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A Fast Graph-Searching Algorithm Enabling the Efficient Syn-

thesis of Sub-Arrayed Planar Monopulse Antennas

L. Manica, P. Rocca, M. Benedetti, and A. Massa

Abstract
In this paper, an innovative approach in its different inmpémtations for the synthesis of
compromise sum and difference patterns of monopulse ptamays is presented. The syn-
thesis method is based on a sub-arraying technique aimeenhatagjing the compromise
patterns through an optimal excitation matching procedug exploiting some proper-
ties of the solution space, the synthesis problem is reftatad as a combinatorial one to
allow a considerable saving of computational resourcesanké to a graph-based repre-
sentation of the solution space, the use of an efficient padinehing algorithm is enabled
to speed-up the convergence to the compromise solutionhemamerical validation, a
set of representative examples concerned with both pattatohing problems and pattern-
feature optimization are reported in order to assess tleetfeness and flexibility of the
proposed approach. Comparisons with previously publishedlts and solutions obtained
by a hybrid version of the approach customized to deal wighofitimization of the sidelobe

level (SLL) are reported and discussed, as well.

Key words: Planar Arrays, Monopulse Antennas, Sum and Difference égp®irect Acyclic

Graph.



1 Introduction

A monopulse tracker [1] is a device aimed at detecting thetiposof a target by using the
information collected from an antenna that generatesanddifferencepatterns. These beams
can be synthesized by means of a reflector antenna with texk{trg on a plane) or three (3D
tracking) feeds, or by using linear or planar array antennaspectively. The latter solution
is usually preferred since array antennas are easy to mdltlzey do not require mechanical
positioning systems to steer the beam pattern. Moreoveay atructures can also be easily
installed on mobile vehicles (e.g., aircrafts). Unlikedar structures, a planar array allows
the generation of a sum and two spatially-orthogonal diffiee patterns [2] [i.e., th@zimuth
difference mod€¢H — mode) and theelevation difference modé’ — mode)] useful to give a
complete description of the trajectory of a target in terhsaage, azimuth, and elevation.

In order to synthesize independent optimal sum and diftergratterns, Taylor [3] and Bayliss
[4] developed analytical techniques to compute the comedmg excitation coefficients by
sampling suitable continuous distributions. Howeverséheptimal solutions require three in-
dependent feeding networks. Hence, high manufacturints assially arise and electromag-
netic interferences unavoidably take place because ofatige Inumber of elements in planar
monopulse arrays.

In order to overcome these drawbacks, the sub-arrayingigah [5] is a suitable compromise
solution aimed at optimizing pre-specified sub-array lagouTo deal with such an optimal
compromise problem, global optimization approaches [@[7as well as hybrid techniques
have been considered [9][10]. However, since in optimiaatiased techniques the dimension
of the solution space grows exponentially with the numbearody elements, few examples
concerned with planar arrays have been dealt with. To thedfeéke authors’ knowledge, the
compromise synthesis of planar arrays has been recendy faaly in [9], where the sub-array
aggregation has beenpriori fixed and a Simulated Annealing 4) optimizer has been used
to determine only the sub-array gains.

In [11], an innovative method for the optimal compromise agsum and difference patterns of
linear arrays has been proposed. The optimization probkesrbleen recast as a combinatorial
one to significantly reduce the dimension of the solutiorce@nd to allow a fast synthesis pro-

cess. The sub-optimal difference pattern has been compytegtans of an iterative searching



algorithm looking for the best solution that belongs to a ptete set coded in a non-complete
“linear” binary tree. Thanks to its computational efficigri@2], such a technique appears to
be a good candidate to deal also with two-dimensioR&l)(arrays avoiding the computational
drawbacks of stochastic optimization methodologies. H@rethe extension of the range of
applicability of [11] to planar monopulse arrays is not &iti task. As a matter of fact, some
fundamental issues have to be carefully addressed. Letnsdsy that the computational ef-
ficiency of the approach in [11][12] comes from the carefustomization to linear arrays of
the synthesis strategy. Moreover, unlike linear struguthe three-dimensionad D) track-
ing of planar arrays needs of two difference patterns (itee,differencell — mode and the
H — mode), instead of a single one. Furthermore, although the agpréa linear geometries
allows a significant reduction of the dimension of the solutpace, the memory requirements
when dealing with planar arrays are not negligible due toléinge number of radiating ele-
ments. Consequently, the use of an innovative direct acgetiph algorithm able to reduce the
space of the admissible solutions and increase the efficisrmonsidered in order to profitably
cope with2 D synthesis problems.

The key-points of the proposed approach preliminary prteskin its simpler version in [14][15]
are summarized in the following. By exploiting the propestiof the solution of the planar
compromise problem, the “solution tree” of the linear cass been collapsed into a more
compact structure, namely tlirect acyclic grapn D AG) [13], to describe the whole solution
space. Such a representation enables the excitation mgtspnthesis of planar arrays with
large numbers of elements [16] thanks to the significantcgdn of both the computational
time and the”’ PU memory requirements. Moreover, theAG allows the implementation and
an effective use of a fast graph-searching algorithm to fookhe optimal planar compromise.
The paper is organized as follows. In Sect. 2, the problemathamatically formulated by
summarizing the synthesis procedure (Sub-Sect. 2.1) dsawéhe graph-based searching al-
gorithm (Sub-Sect. 2.2) aimed at exploiting thedGG architecture to efficiently sample the
solution space. Selected results from a wide set of numenigeeriments are reported in Sect.
3 to carefully illustrate the behavior of the proposed mdthad its different implementations
as well as to assess its effectiveness. For completenessppacative study with previously

published results from state-of-the-art techniques ippsed (Sub-Sect. 3.2), as well. Further-



more, a customized hybrid version of the approach is impteeteand tested (Sub-Sect. 3.3) to
effectively deal with the5 L L optimization problem in planar array. Finally, some cosabns

are drawn (Sect. 4).

2 Mathematical Formulation

Let us consider a planar array lying on the — plane whose elements are located on a rect-
angular grid with inter-element spacin = d, = d. The coordinates of each array ele-
ment are given by, = [m — %(m)] x d, m = *1,...,&£N, andy, = [n— %(")] X d,

n = +1,..,£N;", and the array factor turns out to be [17]:

m
N?/

Ny
AF (97 Cb) = Z Z Imnej(kwxm"_kyyn) (1)

m=—Nz n=—N]"

where/,,, is an excitation coefficient and;" is an integer function of the row index de-
pending on to the array boundary. Moreover,= 2= sin  cos ¢ andk, = 2= sin 0 sin ¢.

Dealing with monopulse systems, the optimal/reference sude is generated by setting the
excitations/,,,, to a set of real excitationd = { ., = A(Cmyn = Qm(—n) = Am)y(—n); M =
1,...,Ny;n=1,..., N;]"b} characterized by a central and quadrantal symmetry. Agdsda
the optimal/reference difference patterns [i.e., he mode and theH — mode difference pat-
terns], they are still determined by real excitatidf3 = { o = B0 = ~Braien) = By ()’
m=1,...,Ny;;n=1,.. .,N;”}, © = F, H, but with quadrantal anti-symmetric distribu-
tions. Usually, the resulting patterns are characterizedasrow beamwidths and low side lobe
levels (SLLs). Furthermore, these coefficient distributions assutepafeatures attractive for
tracking purposes (e.g., high directivity and maximum nalized slope along the boresight
direction, i.e., a high angular sensitivity). Unfortungtehe use of three independent feeding
networks is generally impracticable and it is mandatory tal fa suitable trade-off between
the optimality of the synthesized patterns and the deviasiltdity. Towards this purpose, the
sub-arraying strategy has been introduced by McNamaraTbg original problem has been

reformulated into a compromise ondof a given optimal sum (difference) mode, to define the

sub-array configuration and the corresponding sub-arraingasuch that, the synthesized dif-



ference (sum) modes are as close as possible to the optfeaénce onés Accordingly, the
grouping operation yields to a sub-array configuration efdiiference® — mode described by

aggregation vectat®

c® = {cgm; m=1,...,Nz;n=1, ...,N;’L} (2)

wherec® € [1,Q)] is the sub-array index of the element located atthth row andn-th col-
umn within the array architecture. Then, the compromsd{arrayed difference excitations

are given by
{bmn—amn ( Sm, q) w?; m=1,...Ny;n=1,. Nm g=1,. Q} 3)

wherew? is the weight associated to theth sub-array and (c,,, ¢) = 1if ¢, = ¢ and
6 (c2,, q) = 0, otherwise. Hence, the synthesis problem turns out to bév@qut to the
definition of the conflguratlomopt and the corresponding set of Weightg?,t such that the
compromise sub-arrayed difference patterns, generatdd$yare as close as possible to the

optimal/reference ones.

2.1 Synthesis Procedure

In order to find the solution that better approximates théogltdifference patterns, McNamara

in [5] introduced the following metric/residual

N"L

ZZ 189, = b9 (c®, w®)[* (4)

m=1 n=1

to be minimized with respect to the clusterin§ and related sub-array weights® in order
to solve thecompromise problemEquation (4) quantifies the “distance” between the optimal
independent excitationg®, , and the actual ones;  , which are function o£® andw®.

Starting from such a formulation and similarly to [11], treléwing cost function is defined

2
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where J is the number of elements lying on the apertufes Zj;”l Ng, andy®

You =" (m=1,.,Nyn=1,.,N]") (6)

is the so-calledeference gairfi.e., the gain to be assigned to te, n)-th element of the
sum array in order to afford the optimal difference patterhoreover, theestimated gains
gS)mq = Gmng (c@), are obtained by simply exploiting the grouping theory dibsd by Fisher
in [18]. More in detail, the value of°,  is the weighted (with weights?, ) arithmetic mean

mngq

of the reference gains of those elements belonging to the gamsub-array:

N, Ny* 9 e e
[S) - Zm:l n=1 O[mn(s (Cmn7 Q) fymn _ . _ m. _
mnqg ~ Na szln 9 5 o ’ m_]-v"'va7 /n’_lv"'vNy ) q_]-v"'va
Em:l n=1 ¥mn (Cmrw q) (7)
and the sub-array weights are given by
wf? =9 (cf?m, q) g,(?mq m=1,..,N; n=1...,N ¢=1,..,Q. (8)

Now, the compromise problem can be reformulated in the Wahg dual form “for a given
optimal/reference sum mode, to define the sub-array cowfiigur (1) that minimizg5) (i.e.,

c®, = arg {min. [¥ (c®)]}) or, in an equivalent way, (Il) where each cluster is composed
by array elements whose reference gains have minimum \@iaisher in [18] proved that a
contiguous partitiof) of the array elements is the optimal compromise solutioruohsa dual
problem. To determine the set of admissible solutions, theyalements are sorted in an or-
dered listL: according to theireference gains®,, € R. ThelistL = {l;; j = 1, ..., J}, being;

the listindexand wherg < ;1 (i = 1,..., J — 1), Iy = ming, {Yo, } l7 = mazp, {75, },is
then iteratively partitioned i) parts to define each timecantiguous patrtitiorfi.e., a sub-array

configuration characterized l6y convex set® of L). The number of admissible sub-array con-

(1) A grouping of array elements is a contiguous partition if gemeric(m., n,)-th array element belongs to
theg-th sub-array only when two elements, namely tha , n, )-th element and théng, n3)-th one, belong to the
same sub-array and the conditiof] ,,, <5 ,., <5, ., holds true.

(2) A setS in a vector space ovék is called aconvex seif the line segment joining any pair of points §f
lies entirely inS.



figurations (i.e., the number @bntiguous partitionscandidate to minimize the cost function

J—-1
(5) is equal toU(¢s*) = instead ofU = ” as for stochastic optimization tech-

Q-1
niques (e.g., [6][7][10]) with the strong reduction higitited by Fig. 1¢). These admissible

aggregations define the solution sp&e**) to which the optimal sub-array configuratio[it

belongs.

2.2 lterative Graph-Searching Algorithm

Likewise to [11], R(¢**) could be formally represented by means of a non-completarpin
tree of depth/®), wherein each path identifies an admissible sub-array amafiign (i.e., a
contiguous partitiorof the array elements). However, although the introduabibtine solution
tree for the planar case, as well, could allow a simple repreegion of the solutions space, non-
negligible computational problems would still remain sreclarge amount of memonry (/57)
[see Fig. 1) where an indication of the storage resources is given] dibelnecessary to store
and to explore such an architecture. Therefore, a more coingada structure, indicated as
direct acyclic graph(D AG) [13] and shown in Fig. ), is built starting from the observation
that some “sub-trees” are recursively shared in the nonptet® planar solution tree [Fig. 12
when defined analogously to the linear case. Generally spgpake D AG is an oriented graph
without cycles. In this case, thR AG of Fig. 2(@) is a rootedD AG since it has a node (the
root) with no arcs pointing into it. Moreover, itis a binafyAG whose nodes have a maximum
of two arcs leaving them [13]. With reference to FigaRthe main characteristics of thikrect

acyclic graphas well as its advantages over the non-complete binary irdeafé?:

e Unlike the binary tree, thé AG is a non-redundant and more compact structure made
up of @ rows andJ columns, where the-th row corresponds to theth sub-array 4 =

1,...,Q) and thej-th column § = 1, ..., J) refers to thd,_,;, element of the sorted lidt;

e The total number of nodes (calle@rtexe} required for the storage of the wholeAG

() In graph theory, a tree is a graph defined as a nonempty firtitef sertexes or nodes. Two nodes are
connected by exactly one path. In our case, the tree is aybires since it is either empty or each of its nodes
has not more than two sub-trees. Furthermore, some nodesin-aomplete binary tree has either no children, or
only one left/right child [13].

(4) The interested reader is referred to [15] for a more in depttdption of the graph structure.



is equal toV (P49 = @ x (J —Q + 1)® andV P49 « VUBT) [Fig. 1(p)], V5T
andV (¢BT) peing the number of nodes that would be necessary for thagaaf the tree

when using the non-complete and the complete binary treperively;

e In the DAG, a trial solution/path is denoted hy(V, F) [e.g., the red line in Fig. 2{]
since it might be described by a setlof= J vertexes and through = J — 1 arcs among
the vertexes of the path. In particular, the generib vertex ¢ = 1, ..., V) is represented
by a black circle in Fig. 2{). It identifies the sub-array membership of the array elémen
whosereference gainy,,,, is given byl;. For example, the first vertex on the left of Fig.
2(a) indicates that the array element, whose reference gaigualéo/,, belongs to the
q = 1-st sub-array. The-th (e = 1, ..., F)) edge describes a link between two vertexes of

a path within the graph. It is denoted by a black arrow in Fig) .2

By virtue of the above considerationd) the non-negligible memory saving/{(’4%) vs.
MUBT) - Fig. 10)], (II) the easier and more compadtP4%) vs. VUBTD) - Fig. 1(0)] rep-
resentation of the solution space are worth of notice. Funtiore, theD AG still guarantees
that (1) the elements grouped in the same sub-array have gfosealues andl{/) the solution
of the compromise problem can be recast as the search of engath theD AG.

To this purpose, let us observe that only some elements disthie, called ‘border elements
and identified by thé; indexes whose adjacent list values, or/andi;;, belong to a different
sub-array, are candidate to change their sub-array mefmpensthout violating the sorting
condition of the admissible aggregations. Therefore, tbe-$earching procedure of the linear
case is suitably modified [14] and extended to look for theno@k sub-array configuration
cg,t that minimizes¥ (ce) (5) among the solutions available into theAG. The procedure,
which follows the guidelines of the pseudo-code in Fig. 8rtstwith the definition of an initial
pathvy, = ¢ (Vy, Ey) randomly-chosen among the paths of thelG and setting the initial
aggregation as follows:

c® = {01@ =1; Cj@ =ran|l, Q] : ¢, Sc? §c?+1,j:2,...,J—1; 9 :Q} . (9)

() Since each row of th® AG hasV = J — Q + 1 vertexes, which is the maximum number of elements that
can be grouped into a sub-array, and thdG is composed by) rows.



Successively, a sequence of trial solutiofie?; ¢ =1, ..., T)... |, is generated by iteratively

updating the trial pathy; (i.e.,v; «— ¥;1,t =1, ..., Trhae — 1). The new solutions are obtained
by changing the memberships of the border elements of iA€; as detailed in [15]. The

searching procedure is stopped when a condition basedlwgr @tmaximum number of itera-
tionsT},.. (t > T,...) Or the stationariness of the cost function holds tflg,,4.., andr (Fig.

3) being a fixed number of iterations and a fixed numericakthoéd, respectively. The solution
obtained at the end of the iterative searching procedwee (he path),,;) is assumed as the op-
timal path that unequivocally identifies the best sub-acmyfigurations:?pt and corresponding

weightsw?,.

3 Numerical Simulations and Results

In order to assess the effectiveness of the proposed methset, of numerical experiments
has been performed and some representative results wihd&rsin the following sections.
The first section will be devoted to illustrate in a detailadtion the behavior of the proposed
method [indicated in the following @&order Element Metho@B £ M)] as well as its reliability

to synthesize a difference pattern as close as possible tetbrence one. The others sections
will be aimed at comparing th8 £ M with state-of-the-art techniques in dealing with bench-
mark test cases in order to complete the preliminary vabdapresented in [14][15][19] and
further confirm, in a more exhaustive and complete fashiba,underlying proof-of-concept.
Moreover, the third section will be devoted to present a ld/bersion of the approach for the

direct sidelobe control of planar arrays and a set of repritasige results will be shown, as well.

3.1 Sub-Arrayed Planar Array Synthesis

To describe the behavior of the £ M in dealing with planar sub-arrayed monopulse antennas
with large numbers of elements, let us consider a test caseecoed with a planar geometry
of N =4 x J = 1264 element%-spaced and distributed on a circular aperture of radiuslequ
tor = 10\. Itis worth to point out that in these situations, the useto€lsastic optimization-
based techniques (e.g., [6][7][10]) involves a high comaiohal burden that limit/prevent their

application. The sum pattern excitatioAshave been fixed to afford a Taylor pattern [3][20]

10



with SLL = —35dB andn = 6 [Fig. 4(a)]. Moreover, the referencl — mode excitationsBH
have been chosen equal to those of a Bayliss differencerpdf20] with SLL = —35dB
andn = 5 [Fig. 4(b)]. Because of the symmetry of the array geometry, the optitha mode
coefficients are related to thfé — mode ones as follows

B ={g., =—0:m=1.,Nyin=1.,N"} (10)

mn’

and, analogously, the same relationship holds true fordngpcomise difference excitations

mn’

B:]a: {bnEm:_bH :m=1,..,Ny;n= 17...,Nym}. (11)

As regards to the compromise feeding netwdpk= 4 partitions have been considered.

For illustrative purposes, let us analyze some steps aBthé/ application. Once theeference
gainshave been computed by applying (6), they are sorted in &.l&s$ indicated by the red
line in Fig. 5. At each iterationt/(= 1, ..., T,,,,), a pathy, withinthe DAG is selected and a trial
sub-array configuration® is obtained. As shown in Fig. 5, such an operation is equitdte
subdivide the list i) = 4 subsets by selecting — 1 cut points. Starting from a randomly-
selected partitiont(= 0 - Fig. 5), the path within thé AG is iteratively updated by changing
the sub-array membership of therder elementsvhich results in a modification of the partition
points in the list as shown in Fig. 5. The evolution of the swkay memberships of the array
elements is shown in Fig. 6 where the sub-array configuratilgtermined at= 0,t = 10,t =
30, andt = T,,, = 48 are shown. It is worth to note that, starting from a randomumishlanced
sub-array configuration [Fig. ) - N}‘iz)tjq

=212, N | = s8N | = o84,
opt opt q:3

=1

q=2
N}q) J = 184], the array elements tend to be homogeneously distribute@th sub-array
opt q:4

as shown in Fig. &l) (N9 J = 308, N J = 312, N¥ J = 352, N J -

opt q:1 opt q:2 opt q:3 opt q:4
292). Moreover, the convergence values assigned to the salg-gains arexw; = 0.2371,
wo = 0.6838, w3 = 1.0848, andw, = 1.5027. The corresponding difference patterns in the
(u, v)-plane (Fig. 7) and along the = 0° plane (Fig. 8) confirm that th&F M is able to
effectively sample the solution-graph, thus performingefective compromise synthesis. As

a matter of fact, starting from an initial pattern charaized by highSLLs as pointed out by

the plot att = 0 in Fig. 8, the final compromise solution [Fig. dj{ presentsSLLs that do

11



not exceed the value &fLL,,,., = —27 dB in the whole angular region. Moreover, the main
lobes of the synthesized pattern are close to those of thmalpdifference pattern [see Fig. 8
(v < 0.12) and the central region of Fig. d(compared to that in Fig. 8f] by guaranteeing the
same accuracy in terms of angular resolution despite the Ererage number of array elements
the compromise pattern and the optimal one, let us obsee/bahaviors and the convergence
values of both the cost functiob; (5) and thematching index\ (defined as [11], but extended
to the planar case) shown in Fig. 9.

As far as the computational issues are concerned, it sheulidgbly noticed that the dimension
of the solution space is reduced frdim= 1.7822 x 10'*° (i.e., the dimension of the solution
space when using stochastic optimization approachesft® = 5.1598 x 105. Moreover,
the convergence compromise solutipy), and the corresponding aggregation veczt@,l; are
determined just aftef,,,; = 48 iterations with aC' PU-time equal t39.44 [sec] (on a3.4 GH z
PC with2 GB of RAM).

3.2 Comparative Assessment 5L L Control Procedure

To the best of the authors’ knowledge, the synthesis of molsepplanar antennas with sub-
arraying technigues has not been addressed with stateeadrt excitation matching techniques,
probably because of the arising theoretical and compuratiproblems (i.e., ill-conditioning
and matrix storage resources), and it has been recentlgdarut in terms of pattern-feature
optimization only by Are®t al. in [9], where aS' A-based procedure has been used to define the
sub-array weights of aa-priori fixed sub-array configuratioa®. More in detail, the weight
vectorw?, has been calculated by minimizing the cost function, evatliat many azimuthal
patterns ¢-cuts), which penalizes a maximum side lobe le¥éll. exceeding a specified tol-
erable maximum levebLL,.,. Consequently, since thBEM as well as other optimal exci-
tations matching procedures do not allow a direct and inldiai control of the grating lobes
of the synthesized patterns [10], the proposed approacltbé@s integrated into an iterative
loop to perform theS L L minimization [or the optimization of other beam patterntieas as
the beamwidth B1) or directivity, etc...] through the matching with a refeoe pattern (e.g.,

a pattern optimum in the Dolph-Chebyshev sense [4]) as pldfitused for the synthesis of

12



monopulse linear arrays [21]. The flowchart of such a proogduadicated asterative-BE M
(IBEM), is given in Fig. 10. In particular, the reference excaaB®*) (k being the index
of the iterative loop) are recursively chosen until the coompise pattern synthesized with the
BFE M satisfies the user-defined constraints.

As far as the comparison at hand is concernedsitie lobe ratio(S L R)

L 0<o< ™ (12)

SLR(¢) = -

SLL (¢
(

)
maxg [AF (0, ¢)]

shown in Fig. 9 of [9] has been chosen as the pattern featiertnimized [i.e.SLRE®) (¢) <
SLR,.q(¢), SLR,., (¢) being the user-defined threshold] and the same benchmagtigated

by Ares in [9] with@ = 3 sub-arrays has been taken into account. Othealues have been
also considered, but no comparisons with other state-@fthmethods are reported here since
not available in the published literature. The obtainediltssare just shown in Fig. 11 for
validation purposes in the framework of an asymptotic assest aimed at pointing out, as
expected, the convergence of thié R behavior to that of the reference pattern whigigrows.
The planar array consists 8f = 300 equally-spacedi(= g) elements arranged on a rectangu-
lar grid and belonging to a circular aperture= 4.85 X in radius. The sum mode has been set
to a circular Taylor pattern [3][20] witl¥ LL = —35 dB andn = 6.

As far as the application of theBE M is concerned, the first(= 1) reference excitations
setB

opt

—25dB andm = 6. At the end of the first loop oBEM iterations () = 1,..., 7.0}, T} = 14

* has been chosen equal to that of a circular Bayliss pattgy20fdwith SLLZ&I) =

- Fig. 12), the pathbi,gl) in the DAG shown in Fig. 13 has been identified, but the arisstigr
plot (Fig. 14) does not favorably compares with that in [9ic& theB E M has not been able to
efficiently match the reference pattern.

SuccessivelyK > 1), the reference pattern has been updated to iteraté/#tte)/ process. In
particular, the reference set of excitations has been seatgenerating a = 6 Bayliss pattern
with SLL!Y = ~30dB (k = 2) and withSLLY = —35dB (k = K., = 3), respectively.
The plot of the cost function throughout the minimizatioogess is reported in Fig. 12. As

it can be noticed, although different and more restrictngets (i.e.SLL ) < SLL/(™Y)

have been used, the value ‘Df;(tk) still decreases until the convergence when the pﬁﬁﬁ)

13



in Fig. 13 [coding the aggregation in Fig. Tp(and the corresponding pattern shown in Fig.
16(c) have been synthesized. At the end of the process, the tofthe I — mode in ¢ range
[0°, 80°] appears to be more satisfactory than that in [9] as pointédhythe plots in Fig. 14
sinceSLRppm (¢) < SLRga (¢) V¢ € [0°, 80°] andavy {SLR;prm (¢)} = —25.87 dB
VS. avy {SLRsa (¢)} = —22.52 dB. The final values of the sub-array gaiwéﬁ?’), computed
according to (8) starting from the element distributtciﬁ?’) in Fig. 16(), are given in Tab. I.
As regards to the iterative process and with reference toEdgit is worthwhile to notice that,
as expected and unlike the matching indexhe values of the beam-pattern indexes (5€.L,
SLR, and BWW) do not monotonically decrease because of the excitatidishimg nature of
the BEM, although in its iterative version, which allows only animedt control of the pattern
features.

For completeness, the computational efficiency of i~ M is further pointed out by the
following indications. The dimension of the solution spaegreases frorty = 6.0826 x 10%°
to U(es*) = 2701 [Fig. 1(a)], whereas the CPU-time required to complete the outeatitex loop
is equal ta2.64 [sec|. Moreover, it should be pointed out that the use of théG instead of the
non-complete binary tred BT') allows a memory saving of abo% ~ 10 (Mifi;‘i; ~

102).

3.3 Hybrid Formulation - The Hybrid — I BEM Approach

Inspired by the investigations on the synthesis of diffeeepatterns carried out in [22], it has
been shown in [10] that the definition of the sub-array wesdbt compromise monopulse array
antennas can be formulated as the solution of a convex progiag (C P) problem once the
sub-array configuration is given. By exploiting such a progea hybrid approach has been
first proposed in [23] to deal with the synthesis of monoplilsear arrays. In the following,
a hybrid version of thd BEM (i.e., theHybrid — I BEM) is customized to the synthesis of
planar arrays in order to extend the range of applicabilitthe planarBE M from excitation
matching to pattern optimization allowing, unlike th& E M, a direct control of the pattern
features (i.e.SLL, BW, etc...).

Similarly to [23], the hybrid approach consists of a twopsprocedure where at the first step

the sub-array configuration is computed according toltB& M (i.€.,cH.ia_1pEr = Con)-
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Successively, the weighte .41z, © = E, H, of the sub-arrayed difference network are

computed by means of a stand@'@ procedure minimizing the following cost function

{0, Sont s [R(4,.) cos T (6,6) = S (85,) sin T (6, )] }

TP (w®) = min
( ) {w?;q:l ..... Q} aX
(13)
x being eithew or ¢ andY (0, ¢) = k,z,,, + kyyn, Subject to
O { S, Sy [R(65,) sin Y (6,0) + S (85,) cos T (6,9)] |
- =0 (14)
aX 0=0
»=0

and

AF (6, 0o = Z Z o (15)

—Ng n=—NJ"
and to|AF (6, ¢)|* < M (6, ¢) whereM (0 ,gb) is a function descriptive of a user-defined mask

on the synthesized difference power pattern. In Eq. (£3),) and<$ (-) denote the real and
imaginary part, respectively. At the initialization of th& procedure, the guess solution is set
to the values of the sub-array weights obtained at the endeof BEM, w®:(©) = Wg;t [Eq.
)8

In order to show th& LL/ BWW control allowed by the hybrid approach, Figure 17 summarize
the results from a comparative study between i M and its hybrid version in terms of
maximumsS LL [Fig. 17(@)] and correspondin@¥/ computed on the principal plane [i.e., the
¢ = 0° cut of Fig. 16¢€)] [Fig. 17(b)] dealing with the same array configuration of Sect. 3.2.
To better and more exhaustively analyze the potentialiti¢se proposed hybrid approach, the
number of sub-arrays has been varied in the rafge |2, 8] and the synthesized sub-arrays
configurations and weights are shown in Fig. 15. For compks, the corresponding patterns
are also given [Fig. 16]. As it can be observed (Figs. 16-th® solutions from théf ybrid —

I BEM outperform those of thé BEM in terms of pattern indexes even though with heavier
computational costs. As far as the computational issuesareerned, the dimension of the
solution spacé/(PA%) and the storage resourckg&”4%) are given in Fig. 1, whereas the CPU-
time and number of iteratiori&- » required to get the final solution for thiéybrid — I BEM

and /I BEM are reported in Tab. Il to point out the trade-off betweertgyatefficiency and
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computational burden.

4 Conclusions

In this paper, an efficient approach for the synthesis ofaudlyed monopulse planar antennas
has been presented. Starting from the guidelines of ante#eprocedure previously devel-
oped to deal with linear geometries, some innovative featlnave been introduced to extend
the capability of the approach as well as its efficiency, tenabling the synthesis of planar
monopulse arrays. As a matter of fact, by exploiting soméufesa of the solution, a simple
and compact representation of the space of admissibld@aétias been defined, which allows
a considerable reduction of the problem complexity as wek aignificant saving in terms of
storage resources addPU-time to synthesize the compromise solution.

The effectiveness of the proposed excitation matchingiigcie in sampling the solution space
has been assessed through some experiments concernedghitiiinension synthesis prob-
lems computationally unfeasible for stochastic optima@aprocedures. Furthermore, for com-
parison purposes and to deal with user-defined requirenbesides matching a reference pat-
tern, theBEM has been integrated in a recursive process that proved twvaphe perfor-
mance of optimization techniques in dealing with the beratks available in the related liter-
ature and concerned with. L control.

As regards to the& L L control, the convexity of the problem with respect to a pdrthe un-
knowns has been exploited by defining a two-step hybrid aggtrdbased on theBEM. Al-
though the heavier computational burden affecting the rsg@sbep of the hybrid method (i.e.,
the C'P procedure), the obtained results point out the improvemenining from the exploita-
tion of the effectiveness of theBE M in defining the sub-array aggregation and the convexity

of the problem with respect to the sub-array weights.
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FIGURE CAPTIONS

e Figure 1. Sub-Arrayed Planar Array Synthedi¢ = g r = 4.85)). Computational
Analysis- (a) Dimension of the solution spadé and ) memory resources)/, and
number of vertexesy, for the storage of the representations of the solutionespac-
sus(@ in correspondence witlv = 300 and N = 40 (CBT —Complete Binary Tree,

I BT —Non-Complete Binary Tree, and AG —Direct Acyclic Graph).

e Figure 2. Pictorial representation of] the Direct Acyclic Graph(DAG) and () its

corresponding planar tred (= 6 and@ = 3).
e Figure 3. Pseudo-code of the iterative graph-searching algoritBf{/).

e Figure 4. Sub-Arrayed Planar Array Synthegi® = 1264, d = % r =10\ Q = 4)
- Relative power distribution of the referenca Gum Taylor pattern{LL = —35dB,
n = 6) and of the § H — mode difference Bayliss patternrS(.L. = —35dB, 1 = 6),

respectively.

e Figure 5. Sub-Arrayed Planar Array Synthegi® = 1264, d = % r =10\ Q = 4)
- lllustrative description of thé3 £A/. Evolution of the list partitionf = 0, 10, 30, T,

T, = 48).

e Figure 6. Sub-Arrayed Planar Array Synthegiy = 1264, d = % r =10\ Q = 4) -
Evolution of the sub-array memberships of the array elemeBtib-array configurations

synthesized by th& EM at @) ¢t = 0, (b) ¢ = 10, (c) t = 30, and ) t = T,,,, = 48.

e Figure 7. Sub-Arrayed Planar Array Synthegiy = 1264, d = % r =10\ Q = 4) -

Relative power distribution atf ¢t = 0, (b) t = 10, (c) ¢t = 30, and @) t = T;,, = 48.
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Figure 8. Sub-Arrayed Planar Array Synthegiy = 1264, d = % r =10\ Q = 4) -
Azimuthal (p = 0°) relative power distribution at ¢t = 0, (b) ¢ = 10, (c) t = 30, and
(d) t = Ty, = 48.

Figure 9. Sub-Arrayed Planar Array Synthegiy = 1264, d = % r =10\ Q = 4) -
Behavior of the cost functiof and of the pattern matchingy versus the iteration index

t.
Figure 10. Flow chart of thel BEM.

Figure 11. Asymptotic Validatio@N = 300, d = % r = 4.85)) - Plots of the synthesized
S LR values in the range < [0°, 80°] for different values of). Reference Bayliss pattern

[4]: @ = 6 andSLL),, = —35dB.

Figure 12. Comparative Assessmgit = 300, d = % r = 4.85), Q) = 3) - Behaviors
of the cost functiont”™, SLL, SLR, and beamwidthBW versus the iteration index
(Reference Bayliss pattemn = 6 [4]: SLL = —25dB, SLL/!? = —304B, and
SLLY = —35dB).

Figure 13. Comparative Assessmegi¥ = 300, d = % r = 4.85\, Q = 3) - Evolution

H(
opt

of the solution path) *) synthesized with thé BEM within the DAG mapping the

solution space.

Figure 14. Comparative Assessmegmit = 300, d = % r = 4.85)\, Q) = 3) - Plots of the
synthesized> L R values in the range < [0°, 80°]. Reference Bayliss pattefh= 6 [4]:

SLLIY = —254B, SLLYY = —30dB, andSLL"Y = —354B.

Figure 15. Hybrid Formulation(N = 300, d = % r = 4.85)\, Q = 3) - Sub-array
configurationsleft columr) and array element weightsight column) synthesized with
the/ BEM and theH ybrid — [ BE M for different values of) [@Q = 2 (first row), Q = 3
(second row, Q = 5 (third row), and@ = 8 (fourth row)].

Figure 16. Hybrid Formulation(V = 300, d = 3, r = 4.85)\, @ = 3) - Beam patterns
synthesized with thé BEM (left columr) and theH ybrid — I BEM (right columr) for
different values of) [Q = 2 (first row), Q = 3 (second roWy, () = 5 (third row), and
@ = 8 (fourth row)].
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e Figure 17. Hybrid Formulation(V = 300, d = %, r = 4.85)) - Behavior of the §) SLL
and of the p) B for the compromise patterns synthesized by means of ¥é M/ and
the Hybrid — IBEM whenQ € [2,38].

TABLE CAPTIONS

e Table I. Comparative Assessmefi¥ = 300, d = g r = 4.85\, Q@ = 3) - Sub-array
weights ( BEM).

e Table Il. Hybrid Formulation(N = 300, d = % r = 4.85)) - Computational indexes for
the solution obtained with theB E M and theH ybrid — IBEM.
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Fig. 1 - L. Manica et al., “A Fast Graph-Searching Algorithm ...”
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Conmpute v, : j=1,...,J;

Sort v; : j=1,...,J;

Randomy Initialize po;
Conpute Cost of wo: ¥o =T (c)

until (¢t < Tmaz)

Update ¢ t—t+1;
Set ¢®: @ =c? ;;
for (j=2,..,J—1) do
if (j == border elenent) then
i f (c?:c?fl) t hen
s;j :c?—l—l;
else if (c;.')(t) :cg')(t)ﬂ) then
sj :c?(t) —1;
endi f
Update 4y: c? = {c(l') = 1"“70?—175J"C§_)+17"'7CJ = Q};
endi f
Conpute Cost of 4y Uy=0(c?)
if (Vy<Wy) then
Update ¢ t«—t+1;
Update W9P': W9P' = Wy,
Updat e v by = 1,

Update c®: ¢ =c?;
(6= Do) or (eintos PRI e
t
Set Topt: Topt =t;
Set topt: ¢ =c;

Cormpute wd, (8);
stop

endi f
endi f

endf or

endunti |

Fig. 3 - L. Manica et al., “A Fast Graph-Searching Algorithm ...”
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Legend:
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H(K)

Wopt
k w1 Wo w3
1 0.4668 | 1.3435 | 2.1736
2 0.3337 1 0.9763 | 1.6091
Ko =3 0.3355 ] 0.9381 | 1.4469
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CPU — Time [sec] Top
Q 2 3 D 8 2 3 5 8
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