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Abstract

In this paper, the performances of thinned arrays based amogtl Difference Sets are
analyzed in the presence of mutual coupling effects. Thengéy under test is composed
by thin dipole elements and the arising mutual interactiaressmodeled by means of the
induced EMF method. To assess the robustness of Ih8-based thinning technique also
in such a non-ideal case, an extensive numerical analysiariged out by considering

several test cases characterized by different apertues,siattice spacings, and thinning
factors. The obtained results show that the peak sideldiaaers deduced in the ideal

case still keep their validity although, as expected, arigion usually arises due to the

mutual coupling.
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Coupling, Sidelobe Control.



1 Introduction

Large antenna arrays providing low sidelobes are of grdatest in several applications in-
cluding radar, microwave imaging, remote sensing, raditoasmy, satellite and ground com-
munications [1]. In such a framework, filled arrangemenésdraracterized by very high costs,
weight, and power consumption and usually require compdexiihg network. On the other
hand, removing some elements from the array generallyase®the peak sidelobe level{ L)

of the radiated pattern. As a consequence, suitable thgrteichniques have been introduced
to reduce the array elements while obtaining I6W L values [2] andseveral approaches have
been proposedRandomly thinned arrays have provided predictable re$8]tand improved
PSLs with respect to deterministic techniques [4]. Stochaapiproaches based on genetic
algorithms (GAs) [2][5][6][7][8][9][10][11][12][13], simulated anneling (S A) [14][15], pat-
tern search[16], and particle swarm optimizefs5(0s)[17][18] have been successfully applied
to reach enhancef? S L performances although their computational complexitydigpgrows
with the aperture size and no predictors are availablepoiori estimate their performances.
On the contrary, thinning techniques exploiting differersets 0Ss) [19] allow one to obtain
low PSLs and predictable results in a very effective fashion. Uniaaitely, only a limited set of
thinning factors and aperture sizes [19] can be dealt wittabse of the reduced set of available
sequences. In order to enlarge the set of admissible arrafjgcoations almost difference sets
(ADSSs) [20] or their subsets [21][22] have been recently empdiogethin linear geometries.
In [23], it has been shown that tieS L of ADS-baseddeal arrays!) is (a) a-priori bounded,
(b) comparable to that oD .S-based designs, and)(significantly better than that of random
arrangements [23]. However, it is worth noticing that atialipounds for theP S L behavior are
available only forideal arrays, while neithera-priori estimates exist nor simple extensions of
the ADS array theory have been deduced in the presence of non-@giaktors when mutual
coupling (M C) effects between the array elements take place.

In this paper, the performances diDS-based linear thinned arrays are analyzed in the pres-

ence of M C effects to assess the reliability of th&S L bounds yielded in [23]. The paper

(1) In this paper, the terrideal array indicates an array of identical isotropic elements withautual coupling
effects.



is not aimed at defining an optimal synthesis strategy forideal arrays, but to provide to
the antenna designer an indication on the robustness ofl ih§-based thinning technique.
Towards this end, the paper is organized as follows. In S&cthe ADS-based thinning ap-
proach is summarized and some details on the consider€dmodel are provided. Section
3 is concerned with an extensive numerical analysis deviateshow the dependence of the
PS L performances of non-ideal arrays on the aperture sizentee-€lement spacing, and the

thinning factor. Finally, some conclusions are drawn (Sgc.

2 Mathematical For mulation

Let us consider a one-dimensional regular latticeVopositions spaced by wavelengths X
being the free-space wavelength). The power pattern edlitom the linear thinned array
defined over such a lattice is equal to [1]

N— 2

Z n)exp (j2mndu) 1)

whereu = sin(d) andw(n) € {0,1} is the excitation coefficient of the array element located
at then-th location of the lattice whose binary value is defined adicwy to the ADS-based
guideline [23]:

1 ifneD

w(n) = R )
0 ifn¢D.

D2 {d,€Z", d, #d, k,1,h=0,..,K — 1} being a(N, K, A, t)-ADS. More in detail, an
ADS is aK-subset ofZ" characterized by a three-valued cyclic autocorrelatigi[5]

K T=20
N

Aw(g):Zw(n)w[(n+7)modN]: A fortvaluesoft € [1,N—1] - (3)
n=0

A+1 elsewhere

As an example, let us consider this, 8,3,4)-ADS in [20], D, = {2,3,4,5,7,12, 14,15},
and the corresponding arrangema&it(D,) = {001111010000101 1} whosen-th entry



is equal tow (n),n =0, ..., N — 1. In this caseA,, (D) results

8 7=0
Ay(D)=4¢ 3 7=4,6,10,12
4 7=1,2,3,5718,911,13, 14,15

The exploitation of thed D S properties guarantees that the arising one-dimensioaal afray

satisfies the following set of inequalities [23]

PSLyn < PSLpw < PSLoy < PSLyp < PSLyax (4)

miny K—A—1+1/H(N—t) K-A-1-/*¢=)
where PSLyax = E{(I) }(N DA+K—1+N—t’ PSLyin = (N—I)A—‘,-K—Yj-]\;)—t’ PSLyp =

EE {0, PSLpw = €, E {®7"} ~ 0.8488+1.128 logioN. Moreover,PS L, = min, {PSL (Q(")> }
D) being the cyclic shift of the sequeni® D £ {d,(f) eZN, k=1,..K:d” =

(dp +0)mod N}, and PSL (Q“”) = m”“%g(gp(“)}. As regards toR,,, it indicates the
mainlobe region [19] defined d8,, = {—UM <u<Upy, Uy=

[23].

sz f wheres 2 rmaz, {PP (34)}
The inequality in (4) holds true for any D S-based ideal arrangement provided thats suf-

ficiently large [23] andd is below1 (e.g.,d < 0.85) since whend — 1 a grating lobe nec-

essarily appears. On the other hand, it should be obsenadthindications are available

or can be envisaged starting from (4) on the behavioA 6fS-based arrays in the presence

of MC effects. As a matter of fact)/C cannot be analytically taken into account to eas-

ily derive an extended version of (4) since (3) holds trueyonlideal conditions. Therefore,

a numerical analysis is mandatory to investigate on thalgity and the robustness of the

PSL bounds derived in [23]. Towards this end, the mutual cogphimodel presented in [26] is
adopted. The peak sidelobe levelab S arrays in the presence of mutual coupling is defined as

max MC u _ 2
PSLMC <D(”)> £ “g,}i’lﬁi{i}(}o) W} where PPMC () = [N LwMC (n)eap (j2mndu)

The mutual coupling effects are modeled through the peetlidoray vectoW ¢ (D) [26]
given by
WY (D) =7, (Z+ Z:1)' W (D) (5)



where Z;, is the load impedance at each element of the arrayZargdthe mutual impedance
matrix of (N — 1) x (N — 1) entries computed through the induced EMF method [1] once the

array elements are chosen.

3 Numerical Analysis

In this section, the performances dfDS-based arrays in the presence of mutual coupling

effects are discussed to numerically assess whether tae/ide. bounds are still valid when

non-ideal radiators are taken into account. Towards this dipole elements of length= %

and thicknesg = 5 x 10~* have been considered. Accordingly, the dipole self-impedaurns

out to be equal t&/;; ~ 73.12 + j42.2 [Q],i = 0, ..., N — 1, [1] while the mutual impedances

assume the following expression [1]

A . .
n [T A e IkRy  gmIkR- S
Zij:]E/_ s1n [k (Z—|Z|)} { R, + A dz, 1 # j, i,j5 € [0, N — 1],

A
4

n andk being the free-space impedance and the wavenumber, reghecMoreover, R, =
\/ 0%+ (2 £ %)2 andd,; is the distance between the elemerasd;.

The first experiment is aimed at analyzing the behavior oftlid. of ADS sequences with and
without mutual coupling in correspondence with a half-wavelernagtiice (@ = %) and different

number of elements. Figure 1 gives the plot of the optim&l. value, defined as follows
PSLayy (D) = mingepn—1 {PSL (g@)} ,

for different values of the thinning factor, £ £. As it can be observed, theSLs of ADS
arrays affected by mutual coupling still satisfy (4) whatethe indexesV andv (PSLpy <

PSLYY < PSLyp) although their values increase and usually result clastive upper bound

thresholdPS Ly p asv grows [Fig. 1€) vs. Fig. 18)]. As a matter of fact, the impact of mutual

coupling effects reduces when the average spacing betvajaceat array elements,, ~ <,

v

enlarges (i.e.y — 0). Such an event is further confirmed by the behavior of thé sédelobe



level versusr as shown in Fig. 2§ = 149). As expected, the optimal shift

Oopt = ATy {maon[O,N_l] [PSL (D(”)>] }

is kept unaltered when = 0.25 [Fig. 2(@)] since the mutual coupling effects modify only
to a small extent the power pattern of the ideal array [Figd)]2(Otherwise,o,,; # aé‘gf
whenr = 0.5 [Fig. 2(b)] andv = 0.75 [Fig. 2(c)] since the optimal patterns significantly
differ. Similar conclusions hold true also when dealinghwérger apertures as shown in Fig. 3
(N = 1789).

It is also worth noticing that, despite tli¢C' and whatever the dimension of the array lattice,
more than one shift presentsi5 L within the ideal bounds as for ideal arrays. However, the
number of the optimal shifts reduces as pointed out in Fighére the percentages of optimal
shifts with, Q¢ and without mutual coupling}, versus the aperture size are reported.
Concerning lattices withd £ 0.5, the second experiment deals with an arrayNof 150 loca-
tions and it considers differentvalues. Figure %) gives the plots o’ S L, andPSLf)‘I{f ver-
susd. For completeness, the number of the corresponding opshitilin the rangg0, N — 1]

is reported [Fig. 3§)], as well. As it can be noticed?SLg‘gtC still satisfies (4) [Fig. 5)] and its
deviation from the ideal level turns out to be greater fogéarthinning values, while negligible
variations occur wherr = 0.25 except ford < 0.45. In this latter case, theé/C effects im-
pact more significantly since the average inter-elememtadce turns out to be similar to that of
filled configurationsOn the other hand, Figure&®(points outthat usuallyPSL,,: < PSL%E

although there exists a small rangedfalues for WhiChPSLé\ZtC < PSL,,. Such a situ-
ation takes place whem > 0.5 in correspondence with a higher variability of the phases of
the non-ideal weights whesreduces. Such a circumstance probably provides a consguct
interference in minimizing thé”S L value. For illustrative purposes, Figure 6 shows a sample

of the behavior of the phases of the coefficiemté“ (n), n = 0, ..., N — 1, [Figs. 6@)-6(c)] as

A varp {éw M

c n .
well as the plot of the normalized variange % [Fig. 6(d)] whenv = 0.5 and
for different lattice spacings.
As far as the optimal shift is concerned and unlike the ideakgthe value af /¢ continuously

opt

changes in non-ideal arrays whatever the lattice disﬁ[ibL[bé‘gf VS. o, - Fig. 50)] since a

7



change of thel value does not only modify the visible range, but also brehkssymmetry of
the power pattern with respect to the axisiat © = 40.5. For illustrative purposes, Figure 7
shows the plots of power patterns relateatg, | ,_, - [Fig. 7(@)] and aé‘gﬂ 4—o.5 LFig. 7(0)] for
different values ofi.

As expected, a similar behavior of/ still verifies when varying the array aperture as shown
in Fig. 7(@) for a thinningr = 0.5. Moreover, Figure #) further confirms that thé’S L of an
ideal array is usually smallerthathLé‘gf except for a limited range, whose upper threshbid
turns out to be inversely proportional to the number of tatfiocationsV [Fig. 7(b)]. Likewise
the previous experiment, @ value greater (smaller) tham 2.0 corresponds to the condition
A < 0(A >0)[Fig. 8-d = 0.25], beingA £ PSLYC — PSL,y.

Finally, the last experiments are devoted to analyze theaanpf M/ C effects onADS-based
arrays and state-of-the-art thinning techniques. Firsgraparison with stochastic techniques
is dealt with. Towards this end, a benchmark arrangement ef 200 elements is considered.
Figure 9 shows the peak sidelobe levels synthesizeddutkoptimized thinned arrays [5][27]
with and withoutM/ C' as well as the corresponding values obtained with simil&xS's arrays
[20]. The idealAD.S bounds whem = 0.5 are also reported. As it can be observed, AleS-
based arrays favourably compare with state-of-theattdesigns despite the slightly smaller

aperture {97 vs. 200) and thinning factot”. Moreover, it worth noticing that the impact of

MC more significantly affects theiPSL (A ps = —1.08 vs. Ag{g“pt’”% = —0.67 and
AlVele 19961 () 40) because of the “regularity” ol DS locations.

As far as the comparison witSs is concerned, the results summarized in Tab. | indi-
cate a greater robustness to mutual coupling effectd 06 designs compared tD S arrays
(Aaps]ynos = —0.72VS. Aps| g5 = —0.80 @nd Aups],ng7s = —0.74VS. Aps], 75 =
—0.77), except for very highly thinned arraysNuips|,~gos = —0.77 VS. Aps], 005 =
—0.31). Such a positive feature is probably due to the enlargedosurof degrees of freedom

of ADS sequences and related autocorrelation functions [23].

(2) Some research activities in the framework of combinataniathematics (out-of-the-scope of the present
paper as well as of the focus of tHeEE Trans. Antennas Propagat.) are currently devoted to complete the set of
ADS sequences in explicit form and, when available, they withala more fair comparison.



4 Conclusions

In this paper, the validity ofPSL bounds deduced in [23] for idead DS arrays has been
assessed in the presence of mutual coupling effects. Amsxgenumerical analysis has been
carried out to evaluate thBSL performances oADS arrangements in correspondence with
different lattice spacings, thinning factors, and apertlimensions. Representative results have
been also provided in order to compare the sensitivity/t0 of ADS-based thinned arrays with
that of state-of-the-art approaches suclasthinning and stochastically-optimized techniques.

Such an analysis has pointed out that

e the values ofPSL of ADS-based arrays in the presenceMiC' comply with the ideal
bounds in [23] whatever the thinning value (Fig. 1), the yamperture (Fig. 1), and the
lattice spacing [Fig. &) and Fig. 84)];

e the differences betweeﬁSLg‘gtC andPSL,, are more significant whed),, reduces [Fig.
2(f) and Fig. 3f)]. In such a case, the optimal shift of the generatih§ S sequence
changes when th&/C is present ¢,,; # o)C) [Fig. 2(c) and Fig. 3¢)]. Otherwise,

opt

PSLMC ~ PSL,, [Fig. 2(a) and Fig. 38)] ando,,; = o€ [Fig. 2(d) and Fig. 3¢)];

opt opt

e alarger number of evaluations might be necessary to findgtimal shifto—%f when the

MC'is not negligible, although this number still remains beldwWFig. 4];

e the impact ofM C turns out to be more/less significant when dealing withS geome-

tries respect to the case DS arrays/stochastic designs (Fig. 10).
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FIGURE CAPTIONS

e Figure 1. [d = 0.5] - Plots of thePSL of ADS-based arrays with and without/ C'
versusN when @) v = 0.25, (b) v = 0.5, and €) v = 0.75.

e Figure2. [N =148, d = 0.5] - Plots of PSL <Q(")) andPSLyc (Q(")) versuss (a)-
(c) and beam patterns generated by the optimal shifisands ! (d)-(f) whenv = 0.25
@)(d), » = 0.5 (b)(e), andv = 0.75 (c)(f).

e Figure3. [N = 1789, d = 0.5] - Plots of PSL (Q(")) and PSLyc (Q(")) versus
o (a)-(c) and beam patterns generated by the optimal shiftsandc2.¢ (d)-(f) when

opt

v = 0.25 (@)(d), » = 0.5 (b)(e), andv = 0.75 (c)(f).

e Figure 4. [d = 0.5] - Plots of Q and QM“ versusN for different thinning factors,

v =0.25,0.5, 0.75.
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e Figure5. [N = 148] - Plots of PSL,, (&) and shift number,,, (b) versus the inter-

element distancé for different thinning indexes( = 0.25, 0.5, 0.75).

e Figure 6. ADS-based Array (148, 74, 36, 37) [N = 148, v = 0.5] - Plots of the phases
of the array weights whemj d = 0.25, (b) d = 0.5, and €) d = 0.75. Normalized

varianceV andA value versug (d).

e Figure 7. ADS-based Array (148, 74, 36, 37) [N = 148, v = 0.5] - Power patterns

generated byd) 0 = 04|, = 24 and Q) o = oMC = 83 in correspondence

opt ‘d:O.S

with different values ofi.

e Figure 8. [v = 0.5] - Plots of PSL,,; (a) and shift numbep,,; (b) versus the inter-

element distanceé for different aperturesN = 58, 148, 293, 1354).
e Figure9. [d = 0.25, v = 0.5] - Normalized varianca&r andA value versusV.

e Figure 11. Comparative Analysis[N ~ 200] - PSL performances ofr A-based arrays

andADS arrangements.

TABLE CAPTIONS

e Tablel. Comparative Analysis- PSL values fromD S-based and D S-based arrays.
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N v PSL,, [dB] PSLé‘;ItC [dB]
197 | = 0.25 —13.22 —12.91
DS | 107| =05 —16.61 —15.81
197 | = 0.75 —22.96 —22.19
197 | = 0.25 —13.56 —12.79
ADS | 107 | = 0.5 —15.95 —15.23
197 | = 0.75 —22.57 —21.83

Tablel - G. Oliveri et al., “On the impact of mutual coupling ...”
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