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A Fast Graph-Searching Algorithm Enabling the Efficient Syn-

thesis of Sub-Arrayed Planar Monopulse Antennas

L. Manica, P. Rocca, M. Benedetti, and A. Massa

Abstract

In this paper, an innovative approach in its different implementations for the synthesis of

compromise sum and difference patterns of monopulse planararrays is presented. The syn-

thesis method is based on a sub-arraying technique aimed at generating the compromise

patterns through an optimal excitation matching procedure. By exploiting some proper-

ties of the solution space, the synthesis problem is reformulated as a combinatorial one to

allow a considerable saving of computational resources. Thanks to a graph-based repre-

sentation of the solution space, the use of an efficient path-searching algorithm is enabled

to speed-up the convergence to the compromise solution. In the numerical validation, a

set of representative examples concerned with both patternmatching problems and pattern-

feature optimization are reported in order to assess the effectiveness and flexibility of the

proposed approach. Comparisons with previously publishedresults and solutions obtained

by a hybrid version of the approach customized to deal with the optimization of the sidelobe

level (SLL) are reported and discussed, as well.

Key words: Planar Arrays, Monopulse Antennas, Sum and Difference Modes, Direct Acyclic

Graph.
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1 Introduction

A monopulse tracker [1] is a device aimed at detecting the position of a target by using the

information collected from an antenna that generatessumanddifferencepatterns. These beams

can be synthesized by means of a reflector antenna with two (tracking on a plane) or three (3D

tracking) feeds, or by using linear or planar array antennas, respectively. The latter solution

is usually preferred since array antennas are easy to built and they do not require mechanical

positioning systems to steer the beam pattern. Moreover, array structures can also be easily

installed on mobile vehicles (e.g., aircrafts). Unlike linear structures, a planar array allows

the generation of a sum and two spatially-orthogonal difference patterns [2] [i.e., theazimuth

difference mode(H −mode) and theelevation difference mode(E −mode)] useful to give a

complete description of the trajectory of a target in terms of range, azimuth, and elevation.

In order to synthesize independent optimal sum and difference patterns, Taylor [3] and Bayliss

[4] developed analytical techniques to compute the corresponding excitation coefficients by

sampling suitable continuous distributions. However, these optimal solutions require three in-

dependent feeding networks. Hence, high manufacturing costs usually arise and electromag-

netic interferences unavoidably take place because of the large number of elements in planar

monopulse arrays.

In order to overcome these drawbacks, the sub-arraying technique [5] is a suitable compromise

solution aimed at optimizing pre-specified sub-array layouts. To deal with such an optimal

compromise problem, global optimization approaches [6][7][8] as well as hybrid techniques

have been considered [9][10]. However, since in optimization-based techniques the dimension

of the solution space grows exponentially with the number ofarray elements, few examples

concerned with planar arrays have been dealt with. To the best of the authors’ knowledge, the

compromise synthesis of planar arrays has been recently faced only in [9], where the sub-array

aggregation has beena-priori fixed and a Simulated Annealing (SA) optimizer has been used

to determine only the sub-array gains.

In [11], an innovative method for the optimal compromise among sum and difference patterns of

linear arrays has been proposed. The optimization problem has been recast as a combinatorial

one to significantly reduce the dimension of the solution space and to allow a fast synthesis pro-

cess. The sub-optimal difference pattern has been computedby means of an iterative searching
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algorithm looking for the best solution that belongs to a complete set coded in a non-complete

“linear” binary tree. Thanks to its computational efficiency [12], such a technique appears to

be a good candidate to deal also with two-dimensional (2D) arrays avoiding the computational

drawbacks of stochastic optimization methodologies. However, the extension of the range of

applicability of [11] to planar monopulse arrays is not a trivial task. As a matter of fact, some

fundamental issues have to be carefully addressed. Let us consider that the computational ef-

ficiency of the approach in [11][12] comes from the careful customization to linear arrays of

the synthesis strategy. Moreover, unlike linear structures, the three-dimensional (3D) track-

ing of planar arrays needs of two difference patterns (i.e.,the differenceE − mode and the

H −mode), instead of a single one. Furthermore, although the approach for linear geometries

allows a significant reduction of the dimension of the solution space, the memory requirements

when dealing with planar arrays are not negligible due to thelarge number of radiating ele-

ments. Consequently, the use of an innovative direct acyclic graph algorithm able to reduce the

space of the admissible solutions and increase the efficiency is considered in order to profitably

cope with2D synthesis problems.

The key-points of the proposed approach preliminary presented in its simpler version in [14][15]

are summarized in the following. By exploiting the properties of the solution of the planar

compromise problem, the “solution tree” of the linear case has been collapsed into a more

compact structure, namely thedirect acyclic graph(DAG) [13], to describe the whole solution

space. Such a representation enables the excitation matching synthesis of planar arrays with

large numbers of elements [16] thanks to the significant reduction of both the computational

time and theCPU memory requirements. Moreover, theDAG allows the implementation and

an effective use of a fast graph-searching algorithm to lookfor the optimal planar compromise.

The paper is organized as follows. In Sect. 2, the problem is mathematically formulated by

summarizing the synthesis procedure (Sub-Sect. 2.1) as well as the graph-based searching al-

gorithm (Sub-Sect. 2.2) aimed at exploiting theDAG architecture to efficiently sample the

solution space. Selected results from a wide set of numerical experiments are reported in Sect.

3 to carefully illustrate the behavior of the proposed method and its different implementations

as well as to assess its effectiveness. For completeness, a comparative study with previously

published results from state-of-the-art techniques is proposed (Sub-Sect. 3.2), as well. Further-
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more, a customized hybrid version of the approach is implemented and tested (Sub-Sect. 3.3) to

effectively deal with theSLL optimization problem in planar array. Finally, some conclusions

are drawn (Sect. 4).

2 Mathematical Formulation

Let us consider a planar array lying on thexy − plane whose elements are located on a rect-

angular grid with inter-element spacingdx = dy = d. The coordinates of each array ele-

ment are given byxm =
[

m− sgn(m)
2

]

× d, m = ±1, ...,±Nx andyn =
[

n− sgn(n)
2

]

× d,

n = ±1, ...,±Nm
y , and the array factor turns out to be [17]:

AF (θ, φ) =
Nx
∑

m=−Nx

Nm
y

∑

n=−Nm
y

Imne
j(kxxm+kyyn) (1)

whereImn is an excitation coefficient andNm
y is an integer function of the row indexm de-

pending on to the array boundary. Moreover,kx = 2π
λ

sin θ cosφ andky = 2π
λ

sin θ sin φ.

Dealing with monopulse systems, the optimal/reference summode is generated by setting the

excitationsImn to a set of real excitationsA =
{

αmn = α(−m)n = αm(−n) = α(−m)(−n); m =

1, . . . , Nx; n = 1, . . . , Nm
y

}

characterized by a central and quadrantal symmetry. As regards to

the optimal/reference difference patterns [i.e., theE −mode and theH −mode difference pat-

terns], they are still determined by real excitationsBΘ =
{

βΘ
mn = βΘ

(−m)n = −βΘ
m(−n) = −βΘ

(−m)(−n);

m = 1, . . . , Nx; n = 1, . . . , Nm
y

}

, Θ = E, H, but with quadrantal anti-symmetric distribu-

tions. Usually, the resulting patterns are characterized by narrow beamwidths and low side lobe

levels (SLLs). Furthermore, these coefficient distributions assure pattern features attractive for

tracking purposes (e.g., high directivity and maximum normalized slope along the boresight

direction, i.e., a high angular sensitivity). Unfortunately, the use of three independent feeding

networks is generally impracticable and it is mandatory to find a suitable trade-off between

the optimality of the synthesized patterns and the device feasibility. Towards this purpose, the

sub-arraying strategy has been introduced by McNamara [5].The original problem has been

reformulated into a compromise one: “for a given optimal sum (difference) mode, to define the

sub-array configuration and the corresponding sub-array gains, such that, the synthesized dif-
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ference (sum) modes are as close as possible to the optimal/reference ones”. Accordingly, the

grouping operation yields to a sub-array configuration of the differenceΘ−mode described by

aggregation vectorcΘ

cΘ =
{

cΘmn; m = 1, ..., Nx; n = 1, ..., Nm
y

}

(2)

wherecΘmn ∈ [1, Q] is the sub-array index of the element located at them-th row andn-th col-

umn within the array architecture. Then, the compromise (sub-arrayed) difference excitations

are given by

BΘ

sa
=

{

bΘmn = αmnδ
(

cΘmn, q
)

wΘ
q ; m = 1, ..., Nx; n = 1, ..., Nm

y ; q = 1, ..., Q
}

(3)

wherewΘ
q is the weight associated to theq-th sub-array andδ

(

cΘmn, q
)

= 1 if cΘmn = q and

δ
(

cΘmn, q
)

= 0, otherwise. Hence, the synthesis problem turns out to be equivalent to the

definition of the configurationcΘ

opt and the corresponding set of weightswΘ

opt such that the

compromise sub-arrayed difference patterns, generated byBΘ

sa
, are as close as possible to the

optimal/reference ones.

2.1 Synthesis Procedure

In order to find the solution that better approximates the optimal difference patterns, McNamara

in [5] introduced the following metric/residual

R
(

cΘ, wΘ
)

=
Nx
∑

m=1

Nm
y

∑

n=1

∣

∣βΘ
mn − b

Θ
mn

(

cΘ, wΘ
)∣

∣

2
(4)

to be minimized with respect to the clusteringcΘ and related sub-array weightswΘ in order

to solve thecompromise problem. Equation (4) quantifies the “distance” between the optimal

independent excitations,βΘ
mn, and the actual ones,bΘmn, which are function ofcΘ andwΘ.

Starting from such a formulation and similarly to [11], the following cost function is defined

Ψ
(

cΘ
)

=
1

J

Nx
∑

m=1

Nm
y

∑

n=1

α2
mn

∣

∣

∣

∣

∣

[

γΘ
mn −

Q
∑

q=1

gmnq
(

cΘ
)

]∣

∣

∣

∣

∣

2

(5)
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whereJ is the number of elements lying on the aperture,J =
∑Nx

j=1N
j
y , andγΘ

mn

γΘ
mn =

βΘ
mn

αmn
(m = 1, ..., Nx; n = 1, ..., Nm

y ) (6)

is the so-calledreference gain[i.e., the gain to be assigned to the(m,n)-th element of the

sum array in order to afford the optimal difference pattern]. Moreover, theestimated gains,

gΘ
mnq = gmnq

(

cΘ
)

, are obtained by simply exploiting the grouping theory described by Fisher

in [18]. More in detail, the value ofgΘ
mnq is the weighted (with weightsα2

mn) arithmetic mean

of the reference gains of those elements belonging to the same q-th sub-array:

gΘ
mnq =

∑Nx

m=1

∑Nm
y

n=1 α
2
mnδ

(

cΘmn, q
)

γΘ
mn

∑Nx

m=1

∑Nm
y

n=1 α
2
mnδ (cΘmn, q)

, m = 1, ..., Nx; n = 1, . . . , Nm
y ; q = 1, ..., Q,

(7)

and the sub-array weights are given by

wΘ
q = δ

(

cΘmn, q
)

gΘ
mnq m = 1, ..., Nx; n = 1, . . . , Nm

y ; q = 1, ..., Q. (8)

Now, the compromise problem can be reformulated in the following dual form: “ for a given

optimal/reference sum mode, to define the sub-array configuration (I) that minimize(5) (i.e.,

cΘ

opt = arg
{

mincΘ
[

Ψ
(

cΘ
)]}

) or, in an equivalent way, (II) where each cluster is composed

by array elements whose reference gains have minimum variance”. Fisher in [18] proved that a

contiguous partition(1) of the array elements is the optimal compromise solution of such a dual

problem. To determine the set of admissible solutions, the array elements are sorted in an or-

dered listL according to theirreference gainsγΘ
mn ∈ R. The listL = {lj; j = 1, ..., J}, beingj

the list index and whereli ≤ li+1 (i = 1, ..., J−1), l1 = minmn
{

γΘ
mn

}

, lJ = maxmn
{

γΘ
mn

}

, is

then iteratively partitioned inQ parts to define each time acontiguous partition(i.e., a sub-array

configuration characterized byQ convex sets(2) of L). The number of admissible sub-array con-

(1) A grouping of array elements is a contiguous partition if thegeneric(m2, n2)-th array element belongs to
theq-th sub-array only when two elements, namely the(m1, n1)-th element and the(m3, n3)-th one, belong to the
same sub-array and the conditionγΘ

m1n1
< γΘ

m2n2
< γΘ

m3n3
holds true.

(2) A setS in a vector space overR is called aconvex setif the line segment joining any pair of points ofS

lies entirely inS.
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figurations (i.e., the number ofcontiguous partitions) candidate to minimize the cost function

(5) is equal toU (ess) =







J − 1

Q− 1






instead ofU = QJ as for stochastic optimization tech-

niques (e.g., [6][7][10]) with the strong reduction highlighted by Fig. 1(a). These admissible

aggregations define the solution spaceℜ(ess) to which the optimal sub-array configurationcΘ

opt

belongs.

2.2 Iterative Graph-Searching Algorithm

Likewise to [11],ℜ(ess) could be formally represented by means of a non-complete binary

tree of depthJ (3) , wherein each path identifies an admissible sub-array configuration (i.e., a

contiguous partitionof the array elements). However, although the introductionof the solution

tree for the planar case, as well, could allow a simple representation of the solutions space, non-

negligible computational problems would still remain since a large amount of memoryM (IBT )

[see Fig. 1(b) where an indication of the storage resources is given] would be necessary to store

and to explore such an architecture. Therefore, a more compact data structure, indicated as

direct acyclic graph(DAG) [13] and shown in Fig. 2(a), is built starting from the observation

that some “sub-trees” are recursively shared in the non-complete planar solution tree [Fig. 2(b)]

when defined analogously to the linear case. Generally speaking, theDAG is an oriented graph

without cycles. In this case, theDAG of Fig. 2(a) is a rootedDAG since it has a node (the

root) with no arcs pointing into it. Moreover, it is a binaryDAG whose nodes have a maximum

of two arcs leaving them [13]. With reference to Fig. 2(a), the main characteristics of thedirect

acyclic graphas well as its advantages over the non-complete binary tree [11] are(4) :

• Unlike the binary tree, theDAG is a non-redundant and more compact structure made

up ofQ rows andJ columns, where theq-th row corresponds to theq-th sub-array (q =

1, ..., Q) and thej-th column (j = 1, ..., J) refers to thelj−th element of the sorted listL;

• The total number of nodes (calledvertexes) required for the storage of the wholeDAG

(3) In graph theory, a tree is a graph defined as a nonempty finite set of vertexes or nodes. Two nodes are
connected by exactly one path. In our case, the tree is a binary tree since it is either empty or each of its nodes
has not more than two sub-trees. Furthermore, some nodes in anon-complete binary tree has either no children, or
only one left/right child [13].

(4) The interested reader is referred to [15] for a more in depth description of the graph structure.
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is equal toV (DAG) = Q × (J −Q+ 1)(5) andV (DAG) ≪ V (IBT ) [Fig. 1(b)], V (IBT )

andV (CBT ) being the number of nodes that would be necessary for the storage of the tree

when using the non-complete and the complete binary tree, respectively;

• In theDAG, a trial solution/path is denoted byψ (V,E) [e.g., the red line in Fig. 2(a)]

since it might be described by a set ofV = J vertexes and throughE = J−1 arcs among

the vertexes of the path. In particular, the genericv-th vertex (v = 1, ..., V ) is represented

by a black circle in Fig. 2(a). It identifies the sub-array membership of the array element

whosereference gainγmn is given bylj . For example, the first vertex on the left of Fig.

2(a) indicates that the array element, whose reference gain is equal tol1, belongs to the

q = 1-st sub-array. Thee-th (e = 1, ..., E) edge describes a link between two vertexes of

a path within the graph. It is denoted by a black arrow in Fig. 2(a).

By virtue of the above considerations, (I ) the non-negligible memory saving [M (DAG) vs.

M (IBT ) - Fig. 1(b)], (II ) the easier and more compact [V (DAG) vs. V (IBT ) - Fig. 1(b)] rep-

resentation of the solution space are worth of notice. Furthermore, theDAG still guarantees

that (III ) the elements grouped in the same sub-array have closeγΘ
mn values and (IV) the solution

of the compromise problem can be recast as the search of a pathinside theDAG.

To this purpose, let us observe that only some elements of thelist L, called “border elements”

and identified by thelj indexes whose adjacent list valueslj−1 or/andlj+1 belong to a different

sub-array, are candidate to change their sub-array membership without violating the sorting

condition of the admissible aggregations. Therefore, the tree-searching procedure of the linear

case is suitably modified [14] and extended to look for the optimal sub-array configuration

cΘ

opt that minimizesΨ
(

cΘ
)

(5) among the solutions available into theDAG. The procedure,

which follows the guidelines of the pseudo-code in Fig. 3, starts with the definition of an initial

pathψ0 = ψ (V0, E0) randomly-chosen among the paths of theDAG and setting the initial

aggregation as follows:

cΘ

 =
{

cΘ1 = 1; cΘj = ran [1, Q] : cΘj−1 ≤ cΘj ≤ cΘj+1, j = 2, ..., J − 1; cΘJ = Q
}

. (9)

(5) Since each row of theDAG hasV = J −Q + 1 vertexes, which is the maximum number of elements that
can be grouped into a sub-array, and theDAG is composed byQ rows.
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Successively, a sequence of trial solutions,
{

cΘ

t ; t = 1, ..., Tmax
}

, is generated by iteratively

updating the trial pathψt (i.e.,ψt ← ψt+1, t = 1, ..., Tmax − 1). The new solutions are obtained

by changing the memberships of the border elements of theDAG as detailed in [15]. The

searching procedure is stopped when a condition based on either a maximum number of itera-

tionsTmax (t > Tmax) or the stationariness of the cost function holds true,Twindow andτ (Fig.

3) being a fixed number of iterations and a fixed numerical threshold, respectively. The solution

obtained at the end of the iterative searching procedure (i.e., the pathψopt) is assumed as the op-

timal path that unequivocally identifies the best sub-arrayconfigurationscΘ

opt and corresponding

weightswΘ

opt.

3 Numerical Simulations and Results

In order to assess the effectiveness of the proposed method,a set of numerical experiments

has been performed and some representative results will be shown in the following sections.

The first section will be devoted to illustrate in a detailed fashion the behavior of the proposed

method [indicated in the following asBorder Element Method(BEM)] as well as its reliability

to synthesize a difference pattern as close as possible to the reference one. The others sections

will be aimed at comparing theBEM with state-of-the-art techniques in dealing with bench-

mark test cases in order to complete the preliminary validation presented in [14][15][19] and

further confirm, in a more exhaustive and complete fashion, the underlying proof-of-concept.

Moreover, the third section will be devoted to present a hybrid version of the approach for the

direct sidelobe control of planar arrays and a set of representative results will be shown, as well.

3.1 Sub-Arrayed Planar Array Synthesis

To describe the behavior of theBEM in dealing with planar sub-arrayed monopulse antennas

with large numbers of elements, let us consider a test case concerned with a planar geometry

of N = 4× J = 1264 elementsλ
2
-spaced and distributed on a circular aperture of radius equal

to r = 10λ. It is worth to point out that in these situations, the use of stochastic optimization-

based techniques (e.g., [6][7][10]) involves a high computational burden that limit/prevent their

application. The sum pattern excitationsA have been fixed to afford a Taylor pattern [3][20]
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with SLL = −35 dB andn = 6 [Fig. 4(a)]. Moreover, the referenceH−mode excitationsBH

have been chosen equal to those of a Bayliss difference pattern [4][20] with SLL = −35 dB

andn = 5 [Fig. 4(b)]. Because of the symmetry of the array geometry, the optimal E −mode

coefficients are related to theH −mode ones as follows

BE =
{

βEmn = −βHmn; m = 1, ..., Nx; n = 1, ..., Nm
y

}

(10)

and, analogously, the same relationship holds true for the compromise difference excitations

BE

sa
=

{

bEmn = −bHmn; m = 1, ..., Nx; n = 1, ..., Nm
y

}

. (11)

As regards to the compromise feeding network,Q = 4 partitions have been considered.

For illustrative purposes, let us analyze some steps of theBEM application. Once thereference

gainshave been computed by applying (6), they are sorted in a listL as indicated by the red

line in Fig. 5. At each iteration (t = 1, ..., Topt), a pathψt within theDAG is selected and a trial

sub-array configurationcΘ

t is obtained. As shown in Fig. 5, such an operation is equivalent to

subdivide the list inQ = 4 subsets by selectingQ − 1 cut points. Starting from a randomly-

selected partition (t = 0 - Fig. 5), the path within theDAG is iteratively updated by changing

the sub-array membership of theborder elements, which results in a modification of the partition

points in the list as shown in Fig. 5. The evolution of the sub-array memberships of the array

elements is shown in Fig. 6 where the sub-array configurations determined att = 0, t = 10, t =

30, andt = Topt = 48 are shown. It is worth to note that, starting from a random andunbalanced

sub-array configuration [Fig. 6(a) - N (q)
Topt

⌋

q=1
= 212, N (q)

Topt

⌋

q=2
= 584, N (q)

Topt

⌋

q=3
= 284,

N
(q)
Topt

⌋

q=4
= 184], the array elements tend to be homogeneously distributed to each sub-array

as shown in Fig. 6(d) (N (q)
Topt

⌋

q=1
= 308, N (q)

Topt

⌋

q=2
= 312, N (q)

Topt

⌋

q=3
= 352, N (q)

Topt

⌋

q=4
=

292). Moreover, the convergence values assigned to the sub-array gains are:w1 = 0.2371,

w2 = 0.6838, w3 = 1.0848, andw4 = 1.5027. The corresponding difference patterns in the

(u, v)-plane (Fig. 7) and along theφ = 0o plane (Fig. 8) confirm that theBEM is able to

effectively sample the solution-graph, thus performing aneffective compromise synthesis. As

a matter of fact, starting from an initial pattern characterized by highSLLs as pointed out by

the plot att = 0 in Fig. 8, the final compromise solution [Fig. 7(d)] presentsSLLs that do
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not exceed the value ofSLLmax = −27 dB in the whole angular region. Moreover, the main

lobes of the synthesized pattern are close to those of the optimal difference pattern [see Fig. 8

(v < 0.12) and the central region of Fig. 7(d) compared to that in Fig. 4(b)] by guaranteeing the

same accuracy in terms of angular resolution despite the large average number of array elements

per sub-array (avq=1,...,Q

{

N (q)
}

= J
Q

= 79). To quantitatively appreciate the fitting between

the compromise pattern and the optimal one, let us observe the behaviors and the convergence

values of both the cost functionΨt (5) and thematching index∆ (defined as [11], but extended

to the planar case) shown in Fig. 9.

As far as the computational issues are concerned, it should be firstly noticed that the dimension

of the solution space is reduced fromU = 1.7822 × 10190 (i.e., the dimension of the solution

space when using stochastic optimization approaches) toU (ess) = 5.1598 × 106. Moreover,

the convergence compromise solutionψopt and the corresponding aggregation vectorcΘ

opt are

determined just afterTopt = 48 iterations with aCPU-time equal to39.44 [sec] (on a3.4GHz

PC with2GB of RAM).

3.2 Comparative Assessment -SLL Control Procedure

To the best of the authors’ knowledge, the synthesis of monopulse planar antennas with sub-

arraying techniques has not been addressed with state-of-the-art excitation matching techniques,

probably because of the arising theoretical and computational problems (i.e., ill-conditioning

and matrix storage resources), and it has been recently carried out in terms of pattern-feature

optimization only by Areset al. in [9], where aSA-based procedure has been used to define the

sub-array weights of ana-priori fixed sub-array configurationcΘ. More in detail, the weight

vectorwΘ
SA has been calculated by minimizing the cost function, evaluated at many azimuthal

patterns (φ-cuts), which penalizes a maximum side lobe levelSLL exceeding a specified tol-

erable maximum levelSLLreq. Consequently, since theBEM as well as other optimal exci-

tations matching procedures do not allow a direct and individual control of the grating lobes

of the synthesized patterns [10], the proposed approach hasbeen integrated into an iterative

loop to perform theSLL minimization [or the optimization of other beam pattern features as

the beamwidth (BW ) or directivity, etc...] through the matching with a reference pattern (e.g.,

a pattern optimum in the Dolph-Chebyshev sense [4]) as profitably used for the synthesis of

12



monopulse linear arrays [21]. The flowchart of such a procedure, indicated asIterative-BEM

(IBEM), is given in Fig. 10. In particular, the reference excitationsBΘ(k) (k being the index

of the iterative loop) are recursively chosen until the compromise pattern synthesized with the

BEM satisfies the user-defined constraints.

As far as the comparison at hand is concerned, theside lobe ratio(SLR)

SLR (φ) =
SLL (φ)

maxθ [AF (θ, φ)]
, 0 ≤ θ <

π

2
(12)

shown in Fig. 9 of [9] has been chosen as the pattern feature tobe minimized [i.e.,SLRH(k) (φ) ≤

SLRreq (φ), SLRreq (φ) being the user-defined threshold] and the same benchmark investigated

by Ares in [9] withQ = 3 sub-arrays has been taken into account. OtherQ values have been

also considered, but no comparisons with other state-of-the-art methods are reported here since

not available in the published literature. The obtained results are just shown in Fig. 11 for

validation purposes in the framework of an asymptotic assessment aimed at pointing out, as

expected, the convergence of theSLR behavior to that of the reference pattern whenQ grows.

The planar array consists ofN = 300 equally-spaced (d = λ
2
) elements arranged on a rectangu-

lar grid and belonging to a circular aperturer = 4.85 λ in radius. The sum mode has been set

to a circular Taylor pattern [3][20] withSLL = −35 dB andn = 6.

As far as the application of theIBEM is concerned, the first (k = 1) reference excitations

setBH()
opt has been chosen equal to that of a circular Bayliss pattern [4][20] with SLL

H(1)
ref =

−25 dB andn = 6. At the end of the first loop ofBEM iterations (t(1) = 1, ..., T
(1)
opt , T

(1)
opt = 14

- Fig. 12), the pathψH(1)
opt in theDAG shown in Fig. 13 has been identified, but the arisingSLR

plot (Fig. 14) does not favorably compares with that in [9] since theBEM has not been able to

efficiently match the reference pattern.

Successively (k > 1), the reference pattern has been updated to iterate theIBEM process. In

particular, the reference set of excitations has been set tothat generating an = 6 Bayliss pattern

with SLLH(2)
ref = −30 dB (k = 2) and withSLLH(3)

ref = −35 dB (k = Kopt = 3), respectively.

The plot of the cost function throughout the minimization process is reported in Fig. 12. As

it can be noticed, although different and more restrictive targets (i.e.,SLLH(k)
ref < SLL

H(k−1)
ref )

have been used, the value ofΨ
H(k)
opt still decreases until the convergence when the pathψ

H(3)
opt
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in Fig. 13 [coding the aggregation in Fig. 15(c)] and the corresponding pattern shown in Fig.

16(c) have been synthesized. At the end of the process, the control of theH −mode in φ range

[0o, 80o] appears to be more satisfactory than that in [9] as pointed out by the plots in Fig. 14

sinceSLRIBEM (φ) ≤ SLRSA (φ) ∀φ ∈ [0o, 80o] andavφ {SLRIBEM (φ)} = −25.87 dB

vs. avφ {SLRSA (φ)} = −22.52 dB. The final values of the sub-array gainsw
H()
opt , computed

according to (8) starting from the element distributionc
H()
opt in Fig. 16(c), are given in Tab. I.

As regards to the iterative process and with reference to Fig. 12, it is worthwhile to notice that,

as expected and unlike the matching index∆, the values of the beam-pattern indexes (i.e.,SLL,

SLR, andBW ) do not monotonically decrease because of the excitation matching nature of

theBEM , although in its iterative version, which allows only an indirect control of the pattern

features.

For completeness, the computational efficiency of theIBEM is further pointed out by the

following indications. The dimension of the solution spacedecreases fromU = 6.0826× 1035

toU (ess) = 2701 [Fig. 1(a)], whereas the CPU-time required to complete the outer iterative loop

is equal to2.64 [sec]. Moreover, it should be pointed out that the use of theDAG instead of the

non-complete binary tree (IBT ) allows a memory saving of aboutM
(IBT )

M (DAG) ≈ 1019 (M
(CBT )

M (IBT ) ≈

102).

3.3 Hybrid Formulation - The Hybrid− IBEM Approach

Inspired by the investigations on the synthesis of difference patterns carried out in [22], it has

been shown in [10] that the definition of the sub-array weights for compromise monopulse array

antennas can be formulated as the solution of a convex programming (CP ) problem once the

sub-array configuration is given. By exploiting such a property, a hybrid approach has been

first proposed in [23] to deal with the synthesis of monopulselinear arrays. In the following,

a hybrid version of theIBEM (i.e., theHybrid − IBEM) is customized to the synthesis of

planar arrays in order to extend the range of applicability of the planarBEM from excitation

matching to pattern optimization allowing, unlike theIBEM , a direct control of the pattern

features (i.e.,SLL, BW , etc...).

Similarly to [23], the hybrid approach consists of a two-step procedure where at the first step

the sub-array configuration is computed according to theIBEM (i.e., cΘ

Hybrid−IBEM = cΘ

opt).

14



Successively, the weightswΘ

Hybrid−IBEM , Θ = E, H, of the sub-arrayed difference network are

computed by means of a standardCP procedure minimizing the following cost function

ΨCP
(

wΘ
)

= min
{wΘ

q ; q=1,...,Q}

∂
{

∑Nx

m=−Nx

∑Nm
y

n=−Nm
y

[

ℜ
(

bΘmn
)

cos Υ (θ, φ)−ℑ
(

bΘmn
)

sin Υ (θ, φ)
]

}

∂χ

∣

∣

∣

∣

∣

∣ θ=0
φ=0

(13)
χ being eitherθ or φ andΥ (θ, φ) = kxxm + kyyn, subject to

∂
{

∑Nx

m=−Nx

∑Nm
y

n=−Nm
y

[

ℜ
(

bΘmn
)

sin Υ (θ, φ) + ℑ
(

bΘmn
)

cos Υ (θ, φ)
]

}

∂χ

∣

∣

∣

∣

∣

∣ θ=0
φ=0

= 0 (14)

and

AF (θ, φ)| θ=0
φ=0

=

Nx
∑

m=−Nx

Nm
y

∑

n=−Nm
y

bΘmn = 0 (15)

and to|AF (θ, φ)|2 ≤M (θ, φ) whereM (θ, φ) is a function descriptive of a user-defined mask

on the synthesized difference power pattern. In Eq. (13),ℜ (·) andℑ (·) denote the real and

imaginary part, respectively. At the initialization of theCP procedure, the guess solution is set

to the values of the sub-array weights obtained at the end of the IBEM , wΘ,() = wΘ

opt [Eq.

(8)].

In order to show theSLL/BW control allowed by the hybrid approach, Figure 17 summarizes

the results from a comparative study between theIBEM and its hybrid version in terms of

maximumSLL [Fig. 17(a)] and correspondingBW computed on the principal plane [i.e., the

φ = 0o cut of Fig. 16(c)] [Fig. 17(b)] dealing with the same array configuration of Sect. 3.2.

To better and more exhaustively analyze the potentialitiesof the proposed hybrid approach, the

number of sub-arrays has been varied in the rangeQ ∈ [2, 8] and the synthesized sub-arrays

configurations and weights are shown in Fig. 15. For completeness, the corresponding patterns

are also given [Fig. 16]. As it can be observed (Figs. 16-17),the solutions from theHybrid−

IBEM outperform those of theIBEM in terms of pattern indexes even though with heavier

computational costs. As far as the computational issues areconcerned, the dimension of the

solution spaceU (DAG) and the storage resourcesM (DAG) are given in Fig. 1, whereas the CPU-

time and number of iterationsTCP required to get the final solution for theHybrid − IBEM

andIBEM are reported in Tab. II to point out the trade-off between pattern efficiency and
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computational burden.

4 Conclusions

In this paper, an efficient approach for the synthesis of sub-arrayed monopulse planar antennas

has been presented. Starting from the guidelines of an effective procedure previously devel-

oped to deal with linear geometries, some innovative features have been introduced to extend

the capability of the approach as well as its efficiency, thusenabling the synthesis of planar

monopulse arrays. As a matter of fact, by exploiting some features of the solution, a simple

and compact representation of the space of admissible solutions has been defined, which allows

a considerable reduction of the problem complexity as well as a significant saving in terms of

storage resources andCPU-time to synthesize the compromise solution.

The effectiveness of the proposed excitation matching technique in sampling the solution space

has been assessed through some experiments concerned with high-dimension synthesis prob-

lems computationally unfeasible for stochastic optimization procedures. Furthermore, for com-

parison purposes and to deal with user-defined requirementsbesides matching a reference pat-

tern, theBEM has been integrated in a recursive process that proved to improve the perfor-

mance of optimization techniques in dealing with the benchmarks available in the related liter-

ature and concerned withSLL control.

As regards to theSLL control, the convexity of the problem with respect to a part of the un-

knowns has been exploited by defining a two-step hybrid approach based on theIBEM . Al-

though the heavier computational burden affecting the second step of the hybrid method (i.e.,

theCP procedure), the obtained results point out the improvements coming from the exploita-

tion of the effectiveness of theIBEM in defining the sub-array aggregation and the convexity

of the problem with respect to the sub-array weights.
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FIGURE CAPTIONS

• Figure 1. Sub-Arrayed Planar Array Synthesis(d = λ
2
, r = 4.85λ). Computational

Analysis- (a) Dimension of the solution spaceU and (b) memory resources,M , and

number of vertexes,V , for the storage of the representations of the solution space ver-

susQ in correspondence withN = 300 andN = 40 (CBT →Complete Binary Tree,

IBT →Non-Complete Binary Tree, andDAG→Direct Acyclic Graph).

• Figure 2. Pictorial representation of (a) the Direct Acyclic Graph(DAG) and (b) its

corresponding planar tree (J = 6 andQ = 3).

• Figure 3. Pseudo-code of the iterative graph-searching algorithm (BEM).

• Figure 4. Sub-Arrayed Planar Array Synthesis(N = 1264, d = λ
2
, r = 10λ, Q = 4)

- Relative power distribution of the reference (a) sum Taylor pattern (SLL = −35 dB,

n = 6) and of the (a) H − mode difference Bayliss pattern (SLL = −35 dB, n = 6),

respectively.

• Figure 5. Sub-Arrayed Planar Array Synthesis(N = 1264, d = λ
2
, r = 10λ, Q = 4)

- Illustrative description of theBEM . Evolution of the list partition (t = 0, 10, 30, Topt,

Topt = 48).

• Figure 6. Sub-Arrayed Planar Array Synthesis(N = 1264, d = λ
2
, r = 10λ, Q = 4) -

Evolution of the sub-array memberships of the array elements. Sub-array configurations

synthesized by theBEM at (a) t = 0, (b) t = 10, (c) t = 30, and (d) t = Topt = 48.

• Figure 7. Sub-Arrayed Planar Array Synthesis(N = 1264, d = λ
2
, r = 10λ, Q = 4) -

Relative power distribution at (a) t = 0, (b) t = 10, (c) t = 30, and (d) t = Topt = 48.
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• Figure 8. Sub-Arrayed Planar Array Synthesis(N = 1264, d = λ
2
, r = 10λ, Q = 4) -

Azimuthal (φ = 0o) relative power distribution at (a) t = 0, (b) t = 10, (c) t = 30, and

(d) t = Topt = 48.

• Figure 9. Sub-Arrayed Planar Array Synthesis(N = 1264, d = λ
2
, r = 10λ, Q = 4) -

Behavior of the cost functionΨ and of the pattern matching∆ versus the iteration index

t.

• Figure 10. Flow chart of theIBEM .

• Figure 11. Asymptotic Validation(N = 300, d = λ
2
, r = 4.85λ) - Plots of the synthesized

SLR values in the rangeφ ∈ [0o, 80o] for different values ofQ. Reference Bayliss pattern

[4]: n = 6 andSLL)
ref = −35 dB.

• Figure 12. Comparative Assessment(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Behaviors

of the cost functionΨH(k)
t , SLL, SLR, and beamwidthBW versus the iteration index

(Reference Bayliss patternn = 6 [4]: SLLH(1)
ref = −25 dB, SLLH(2)

ref = −30 dB, and

SLL
H(3)
ref = −35 dB).

• Figure 13. Comparative Assessment(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Evolution

of the solution pathψH(k)
opt synthesized with theIBEM within theDAG mapping the

solution space.

• Figure 14. Comparative Assessment(N = 300, d = λ
2
, r = 4.85λ,Q = 3) - Plots of the

synthesizedSLR values in the rangeφ ∈ [0o, 80o]. Reference Bayliss patternn = 6 [4]:

SLL
H(1)
ref = −25 dB, SLLH(2)

ref = −30 dB, andSLLH(3)
ref = −35 dB.

• Figure 15. Hybrid Formulation(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Sub-array

configurations (left column) and array element weights (right column) synthesized with

theIBEM and theHybrid−IBEM for different values ofQ [Q = 2 (first row),Q = 3

(second row),Q = 5 (third row), andQ = 8 (fourth row)].

• Figure 16. Hybrid Formulation(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Beam patterns

synthesized with theIBEM (left column) and theHybrid− IBEM (right column) for

different values ofQ [Q = 2 (first row), Q = 3 (second row), Q = 5 (third row), and

Q = 8 (fourth row)].
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• Figure 17. Hybrid Formulation(N = 300, d = λ
2
, r = 4.85λ) - Behavior of the (a) SLL

and of the (b) BW for the compromise patterns synthesized by means of theIBEM and

theHybrid− IBEM whenQ ∈ [2, 8].

TABLE CAPTIONS

• Table I. Comparative Assessment(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Sub-array

weights (IBEM).

• Table II. Hybrid Formulation(N = 300, d = λ
2
, r = 4.85λ) - Computational indexes for

the solution obtained with theIBEM and theHybrid− IBEM .
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Compute γj : j = 1, ..., J;

Sort γj : j = 1, ..., J;

Randomly Initialize ψ0;

Compute Cost of ψ0: Ψ0 = Ψ
`

c
Θ
0

´

until (t < Tmax)

Update t: t← t + 1;

Set cΘ
t : cΘ

t = cΘ
t−1;

for (j = 2, ..., J − 1) do

if (j == border element) then

if (cΘj = cΘj−1) then

sj = cΘj + 1;

else if (cΘ
j(t)

= cΘ
j(t)+1

) then

sj = cΘ
j(t)
− 1;

endif

Update ψf: c
Θ
f

=
n

cΘ1 = 1, ..., cΘj−1, sj , c
Θ
j+1, ..., c

Θ
J = Q

o

;

endif

Compute Cost of ψf: Ψf = Ψ
`

cΘ
f

´

if (Ψf < Ψt) then

Update t: t← t+ 1;

Update Ψopt
t : Ψopt

t = Ψf;

Update ψt: ψt = ψt;

Update cΘ
t : cΘ

t = cΘ
f
;

if ((t = Tmax) or (

˛

˛

˛
TwindowΨt−1−

PTwindow
h=1

Ψh

˛

˛

˛

Ψ
opt
t

≤ τ)) then

Set Topt: Topt = t;

Set ψopt: cΘ
opt = cΘ

t ;

Compute wΘ
opt (8);

stop

endif

endif

endfor

enduntil

Fig. 3 - L. Manica et al., “A Fast Graph-Searching Algorithm ...”
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w
H(k)
opt

k w1 w2 w3

1 0.4668 1.3435 2.1736

2 0.3337 0.9763 1.6091

Kopt = 3 0.3355 0.9381 1.4469
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