA [13] −19.74 5.5528 3 −

ICPM −GS∗ −20.21 5.4947 3 −

ICPM −RES∗ −19.03 5.3558 3 −

10 3 GA [14] −26.18 5.7934 4 III

ICPM −GS −28.60 5.8004 4 III

ICPM − RES −28.30 5.8011 4 III

10 3 Constrained EMM [12] −16.50 4.6090 5 III

ICPM −GS∗ −17.25 4.5961 5 III

ICPM −RES∗ −17.34 5.1615 5 III

10 4 DE [15] −21.30 5.1834 6(a) V

Hybrid− SA [17] −24.10 5.1442 6(a) V

ICPM −GS∗ −24.30 5.1449 6(a) V

ICPM −RES∗ −20.00 4.9585 6(a) V

10 6 DE [15] −21.66 5.3872 6(b) V

Hybrid− SA [17] −29.50 5.2615 6(b) V

ICPM −GS∗ −29.52 5.2694 6(b) V

ICPM −RES∗ −27.35 5.3827 6(b) V

10 8 DE [15] −21.59 6.3820 3 [24] I [24]

Hybrid− SA [17] −36.50 5.8202 3 [24] I [24]

ICPM −GS −40.85 5.8605 3 [24] I [24]

Tab. IX - P. Roccaet al., “Compromise sum-difference optimization ...”
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M Q Synthesis Approach SLLopt [dB] Bw [deg] Fig. ♯ Tab. ♯

50 3 GA [14] −29.50 1.2753 − −

ICPM −GS −30.25 1.2880 − −

50 4 SA [13] −25.56 1.0745 7 V II

GA [14] −31.00 1.3585 7 V II

DE [15] −30.00 1.3256 7 V II

Hybrid− SA [17] −32.00 1.2776 7 V II

ICPM −GS −32.10 1.2952 7 V II

Tab. X - P. Roccaet al., “Compromise sum-difference optimization ...”
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