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An Excitation Matching Procedure for Sub-arrayed Monopulse

Arrays with Maximum Directivity

L. Manica, P. Rocca, and A. Massa

Abstract

In this paper, the maximization of the directivity of compromise difference patterns in sub-

arrayed monopulse linear array antennas with optimum sum mode is addressed by means

of a two-stage excitation matching procedure. The knowledge of the independently opti-

mum difference excitations, which provide the maximum directivity, is exploited with an

efficient matching technique based on the contiguous partition method. Simple and reliable

compromise solutions, characterized by a reduced complexity as well as easier antenna

manufacturing, are synthesized to assess the effectiveness of the proposed method also in

comparison with state-of-the-art methods devoted to the directivity maximization.

Key words: Monopulse Antennas, Array Antennas, Sum and Difference Pattern Synthesis,

Directivity Maximization.
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1 Introduction

Monopulse tracking systems require antennas that generateat least two different patterns, namely

the sum beam and the difference one. Towards this end, different solutions might be taken into

account depending on the trade-off among the requirements on optimum sum and difference

modes, since some constraints are incommensurable [1] [e.g., reduced circuital complexity, low

sidelobe levels (SLLs), high directivity, low costs]. In the last years, array antennas have been

usually used since they are easy to built and the lobes of the generated patterns can be electron-

ically steered, thus avoiding the use of mechanical systemsof positioning.

As far as the feeding network is concerned, compromise solutions are generally adopted be-

cause of the limited available space [2]. For such a reason, sub-arraying techniques have been

introduced [3]. Sub-arraying strategies are aimed at satisfying one or more user-defined con-

straint/s on some pattern features with a reduced complexity and a simplification of the antenna

manufacturing and assembly with respect to the two-module feed architecture, which provides

independent excitations for the sum and difference modes ofoperation. In the literature, differ-

ent approaches have been proposed to properly address the problem of synthesizing the optimal

compromise between sum and difference patterns to obtain anoptimum sum mode and a “best

compromise” difference one. They consider optimization techniques [4]-[8] as well as excita-

tion matching methods [3][9]. Although optimization techniques can be simply adapt to opti-

mize one or more (at the price of higher computational complexity) pattern features, the major

part of the contributions have taken into account the minimization of theSLL [4]-[6][8]. Only

in [7], the approach previously presented in [6] was extended to maximize the directivity of the

compromise pattern. Within this framework, the ContiguousPartition Method (CPM) [9] has

shown its effectiveness and versatility in determining a “best compromise” difference pattern

close as much as possible to the optimum in the Dolph-Chebyshev sense [10] (i.e., narrowest

first null beamwidth and largest normalized difference slope on the boresight for a specified

sidelobe level) [9] as well as the optimization of some pattern features (e.g.,SLL [11]). In

order to further assess the reliability and to point out the flexibility of the CPM , the approach

is now extended to the optimization of the directivity of thecompromise difference pattern as

in [7].
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The paper is organized as follows. A brief description of themathematical formulation of the

CPM as well as of its customization to the maximization of the directivity is outlined in Sect.

2. For comparison purposes, some representative results concerned with a set of numerical

experiments used in the literature as benchmark test cases are presented and discussed (Sect.

3). Eventually, some conclusions are drawn (Sect. 4).

2 Mathematical Formulation

Let us consider a linear array withN = 2 ×M elements uniformly-spaced (d being the inter-

element distance). The sum mode and the difference one are obtained by means of a set of

symmetric excitation coefficientsΣ = {sm = s
−m; m = 1, ..., M} and an anti-symmetric one

∆ = {dm = −d
−m; m = 1, ..., M}, respectively.

When sub-arraying techniques [3] are used (Fig. 1), one of the two modes is obtained from the

other (optimum) by defining a suitable sub-array configuration and the corresponding weights

to satisfy the user-defined requirements. Starting from a fixed and pre-optimized sum modeΣ,

the compromise difference patternB is determined as follows

B = {bm = −b
−m| bm = smδmqwq; m = 1, ..., M ; q = 1, ..., Q} (1)

wherewq (q = 1, ..., Q) is theq-th sub-array weight andδmq is the Kronecker delta function [if

cm = q thenδmq = 1, elseδmq = 0]. Furthermore,cm ∈ [1, Q] represent a positive integer

value indicating the membership of them-th element to a sub-array andQ is the number of

sub-arrays.

Likewise in [7], the problem at hand is formulated as follows: “optimizing the sub-array config-

uration and the corresponding weights in order to synthesize a compromise difference pattern

with maximum directivity.” To properly address such a problem, since (a) theCPM is an ex-

citation matching method aimed at reproducing a reference pattern and (b) analytical solutions

exist to yield a difference pattern with maximum directivity (e.g., see [12][13] for continuous

line sources and [14]-[16] when dealing with discrete arrays), a two-stage procedure is detailed

as follows. Generally speaking, the first stage is devoted togenerate, according to the guidelines
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in [14], the difference excitation set∆max = {∆m = −∆
−m; m = 1, ..., M} that provides the

reference patternP∆max
(θ) with maximum directivityDmax = maxθ {D (θ)} without sidelobe

constraints, beingD (θ) the directivity function given by

D (θ) = 2

∑M
m=1

∑M
n=1 {dmFm (θ)Fn (θ) dn}

∑M
m=1

∑M
n=1 {dmGmndn}

, (2)

whereFj (θ) = sin
[

kd(2j−1)sinθ
2

]

, j = m, n andGmn = sin[(n−m)kd]
(n−m)kd

− sin[(n+m−1)kd]
(n+m−1)kd

. Suc-

cessively, theCPM is used to determine the compromise setB close as much as possible to

the optimal one∆max in order to synthesize a patternPB (θ) with highest directivity. In more

detail:

• Stage 1 -Computation of the Reference Excitations, ∆max

As shown in [14], the reference difference set∆max is the solution of the following set of

M equations
M

∑

n=−M

{∆nGmn} = Fm (θmax) , m = 1, ..., M (3)

whereθmax is the angular direction of the maximum directivity (i.e.,θmax = arg {maxθ [D (θ)]}).

Unfortunately, the directionθmax is nota-priori known and it is computed according to

an iterative procedure [14],i being the iteration index. Starting from a trial valueθ = θ(i)

(i = 0) equal to the angular direction of the maximum directivity in a uniformly-excited

array, the excitations are iteratively updated

M
∑

n=−M

{

d(i+1)
n Gmn

}

= Fm

(

θ(i)
)

, m = 1, ..., M (4)

until the convergence condition holds true:
∣

∣

∣
Iθθ

(i−1) −
∑Iθ

j=1 θ(j)
∣

∣

∣

θ(i)
≤ ηθ, (5)

whereIθ andηθ are a fixed number of iterations and a fixed numerical threshold, respec-

tively. At the end of the iterative process (i = I), θmax = θ(I) is found as well as the

reference excitations∆max =
{

∆m = d
(I)
m ; m = ±1, ...,±M

}

;
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• Stage 2- Synthesis of the Compromise Pattern with Maximum Directivity

Once the reference set∆max has been determined, the compromise difference pattern

with maximum directivity is identified by aggregating the array elements according to the

guidelines of theCPM [9]. In particular, the following cost function is defined

ΨCPM (C) =
1

M

Q
∑

q=1

M
∑

m=1

∣

∣

∣

∣

sm

(

∆m

sm
− δmqwq (C)

)
∣

∣

∣

∣

2

(6)

and successively minimized to only compute the unknown aggregation vectorC = {cm; m = 1, . . . , M},

since the sub-array weights are unequivocally determined through the following relation-

ship

wq (C) =

∑M
m=1 (sm)2 δmqγm

∑M
m=1 (sm)2 δmq

, q = 1, ..., Q. (7)

whereγm = ∆m

sm
. The minimization process is carried out by generating a sequence of

sub-array configurations
{

C(k); k = 1, ..., K
}

that converges to the optimal compromise

CCPM . In more detail, starting from a random configurationC(0) obtained by sorting

the “optimal” gainsγm, m = 1, ..., M on a line and randomly selectingQ − 1 cutting

points, the trial solution is updated [C(k) ← C(k+1)] just modifying the membership

of the “border elements(1)” of the previous one,C(k) according to the guidelines de-

tailed in [9]. The process is stopped, by settingCCPM = C(kopt), when the convergence

condition holds true. Such a condition is defined in terms of amaximum number of

iterationsK (i.e., k > K) or the stationariness of theCPM cost function value (i.e.,
˛

˛

˛
KΨΨ

(k−1)
CPM

−

PKΨ
j=1 Ψ

(j)
CPM

˛

˛

˛

Ψ
(k)
CPM

≤ ηΨ, beingKΨ andηΨ two user-defined control parameters).

3 Numerical Results

In order to show the potentialities and the limitations of the proposed method, a set of illustrative

examples are reported and discussed in this Section. Moreover, some comparisons with the

(1) The “border elements” are identified by the γm indexes of the ordered listL =
{

γ1 = minm

(

∆m

sm

)

, ..., γM = maxm

(

∆m

sm

)}

whose adjacent list valuesγm−1 or/and γm+1 belong to a

different sub-array.
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solutions obtained by theDifferential Evolution(DE) optimization technique in [7] will be

considered to point out the effectiveness and computational efficiency of the proposed approach.

The first test case (Test Case 1) deals with a linear array ofN = 20 elements spaced ofd = λ
2
.

The sum excitationsΣ have been set to those of the Dolph-Chebyshev pattern withSLL =

−20 dB [17] and, in the first experiment (Test Case 1 - Experiment 1), the number of sub-

arrays has been set toQ = 8. To illustrate the behavior of the two-stageCPM-based approach

(TS − CPM in the following), Figure 2 shows the evolution of the descriptive parameters

during the first stage (Computation of the Reference Excitations, ∆max) of the process. As

can be observed, the steady behaviors ofD
(i)
max and θ

(i)
max verify just afterI = 5 iterations

(Fig. 2) when the reference pattern [P∆max
(θ) = P∆(I) (θ), I = 5] shown in Fig. 3 has been

synthesized. The corresponding values of the aperture efficiency [18] for the patterns of Fig. 3

areǫ
(0)
T = 1.0000, ǫ

(1)
T = 0.8676, andǫ

(I)
T = 0.8626, respectively. By considering the pattern

P∆max
(θ) = P∆(I) (θ) and the corresponding excitations (∆max = ∆(I)) as references, the

cost function in (6) has been minimized by means of theCPM to determine the compromise

solutionCCPM . The behavior ofΨ(k)
CPM during the iterative process is shown in Fig. 4 where

also the evolution of the maximum valueD(k)
max of the synthesized directivity is reported. For

comparison purposes, the plot of theDE cost function (i.e.,Ψ(k)
DE , D

(k)
max) is given, as well.

With reference to Fig. 4 and concerning the computational costs,kDE
opt ≃ 820 iterations are

required by theDE-based approach to reach the final solution in Tab. I, whilekCPM
opt = 9 are

enough for theCPM (T CPM
tot = 0.58 sec, Ttot being the totalCPU time needed to reach the

stopping criterion) to determine the element memberships and sub-array weights (Tab. I). As far

as the maximum directivitiesD(kopt)
max of the synthesized compromises are concerned, the values

obtained with both theDE and theTS − CPM turn out to be very close the one to the other

as well as to the asymptotic ideal valueDideal
max = 12.19.

In order to give a more general overview of the method performance, the number of sub-arrays

has been changed fromQ = 1 up toQ = 10 (Test Case 1 - Experiment 2), keeping the same

problem geometry and setup. The plots of the maximum directivity valuesD(kopt)
max of the com-

promise patternsP
B(kopt) synthesized with theTS − CPM and theDE-based approach are

shown and compared with the ideal achievable threshold (i.e., Dideal
max = 12.19 [14]) in Fig. 5.
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As it can be noticed, theTS − CPM always outperforms the results of theDE although the

main differences occur in correspondence with a small number of sub-arrays. As a matter of

fact, the improvements forQ ≥ 5 are negligible (i.e.,ξD
∼= 0.5%, beingξD ,

DTS−CPM
max −DDE

max

Dideal
max

)

since the directivity values of bothTS − CPM andDE are very close toDideal
max . On the other

hand, whenQ = 2, theTS −CPM compromise pattern is characterized by a maximum direc-

tivity of almostξD = 19% greater than that of theDE. Such a result points out the efficiency of

theCPM-based approach in enabling the synthesis of sub-arrayed patterns with simple feeding

networks and limited numbers of sub-arrays. Furthermore, it is worth to note that the values of

the compromise excitationsBCPM asymptotically tend to the optimal distribution∆max. As a

matter of fact and unlike [7], it appears thatBCPM = ∆max whenQ = M = 10 (Fig. 6) be-

cause of the intrinsic nature of theTS−CPM that belongs to the class of “excitations matching

methods”. In order to point out the degree of fitting among reference and actual patterns allowed

by theCPM-based technique, let us analyze the behavior of the patternmatching indexΘ

Θ =

∫ π/2

−π/2

∣

∣

∣
P∆max

(θ)− P
B(kopt) (θ)

∣

∣

∣
dθ

∫ π/2

−π/2

∣

∣P∆max
(θ)

∣

∣ dθ
(8)

in Fig. 5. As expected,Θ decreases whenQ grows and it goes to0 value whenQ = M .

For a more thoroughly treatment of the synthesis of linear monopulse antennas, let us take

into account the mutual coupling (MC) effects for the sum and difference patterns [19]. In

particular, the antenna is supposed being made by an array ofthin dipoles of length equal to

λ/2. Accordingly, the relative power pattern of the solution obtained by means of theCPM

in Fig. 6 as well as the sum pattern effects are shown in Fig. 7.It is worth notice that the

degradation of both patterns whenMC effects are included is negligible and it increases in the

end fire direction.

The second example (Test Case 2) is concerned with aN = 40 elements array with inter-

element spacing equal tod = 0.7 λ. As in [7], the excitation coefficients of the sum mode

have been chosen to generate a Taylor pattern [20] withn̄ = 6 andSLL = −30 dB. Figure 8

shows the behavior of the maximum directivity of the synthesized compromise pattern versus

the number of sub-arrays,Q (Test Case 2 - Experiment 1). The ideal/asymptotic directivity
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value is reported, as well (Fig. 8 - continuous red line). Once again, theCPM-based method

significantly outperforms theDE when simpler feeding networks are used. As an example,

whenQ = 2, theTS − CPM plot is closer toDideal
max than theDE. In such a situation, the

improvement allowed by theTS − CPM is of aboutξD = 28%.

As far as the computational issues are concerned, let us consider the configuration withQ =

10 sub-arrays as a representative situation (Test Case 2 - Experiment2). Figure 9 shows the

optimization of the cost function during the iterative process. As it can be noticed, the number

of iterations required by theTS − CPM to get the maximum directivity (kCPM
opt = 14) is

smaller than that of theDE (kDE
opt ≃ 1550). Moreover, the correspondingCPU-time turns

out significantly reduced (T CPM
tot = 1.54 sec vs. T DE

tot ≃ 263.5 sec on a 1.5 GHz PC with

512 MB of RAM). Such an event points out the enhanced efficiency of the TS − CPM in

sampling the solution space when compared to that of a stochastic evolutionary method. In order

to give further insights on the comparison, the compromise pattern distributions [PBCPM (θ)

andPBDE (θ)] and the reference/optimal one [14] are shown in Fig. 10, whose values of the

aperture efficiency areǫref
T = 0.8583, ǫCPM

T = 0.8590, andǫDE
T = 0.8601, respectively. For

completeness, the compromiseTS − CPM sub-array configuration and the corresponding

weights are reported in Tab. II.

4 Conclusions

In this paper, the optimization of the directivity of the difference compromise beam in sub-

arrayed monopulse array antennas has been dealt with. By exploiting the knowledge of the

reference difference excitations, which provide maximum directivities, a sub-arraying strategy

based on theCPM has been used to synthesize monopulse antennas characterized by a reduced

complexity. By integrating the procedure aimed at defining the reference difference with high-

est directivity, the definition of the sub-array configurations and weights has been carried out

in an efficient and effective way thanks to a fast sampling of the solution space by consider-

ing the presence ofborder elements. The obtained results have proved the effectiveness of the

TS −CPM in providing difference patterns with satisfactory directivity values also when few

sub-arrays are used. Furthermore, although theCPM is usually aimed at synthesizing a com-
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promise pattern close as much as possible to the reference one, the obtained results positively

compared with those from customized (to maximize the directivity) state-of-the-art approaches

in facing the optimization of the directivity.
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FIGURE CAPTIONS

• Figure 1. Sketch of the array configuration.

• Figure 2. Test Case 1(M = 10, d = λ/2, Dolph-Chebyshev sum pattern[17] - SLL =

−20 dB). Stage 1- Computation of the Reference Excitations, ∆max. Evolution of the

maximum value of the directivityD(i)
max and its angular directionθ(i)

max versus the iteration

index,i.

• Figure 3. Test Case 1(M = 10, d = λ/2, Dolph-Chebyshev sum pattern[17] - SLL =

−20 dB). Stage 1- Computation of the Reference Excitations, ∆max. Directivity patterns

P∆(i) (θ) synthesized at the iterationsi = 0, i = 1, andi = I = 5 [P∆max
(θ)].

• Figure 4. Test Case 1(M = 10, d = λ/2, Dolph-Chebyshev sum pattern[17] -

SLL = −20 dB) - Experiment 1(Q = 8). Stage 2- Synthesis of the Compromise Pattern

with Maximum Directivity, PB(kopt). Behaviors of the cost function valueΨ(k) and of the

maximum directivity valueD(k)
max versus the iteration indexk.

• Figure 5. Test Case 1(M = 10, d = λ/2, Dolph-Chebyshev sum pattern[17] - SLL =

−20 dB) - Experiment 2(Q = 1, ..., 10). Stage 2- Synthesis of the Compromise Pattern

with Maximum Directivity, PB(kopt) . Plot of the values ofD(k)
max andΘ versusQ for the

TS − CPM and theDE approach.

• Figure 6. Test Case 1(M = 10, d = λ/2, Dolph-Chebyshev sum pattern[17] - SLL =

−20 dB) - Experiment 2(Q = 10). Stage 2- Synthesis of the Compromise Pattern with

Maximum Directivity, PB(kopt) . Optimal excitations [14] and compromise coefficients

determined by theTS − CPM and theDE-based approach.

• Figure 7. Test Case 1(M = 10, d = λ/2, Dolph-Chebyshev sum pattern[17] - SLL =

−20 dB) - Experiment 2(Q = 10) - Mutual Coupling.Relative sum and difference power

patterns for an array ofλ/2 dipoles with mutual coupling effects.

• Figure 8. Test Case 2(M = 20, d = 0.7 λ, Taylor sum pattern[20] - SLL = −30 dB)

- Experiment 1(Q = 1, ..., 20). Stage 2- Synthesis of the Compromise Pattern with

13



Maximum Directivity, P
B(kopt). Plot of the values ofD(k)

max andΘ versusQ.

• Figure 9. Test Case 2(M = 20, d = 0.7 λ, Taylor sum pattern[20] - SLL = −30 dB)

- Experiment 2(Q = 10). Stage 2- Synthesis of the Compromise Pattern with Maxi-

mum Directivity, PB(kopt) . Behaviors of the cost function valueΨ(k) and of the maximum

directivity valueD
(k)
max versus the iteration indexk.

• Figure 10. Test Case 2(M = 20, d = 0.7 λ, Taylor sum pattern[20] - SLL = −30 dB)

- Experiment 2(Q = 10). Stage 2- Synthesis of the Compromise Pattern with Maxi-

mum Directivity, PB(kopt). Comparison among the optimal difference directivity pattern

P∆max
[14] and the compromise patterns synthesized at the convergenceP

B(kopt) by the

CPM-based technique and theDE optimization.

TABLE CAPTIONS

• Table I. Test Case 1(M = 10, d = λ/2, Dolph-Chebyshev sum pattern[17] - SLL =

−20 dB) - Experiment 1(Q = 8). Stage 2- Synthesis of the Compromise Pattern

with Maximum Directivity, PB(kopt). Sub-array configurationsC(kopt) and weight values
{

w
(kopt)
q ; q = 1, ..., Q

}

determined by theTS − CPM andDE-based approach.

• Table II. Test Case 2(M = 20, d = 0.7 λ, Taylor sum pattern[20] - SLL = −30 dB) -

Experiment 2(Q = 10). Stage 2- Synthesis of the Compromise Pattern with Maximum Di-

rectivity, PB(kopt). Sub-array configurationsC(kopt) and weight values
{

w
(kopt)
q ; q = 1, ..., Q

}

determined by theTS − CPM andDE-based approach.
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q 1 2 3 4 5 6 7 8

wCPM
q 0.12 0.36 0.60 0.84 1.09 1.34 1.59 1.93

wDE
q [7] 0.12 0.41 0.76 1.11 1.48 1.88 2.38 2.52

CCPM
1 2 3 4 5 6 7 8 8 4

CDE [7] 1 2 3 4 5 5 6 7 8 4

Tab. I - L. Manica et al., “An excitation matching procedure for ...”
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q 1 2 3 4 5 6 7 8 9 10

wCPM
q 0.109 0.335 0.567 0.842 1.141 1.502 1.994 2.512 2.993 3.316

CCPM
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10 9 10

Tab.II
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L
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