UNIVERSITY
OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38123 Povo — Trento (ltaly), Via Sommarive 14
http://www.disi.unitn.it

AN EXCITATIONMATCHING PROCEDURE FOR SUB-ARRAYED
MONOPULSE ARRAYS WITH MAXIMUM DIRECTIVITY

L. Manica, P. Rocca, and A. Massa

February 2009

Technical Report # DISI-11-038







An Excitation M atching Procedurefor Sub-arrayed Monopulse

Arrayswith Maximum Directivity

L. Manica, P. Rocca, and A. Massa

ELEDIA Research Group

Department of Information and Communication Technology,

University of Trento, Via Sommarive 14, 38050 Trento - Italy

Tel. +39 0461 882057, Fax +39 0461 882093

E-mail: andrea.massa@ing.unitn.it,
{luca.manicapaolo.rocca@ dit.unitn.it

Web-site:http://www.eledia.ing.unitn.it



An Excitation M atching Procedurefor Sub-arrayed Monopulse

Arrayswith Maximum Directivity

L. Manica, P. Rocca, and A. Massa

Abstract

In this paper, the maximization of the directivity of compnsge difference patterns in sub-
arrayed monopulse linear array antennas with optimum sudenwaddressed by means
of a two-stage excitation matching procedure. The knowdenfgthe independently opti-
mum difference excitations, which provide the maximum dikéty, is exploited with an
efficient matching technique based on the contiguous jgartihethod. Simple and reliable
compromise solutions, characterized by a reduced conmyplasi well as easier antenna
manufacturing, are synthesized to assess the effectwarfig¢be proposed method also in

comparison with state-of-the-art methods devoted to trextivity maximization.

Key words: Monopulse Antennas, Array Antennas, Sum and DifferendeePaSynthesis,

Directivity Maximization.



1 Introduction

Monopulse tracking systems require antennas that geraratest two different patterns, namely
the sum beam and the difference one. Towards this end,@ffeolutions might be taken into
account depending on the trade-off among the requirementptimum sum and difference
modes, since some constraints are incommensurable [1]{edyiced circuital complexity, low
sidelobe levels{ L Ls), high directivity, low costs]. In the last years, arrayerias have been
usually used since they are easy to built and the lobes ofdhergted patterns can be electron-
ically steered, thus avoiding the use of mechanical systémpssitioning.

As far as the feeding network is concerned, compromise isokitare generally adopted be-
cause of the limited available space [2]. For such a reastmagaying techniques have been
introduced [3]. Sub-arraying strategies are aimed atfgatgs one or more user-defined con-
straint/s on some pattern features with a reduced complerd a simplification of the antenna
manufacturing and assembly with respect to the two-modkdd architecture, which provides
independent excitations for the sum and difference modep@fation. In the literature, differ-
ent approaches have been proposed to properly addresstierprof synthesizing the optimal
compromise between sum and difference patterns to obtaap@mum sum mode and d&ést
compromisédifference one. They consider optimization techniqugg$4 as well as excita-
tion matching methods [3][9]. Although optimization tediures can be simply adapt to opti-
mize one or more (at the price of higher computational coriplepattern features, the major
part of the contributions have taken into account the mination of theS L L [4]-[6][8]. Only

in [7], the approach previously presented in [6] was extdridenaximize the directivity of the
compromise pattern. Within this framework, the ContiguPastition Method ¢ P M) [9] has
shown its effectiveness and versatility in determiningoast compromisdlifference pattern
close as much as possible to the optimum in the Dolph-Chetwysénse [10] (i.e., narrowest
first null beamwidth and largest normalized difference slop the boresight for a specified
sidelobe level) [9] as well as the optimization of some patteatures (e.g.5LL [11]). In
order to further assess the reliability and to point out tagilfiility of the C' P M, the approach
is now extended to the optimization of the directivity of tmmpromise difference pattern as

in [7].



The paper is organized as follows. A brief description of tiiethematical formulation of the
C'PM as well as of its customization to the maximization of thediivity is outlined in Sect.

2. For comparison purposes, some representative resulteiceed with a set of numerical
experiments used in the literature as benchmark test casgeesented and discussed (Sect.

3). Eventually, some conclusions are drawn (Sect. 4).

2 Mathematical Formulation

Let us consider a linear array withi = 2 x M elements uniformly-spaced peing the inter-
element distance). The sum mode and the difference one sa@aed by means of a set of
symmetric excitation coefficients = {s,, = s_,,; m = 1,..., M} and an anti-symmetric one
A={d,=—d_n; m=1,.., M}, respectively.

When sub-arraying techniques [3] are used (Fig. 1), oneefitlo modes is obtained from the
other (optimum) by defining a suitable sub-array configoratind the corresponding weights
to satisfy the user-defined requirements. Starting fromexdfand pre-optimized sum mode

the compromise difference pattethis determined as follows

B ={by=—b_p| by =smOmqwy; m=1,...,M;qg=1,...,Q} Q)

wherew, (¢ = 1, ..., Q) is theg-th sub-array weight andl,,, is the Kronecker delta function [if
¢m = q thené,,, = 1, elses,,, = 0]. Furthermorec,, € [1, Q] represent a positive integer
value indicating the membership of theth element to a sub-array ardgl is the number of
sub-arrays.

Likewise in [7], the problem at hand is formulated as follosptimizing the sub-array config-
uration and the corresponding weights in order to syntheesizompromise difference pattern
with maximum directivity To properly address such a problem, sinaethe C'PM is an ex-
citation matching method aimed at reproducing a refereatiem andl§) analytical solutions
exist to yield a difference pattern with maximum direcyvfe.g., see [12][13] for continuous
line sources and [14]-[16] when dealing with discrete asjag two-stage procedure is detailed

as follows. Generally speaking, the first stage is devotg@herate, according to the guidelines



in [14], the difference excitation s&%, ... = {A,, = —A_,,; m =1, ..., M} that provides the
reference patteriy (6) with maximum directivityD,,,, = mazy {D (0)} without sidelobe

constraints, bein@ () the directivity function given by

D () = p Lot L1 o (6) F (6) dn}

, 2
S S G} @)

whereF; () = sin [W] j = m,nandG,, = mbd - splemid - syc-
cessively, the”' PM is used to determine the compromise Betlose as much as possible to
the optimal on&),, ... in order to synthesize a patteffy (6) with highest directivity. In more

detail:

e Stage 1 -Computation of the Reference Excitations, A, , ..

As shown in [14], the reference difference gef ... is the solution of the following set of

M equations

M
Z {AnGmn} :Fm (emam)a m = 17-'-7M (3)
n=—M

whered,,... is the angular direction of the maximum directivity (i&,.. = arg {mazq [D (0)]}).
Unfortunately, the directiof,,,, is nota-priori known and it is computed according to

an iterative procedure [14]being the iteration index. Starting from a trial vakie- ¢

(z = 0) equal to the angular direction of the maximum directivityai uniformly-excited

array, the excitations are iteratively updated
M
=M

until the convergence condition holds true:
‘ Lo — ok 9@)‘

wherel, andn, are a fixed number of iterations and a fixed numerical thresmespec-
tively. At the end of the iterative process £ 1), O,... = 99 is found as well as the

reference excitationd, .. = {Am =dP:m=+1, ..., iM};



e Stage 2 Synthesis of the Compromise Pattern with Maximum Directivity

Once the reference sét .. has been determined, the compromise difference pattern
with maximum directivity is identified by aggregating theaar elements according to the

guidelines of the”' P M [9]. In particular, the following cost function is defined

2

Ter (€)= 725>

g=1 m=1

Sm (% — OmqWyq (Q))

(6)

and successively minimized to only compute the unknownegggion vecto€' = {c,,; m =1, ...

since the sub-array weights are unequivocally determimexiigh the following relation-

ship
Zle (Sm)2 OmgYm
()==2 , =1,...,0Q. 7
O G T v

where~,, = f—:. The minimization process is carried out by generating aisece of

sub-array configuration%g(’f); k=1,.., K} that converges to the optimal compromise
C°"M " In more detail, starting from a random configuratiof’ obtained by sorting
the “optimal” gainsy,,, m = 1,..., M on a line and randomly selecting — 1 cutting
points, the trial solution is updated{”) — C*+Y] just modifying the membership
of the “border elementd” of the previous one'® according to the guidelines de-
tailed in [9]. The process is stopped, by settitfg"™ = C*»*), when the convergence

condition holds true. Such a condition is defined in terms ofiaximum number of

iterationsK (i.e., k > K) or the stationariness of thé PM cost function value (i.e.,

(k—1) Ky ¢ )
’K‘I"I’CPM_ j=1~"CPM

‘ < ng, beingKy andny two user-defined control parameters).

3 Numerical Results

In order to show the potentialities and the limitations & pnoposed method, a set of illustrative

examples are reported and discussed in this Section. Meressme comparisons with the

() The *“pborder elements are identified by the v, indexes of the ordered listL =

{71 = Ming, (ﬂ) sy YM = MATy, (?—M)} whose adjacent list values,,_; or/and ~,,,1 belong to a

Smr

different sub-array.

, M}



solutions obtained by thBifferential Evolution(D E) optimization technique in [7] will be
considered to point out the effectiveness and computdtéfiiciency of the proposed approach.
The first test caselést Case Jldeals with a linear array oV = 20 elements spaced df= %
The sum excitationi have been set to those of the Dolph-Chebyshev patternSvith =
—20dB [17] and, in the first experimeniTést Case 1 - Experimen),lthe number of sub-
arrays has been set@= 8. To illustrate the behavior of the two-stage’ M -based approach
(T'S — CPM in the following), Figure 2 shows the evolution of the degtive parameters
during the first stageQomputation of the Reference Excitatipds,,,,) of the process. As
can be observed, the steady behavior§t.. and 6%, verify just after/ = 5 iterations
(Fig. 2) when the reference patterRy (0) = P,o (9), I = 5] shown in Fig. 3 has been
synthesized. The corresponding values of the apertureeeity [18] for the patterns of Fig. 3
areego) = 1.0000, e,frl) = 0.8676, andeg) = 0.8626, respectively. By considering the pattern
Pa,... (0) = Pyw (0) and the corresponding excitationd,(,, = AWy as references, the
cost function in (6) has been minimized by means of@he)/ to determine the compromise
solutionC“*™ . The behavior oﬂ/g“}))M during the iterative process is shown in Fig. 4 where
also the evolution of the maximum valug), of the synthesized directivity is reported. For
comparison purposes, the plot of thef cost function (i.e. @'} 2 D) ) is given, as well.
With reference to Fig. 4 and concerning the computationatsr;@of;f ~ 820 iterations are
required by theD E-based approach to reach the final solution in Tab. I, wifjlg"’ = 9 are
enough for thee PM (TSFM = 0.58 sec, T, being the total”’ PU time needed to reach the
stopping criterion) to determine the element membershigsab-array weights (Tab. I). As far
as the maximum directivitieB{"s2) of the synthesized compromises are concerned, the values
obtained with both thé F and theT'S — C'PM turn out to be very close the one to the other
as well as to the asymptotic ideal vali®c® = 12.19.

In order to give a more general overview of the method perémee, the number of sub-arrays
has been changed fro@ = 1 up toQ = 10 (Test Case 1 - Experimen},X&eeping the same
problem geometry and setup. The plots of the maximum dineptsvaluesD,S’f;?) of the com-
promise patterns’; e, synthesized with th&S — C' PM and theD E-based approach are

shown and compared with the ideal achievable threshold (¥ = 12.19 [14]) in Fig. 5.



As it can be noticed, thé&'S — C'PM always outperforms the results of theF although the
main differences occur in correspondence with a small nurabsub-arrays. As a matter of
fact, the improvements fap > 5 are negligible (i.e.£p = 0.5%, being¢p £ W)
since the directivity values of bothS — CPM and DE are very close tdi4!, On the other
hand, wher) = 2, theT'S — C'PM compromise pattern is characterized by a maximum direc-
tivity of almostép = 19% greater than that of the £. Such a result points out the efficiency of
theC P M-based approach in enabling the synthesis of sub-arraytsimawith simple feeding
networks and limited numbers of sub-arrays. Furthermoigs worth to note that the values of

the compromise excitation8° "

asymptotically tend to the optimal distributian,, .. As a
matter of fact and unlike [7], it appears that”" = A . whenQ = M = 10 (Fig. 6) be-
cause of the intrinsic nature of tl&5 — C' P M that belongs to the class aéXcitations matching
method In order to point out the degree of fitting among referenoe actual patterns allowed

by theC' P M-based technique, let us analyze the behavior of the pattatohing inde>©

[T 1Pa(0) — Py (6)] d6
0 2] i/i e 0] ®)
7r/2 ‘Pém(u )‘ de

in Fig. 5. As expected® decreases whe) grows and it goes t0 value when@) = M.
For a more thoroughly treatment of the synthesis of lineanopalse antennas, let us take
into account the mutual coupling{C") effects for the sum and difference patterns [19]. In
particular, the antenna is supposed being made by an artdynodipoles of length equal to
A/2. Accordingly, the relative power pattern of the solutiortadhed by means of the PM

in Fig. 6 as well as the sum pattern effects are shown in Figlt & worth notice that the
degradation of both patterns whéhC' effects are included is negligible and it increases in the
end fire direction.

The second exampl&ést Case Ris concerned with @&V = 40 elements array with inter-
element spacing equal tb = 0.7 A. As in [7], the excitation coefficients of the sum mode
have been chosen to generate a Taylor pattern [20]avith6 and SLL = —30dB. Figure 8
shows the behavior of the maximum directivity of the synies$ compromise pattern versus

the number of sub-arrayg) (Test Case 2 - Experimen).1The ideal/asymptotic directivity



value is reported, as well (Fig. 8 - continuous red line). ©again, the” P M/ -based method
significantly outperforms thé E when simpler feeding networks are used. As an example,
when@ = 2, theT'S — CPM plot is closer toD!4°* than theDE. In such a situation, the
improvement allowed by th&€S — C'PM is of abouts, = 28%.

As far as the computational issues are concerned, let usdewsribe configuration withi) =

10 sub-arrays as a representative situatites{ Case 2 - Experimef). Figure 9 shows the
optimization of the cost function during the iterative pges. As it can be noticed, the number
of iterations required by th&s — C'PM to get the maximum directivity p’fM = 14) is
smaller than that of thé F (ko';f ~ 1550). Moreover, the corresponding PU-time turns
out significantly reduced’{C/™ = 1.54 sec vs. TEE ~ 263.5sec on al.5 GHz PC with
512 M B of RAM). Such an event points out the enhanced efficiency efit§ — C'PM in
sampling the solution space when compared to that of a sttcleaolutionary method. In order
to give further insights on the comparison, the compromistgepn distributions Pzcrm (0)
and Pgoe (0)] and the reference/optimal one [14] are shown in Fig. 10, sehealues of the
aperture efficiency aréﬁf = 0.8583, ¢FM = (.8590, andeR? = 0.8601, respectively. For

completeness, the compromig& — C'PM sub-array configuration and the corresponding

weights are reported in Tab. II.

4 Conclusions

In this paper, the optimization of the directivity of the fdifence compromise beam in sub-
arrayed monopulse array antennas has been dealt with. Bgitaxyp the knowledge of the
reference difference excitations, which provide maximuradivities, a sub-arraying strategy
based on thé' PM has been used to synthesize monopulse antennas chaetteria reduced
complexity. By integrating the procedure aimed at definimgreference difference with high-
est directivity, the definition of the sub-array configuoas and weights has been carried out
in an efficient and effective way thanks to a fast samplinghef $olution space by consider-
ing the presence diorder elementsThe obtained results have proved the effectiveness of the
TS — C'PM in providing difference patterns with satisfactory direity values also when few

sub-arrays are used. Furthermore, although(ttre\/ is usually aimed at synthesizing a com-

9



promise pattern close as much as possible to the referemgehmobtained results positively
compared with those from customized (to maximize the diriég} state-of-the-art approaches

in facing the optimization of the directivity.
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FIGURE CAPTIONS

e Figure 1. Sketch of the array configuration.

e Figure2. Test Case 1M = 10, d = A\/2, Dolph-Chebyshev sum patteft7] - SLL =
—20dB). Stage 1- Computation of the Reference Excitatipds, .. Evolution of the
maximum value of the directivity)ﬁ?ax and its angular directiofins. versus the iteration

index,s.

e Figure3. Test Case 1M = 10, d = A\/2, Dolph-Chebyshev sum patteft7] - SLL =
—20 dB). Stage 1 Computation of the Reference Excitatipas, .. Directivity patterns

P, (0) synthesized at the iterations= 0,7 = 1,andi = I = 5[Pa___(0)].

e Figure 4. Test Case M = 10, d = A/2, Dolph-Chebyshev sum pattefth7] -
SLL = —20dB) - Experiment X = 8). Stage 2 Synthesis of the Compromise Pattern
with Maximum Directivity Py,,.,. Behaviors of the cost function value® and of the

maximum directivity valueD'®)., versus the iteration index

e Figureb5. Test Case 1M = 10, d = A\/2, Dolph-Chebyshev sum patteft7] - SLL =
—20dB) - Experiment Q) = 1, ..., 10). Stage 2 Synthesis of the Compromise Pattern
with Maximum Directivity Py,,.,. Plot of the values oD¥), and© versus( for the

TS — CPM and theDE approach.

e Figure6. Test Case 1M = 10, d = A\/2, Dolph-Chebyshev sum patteft/] - SLL =
—20dB) - Experiment Q) = 10). Stage 2 Synthesis of the Compromise Pattern with
Maximum Directivity Py, Optimal excitations [14] and compromise coefficients

determined by th&'S — C' PM and theD E-based approach.

e Figure7. Test Case 1M = 10, d = A\/2, Dolph-Chebyshev sum patteft/] - SLL =
—20dB) - Experiment 2 = 10) - Mutual Coupling.Relative sum and difference power

patterns for an array of/2 dipoles with mutual coupling effects.

e Figure 8. Test Case 2M = 20, d = 0.7 A, Taylor sum patterj20] - SLL = —30dB)

- Experiment 1((Q = 1,...,20). Stage 2- Synthesis of the Compromise Pattern with

13



Maximum Directivity Py, . Plot of the values oD,S’f?m ando versusy).

e Figure9. Test Case 2M = 20, d = 0.7 A, Taylor sum patterj20] - SLL = —30dB)
- Experiment Q) = 10). Stage 2- Synthesis of the Compromise Pattern with Maxi-
mum Directivity Py, . Behaviors of the cost function value®) and of the maximum

directivity valueD{¥), versus the iteration indeix

e Figure 10. Test Case 2M = 20, d = 0.7 A\, Taylor sum patteri20] - SLL = —30 dB)
- Experiment 2@ = 10). Stage 2- Synthesis of the Compromise Pattern with Maxi-
mum Directivity Pytop- Comparison among the optimal difference directivity gartt
Pa, . [14] and the compromise patterns synthesized at the COBNEEd ;5 (x,,0) by the

C' P M-based technique and tlieF optimization.

TABLE CAPTIONS

e Tablel. Test Case 1M = 10, d = \/2, Dolph-Chebyshev sum pattefhi7] - SLL =
—20dB) - Experiment 1(Q = 8). Stage 2- Synthesis of the Compromise Pattern
with Maximum Directivity Px,,.,. Sub-array configurations*») and weight values

{wé’“”t); g=1, ..., Q} determined by th&'S — C PM and D E-based approach.

e Tablell. Test Case ZM = 20, d = 0.7 A, Taylor sum patteri20] - SLL = —30dB) -
Experiment ZQ) = 10). Stage 2 Synthesis of the Compromise Pattern with Maximum Di-
rectivity, Py, - Sub-array configuratiorg ") and weight value{wék“”t); g=1,.., Q}
determined by th&'S — C PM and D E-based approach.
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