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An Improved Excitation Matching Method based on an Ant
Colony Optimization for Suboptimal-Free Clusteringin Sum-

Difference Compromise Synthesis

P. Rocca, L. Manica, and A. Massa

Abstract

Dealing with an excitation matching method, this paper@mésa global optimization strat-
egy for the optimal clustering in sum-difference compraarligear arrays. Starting from a
combinatorial formulation of the problem at hand, the psgmbtechnique is aimed at deter-
mining the sub-array configuration expressed as the optiaidl inside a directed acyclic
graph structure modelling the solution space. Towardsehd@ an ant colony metaheuris-
tic is used to benefit of its hill-climbing properties in diegl with the non-convexity of the
sub-arraying as well as in managing graph searches. A edlagt of numerical experi-
ments are reported to assess the efficiency and currenatioris of the ant-based strategy

also in comparison with previous local combinatorial sharethods.

Key words: Sum and Difference Patterns Synthesis, Monopulse Antentiaear Arrays, Ex-

citation Matching, Directed Acyclic Graph, Ant Colony Opmiization.



1 Introduction

In order to properly solve the “optimal compromise” probl@mmonopulse radar tracking ar-
ray antennas, several techniques based on sub-arrayiegokan proposed to reduce the com-
plexity of the feed network and to realize cheap and compeicds still maintaining a high
angular resolution in tracking moving objects. First prepd in [1], the sub-arraying consists
in optimizing, for a fixed and ideal sum mode, pre-specifigtatray layouts to synthesize a
difference pattern having the slope around the centralasilarger as possible (i.e., the high-
est accuracy of the radar localization) and well-shapedlsimes for clutter and interferences
rejection. In his work [1],McNamara mathematically determined the compromise solution
through the solution of an over-determined system of liregarations coming from the exci-
tation matching of the independently optimal sum [2][3] athifference [4][5] sets, while the
sub-arraying was-priori set. Unfortunately, such an approach usually requires nsaity
arrays to get satisfactory results. Therefore, the symtwdarge arrays with a non-negligible
number of elements turns out to be practically infeasible.

Alternative approaches based on evolutionary algorithengetbeen developed [6][7][8][9].
These techniques do not suffer from the ill-conditioningtlas formulation in [1] and have
shown to work effectively dealing with complex functionalsloreover, they allow a simple
and efficient inclusion o&-priori information and only require a suitable definition of the ob-
jective function to be optimized (e.g., sidelobe level T8[B][9] or directivity [10]). On the
other hand, it cannot be neglected that the computatioaal émd the memory requirements
rise very rapidly when the number of array elements increasen if enhanced versions (e.g.,
[11]) are used.

Recently, a new approach still based on the optimal excitatmatching has been proposed in
[12]. Besides the methodological and algorithmic novslirgroduced, the main result yielded
is the proof that the compromise synthesis problem can beulated as a combinatorial one
where the dimension of the solution space grows as a bindmmation of the number of ar-
ray elements (and not exponentially as in classical optation formulations). Moreover, only
the sub-array aggregations are looked for, while the suyareights are obtained as a “free

by-product”. In order to solve the problem at hand, the sotuspace has been represented



through a tree structure where the best compromise solatmesponds to the minimum cost
path. Moreover, arad-hoc local search strategy (calld8EM) has been implemented to ef-
fectively sample the solution space. In spite of the goodlte®btained in pattern matching
[12][13], or boresight slope optimization [14], ai’flL control [15] also further improved by
means of a hybrid approach [16] aimed at exploiting the mabtonvexity [9][17] once the
aggregation has been set, the whole procedure could sufier & misleading clustering of
the array elements that would deeply influence the secomd(see, the weight computation)
since the functional to be optimized is non-convex with ee$po the sub-array memberships
of the array elements. To avoid this drawback, global oaton is required for solving the
clustering step since local searches could get stuck irdgal lminima. However, “standard”
evolutionary techniques or general purpose optimizeractine adopted because of their com-
putational costs especially when dealing with high-dinnemgroblems anéd-hoc algorithms
must be used. Accordingly, this paper describes and aralymeperformance of a suitable
state-of-the-art evolutionary strategy, namely the Anto@g Optimizer ACO) [18], whose
intrinsic structure seems to be very appropriate to fullpleit a suitable defined graph-like
model of the solution space. The preliminary assessmenédarut in [19] and concerned with
a tree-based representation of the solution space prowdet: indications on the effective-
ness of thedCO in dealing with compromise problems. As a matter of facthsaic approach
should in principle avoid the local minima of the cost funatbecause of itkill climbing be-
havior as a global optimizer. On the other hand, it shouldgoer better than other 'physically
inspired’ optimization algorithms because its intrinsmrinatorial nature able to fully adapt
to the description of the solutions as an ensemble of cootigypartitions [12].

The outline of the paper is as follows. In Section 2, the sgsith problem of the optimal
compromise among sum and difference patterns is formulatéerms of combinatorial opti-
mization by also representing the solution space througeffactive graph-like structure for
dealing with high-dimensionality. Then, after a short esviof theBE M (Sect. 2.1), the ACO
for graph-searching is carefully described (Sect. 2.25éation 3, the results of a selected set
of numerical experiments are reported in order to firstlyctiee the ACO behavior and then

to point out its advantages and best features compared 6 £he . Finally, some conclusions



are drawn (Sect. 4).

2 Mathematical Formulation

Let us consider an isophoric linear array 8f equally-spaced elements. The array excita-
tions are supposed to be real and symmetric with respecteathenna center, such that
only M = % elements are considered in the calculations. The probletheotompromise
between sum and difference patterns can be mathematicatiyufated as the constrained
minimization of a functionV (A, W) [17] whose arguments are the sub-array vector
{am € [1,Q]; m=1,..., M}, wherea,, = q if the m-th radiating element belongs to theh
sub-array, and the real values of tesub-array weight$V = {w,,; a, =1,...,Q}. For a
given and optimal sum mode Bt= {s,, = s_,,; m = 1,..., M} [2][3], the problem solution

is the definition of the two unknown vectors and W, such that the compromise difference

excitationsB = {b,, = —b_,,; m = 1,..., M’} given by
b = SmWq,, ; m=1,...,. M Q)

afford a difference pattern that satisfies an user-defingdirement (e.g., matching a refer-
ence difference pattern or difference pattern-featuréisropation as good trade-off among deep
slope at boresight, low sidelobes, and narrow beamwidthg doefficiento,, , a,, = 1, ..., @,

in (1) is the weight of the sub-array to which theth element belongs to. Figure 1 shows
a sketch of the antenna feed network where only half arraycttre is shown. Dealing with
an excitation matching problem [1], once the independenplymal sumy [2][3] and differ-
enceA = {d,, = —d_,,; m =1, ..., M} [4][5] excitations are given, the compromise synthe-
sis recasts as the minimization of the square distance beatite optimal/targef and ac-

tual/compromisé3 difference coefficients

V(4 W)= A= B @



In[12], it has been shown that after simple algebra Eq. (@)stout to be a weighted summation

of square distances

M
VA W) = 2 s (g i, ) ©
m=1
where each term of the summation is weighted by the correfipgns?, value, -+ being a
normalization coefficient. Moreover,, = ‘jfz, m = 1,...,M, are the so-calledptimal
weights [12]. Equation (3) defines a least square problem, where tsah of the summa-
tion (g,, — wa,,)°, m = 1,..., M, is the square distance between theth optimal weight g,,,
(known) and the corresponding sub-array weight (unknown).
By virtue of the fact that all terms in (3) are real-value@ (is,., g, w,,, € R,m =1, ..., M;
a, = 1,...,Q) and the problem solution is a least square solution, thelasions drawn in
[21] also apply in such a case and can be profitably explodgeddach a suitable compromise
solution. More specifically,d) a least square partition that minimizes the cost functino8) is

acontiguous partition (V; (b) the number ofssential contiguous partition is finite and equal to

M -1
T(ess) = ; (c) the values of the sub-array weights_, a,, = 1,...,Q, are equal
Q-1
to
M 25
e, (4) = Tzt oo @

a Zi\il 820a,ap
since, for a given contiguous partitiohy the point minimizing the sum of the square distances
in each contiguous subset (i.e., a convex set containinglémeents assigned to the same sub-
array) is the weighted arithmetic mean of the correspondipo/alues. In (4),d,,,., IS the

Kronecker deltaq, = 1if a, = a,, andd,, ,, = 0 otherwise). According to these guide-

lines, the problem solution only requires the synthesisefdptimal clusteringi®”* since the
sub-array weight§/’*”* are computed as a by-product through Eq. (4) [u€:f = w,,, (A™"),
am =1,...,Q].

(1) A partition is calledcontiguouswhen given any three real elemends, (g;, andgy ), whereg; < g; < gk,
if g; andgy, belongs to a subset, then algphas to belong to the same subset.




2.1 BEM for Graph-Searching

In[12], it has been shown how the solution space oftthi guous partitionscan be represented
in an effective fashion through a non-complete binary tregepth M/ — 1, wherein each level
of the tree from the root to the leaves defines the sub-arrayplmeeship for an element of the
array. A more compact and non-redundant structure ableu® gicomplete representation
of the whole set of admissible sub-array configurations seldaon aDirected Acyclic Graph
(DAG) [20]. As a matter of fact, the non-complete binary tree df][tan be reduced to an
equivalentD AG by simply noticing that some parts of the tree recursivepesd themselves.
Generally speaking, th® AG is a graphG = (V, E)) composed by a set df vertexes and
FE edges indicated in Fig. 2 (for the case wheh= 10 and@ = 3) by circles and arrows,
respectively. As regards to the compromise problem, i is made ofQ) rows (i.e., the
number of sub-arrays) and — @ + 1 vertexes within each row (i.e., the maximum number of
elements that can be assigned to a single sub-array by esimgjchon-null clusters). Moreover,
the paths inside the solution graph have the same léfigtqual to)M — 1 and each path codes
a trial sub-array configuratioA.

In order to explore the solution graph looking for the patmimizing (3), theBorder Element
Method (B E M) first proposed in [12] dealing with a tree architecture iapteéd here to work
with the D AG, as well. Accordingly, the so-calldsbrder elements[12] are now those elements
of the actual configuration/path whereof at least one ctoslesnent of the path belongs to a
different row of theD AG (i.e., it is assigned to a different sub-array). For sakelafity and
with reference to Fig. 2, the cluster configurations aredgatid by the red edges and the border
elements are denoted by the blue vertexes. Likewise to jL#, possible to obtain a new
admissible trial aggregatiad’ just changing the membership of a border element.

As far as the sampling of thB AG structure is concerned, theE' M is first aimed at looking
for the border elements of the current pati” belonging to theDAG and successively at
changing their memberships (once a time), until a termomatriterion based on a maximum
number of iterationgs (k = 0, ..., K; k being the iteration index) or on a stationary condition of

the cost function valu& {A(k)} is reached. For illustrative purposes, a pictorial repmészon

(2) The length of aD AG is equal to the number of edges of the longest directed path.



of the BE M-based searching is given in Fig. 2. Starting from the guelsgisn A displayed
in Fig. 2(@), the iterative process stops after two iterations deteimgi the final aggregation

ABEM — A® shown in Fig. 2¢).

2.2 ACO for Graph-Searching

Analyzing theBE M [12], it is simple to recognize that such a method, for botle ind graph-
like architectures, is a deterministic technique thatexsfiof the usually standard drawbacks
of local search algorithms. In particular, ti&~ M solution might be trapped in a local mini-
mum and strongly influenced by the starting guess aggreyatffd chosen at the initialization
because of the non-convexity of the problem at hand.

In order to overcome the problems related to the presenaacaf minima in the cost function
(3), theAnt Colony Optimizer (ACO) is adopted here to search for the optimal patH within
the solution graph that minimizes (3). TH& 'O is a global optimization algorithm inspired by
the foraging behavior of ant colonies looking for food sa#¢18]. The ants look for the short-
est path between the food sources and the nest. Towardsthigach ant leaves a chemical
substance, callepheromone, while moving in the space surrounding the nest. The amotnt o
pheromone on a path quantifies its degree of optimality, todécays with time dvaporation
mechanism). These mechanisms allow one to avoid poor faade® on one hangbieromone
release) and on the other, to efficiently sample the whole solutioacsppheromone evapora-
tion).

The ACO developed byorigo [22] has been widely applied especially in distributed aisd d
crete problems such as routing [23][24], assignment [Zg][@heduling [27][28], subset [29],
but it is relatively infrequent in electromagnetics. To thest of authors’ knowledge, it has been
recently applied to few electromagnetic problems (e.gtermma synthesis considering binary
[30] or real implementations [31][32][33] and microwavedging [34]). However, because of
its effectiveness in facing hard combinatorial problemd since the combinatorial formulation
of the optimal compromise between sum and difference petterquires the searching of the
best path within a graph, théC'O seems to be a suitable metaheuristic for the problem at hand.

Towards this aim, the simplest version of tH€'O, namelyAnt System [18], is used. Unlike



[19] where some preliminary results concerned with the-brasedAC'O have been reported,
the proposediC'O implementation is customized to the graph architectureaopgrly address
the synthesis of small as well as large arrays. As a matteaaf tue to the high number of
vertexes needed for the storage of the solution, the apprimafl9] presents some memory
limitations when dealing with very large dimensional sgac®n the other hand, it must be
pointed out that thelC' O performances in terms of solution accuracy do not depentd®rep-
resentation of the solution space, but only the feasitalitgt the computational indexes (i.e., the
storage resources and the rate of sampling the solutior}pee affected by the architecture at
hand.

The proposed implementation of tH&”O-based approach can be summarized as follows. Each
i-th ¢ = 1, ..., C) ant codes a vectar, of M integer values that models a trial sub-array con-
figuration 4; (i.e.,c; = c¢{A,}). Every vector is initialized to the null one at each iteati
(i.e.,ggk) ={0,...,0}, k=1,..,Kandi = 1,...,C), such that all ants start from the root of
the graph (Fig. 3). Successively, the vectors are filled-bteptep while the ants are moving
through each level of the graph as shown in Fig. 3. At theah#tation ¢ = 0), the quantity

of pheromone on each edg®’ (¢7), ¢ = 1,..., E is the same and each edge of the graph can
be explored with a uniform probability® (e7) = 0.5. As regards to the apex it is equal to

q — q if the edgee’ connects two vertexes belonging to the same sub-arraytfieessame row
of the DAG) and tog — ¢ + 1 if it connects two vertexes assigned to different sub-ari(ag.,
different rows of theD AG). Moreover, the pedex, z = z1, ..., z)/_1, identifies the level of the
edge within the graph. Concerning the iterative lobpx 0), the probability of choosing one

of the two subsequent edges (if present) at each vertexes diy

p(kz) (6r) _ T(k) (62)
2 r® (el7) 4 k) (e‘f"“) ’

Z2=21,..,2m-1; T=¢q — q+[0,1]. (5)

When the whole ant colony has completed a path withinhg-, the pheromone level*) (e])

of each edge is updated as follows

c
H
7*HD (er) — 70 (er) + Z 8 ) =7 vrk) (en) (6)

= v (aW)



whered , « = 1 whene] € gf.’” [gf.’” = Q{Agk)}] andd_, « = 0 otherwise,H being a
positive constant. Successively, the evaporation praecidikes place in order to reduce and at
most delete worse paths from the graph

PO () o (1= p) 7D (), W () )

z z

p € (0, 1] being a parameter aimed at controlling the evaporation r&ti@ally, the same
stopping criterionk = k.,,4) used for theBE M is adopted here for tha C'O-based method to

allow fair comparisons.

3 Numerical Simulationsand Results

Because of the novelty of the proposed approach, the firsopérnis section (Sect. 3.1) is de-
voted to the calibration of thaC'O algorithm [35] when dealing with the searching of the “best
compromise” solution among those admissible within thetswh graph. Successively, the use
of the ACO is motivated (Sect. 3.2) showing how ti#&~ A solution suffers from the non-
convexity of the aggregation problem because of the loctlraaof the algorithm. Finally, a
set of comparative results concerned with a wide number wigzomise problems are reported
(Sect. 3.3) to point out potentialities and current limdas of theAC' O-based approach. Since
both BEM and ACO are aimed at determining thoest compromise difference pattern close as
much as possible to the optimal one, besidegthé)M by McNamara [1] discussed in [12], no
comparisons with other pattern-features optimizatiorcpdures (i.e., [6][7][8][9][15][16][17])
will be reported since these latter are devoted to satidfgreint criteria and not at better match-

ing an optimal difference pattern.

3.1 ACO Calibration

A key feature of theACO algorithm is the simple implementation. As a matter fackithes
the numbelC of ants in the colony, it only requires the definition of twar@aeters to work,
namely the pheromone update coefficiéghtand the pheromone evaporation coefficigntin

order to determine their optimal values for the problem atdyan extensive set of numerical

10



experiments has been carried out by considering an array ef 40 elements and) = 6

sub-arrays as reference benchmark. In this case, the nwhbentiguous partitions is equal to

T(ess) = = 11628. As far as the reference excitations are concerned, théel sy
)

a Dolph-Chebyshev sum pattern witi.L = —25dB [3] and a Zolotarev difference pattern
with SLL = —30dB [36] have been chosen. Concerning the calibration stue@yy#tues of
the ACO control coefficients have been varied in the ratfie= [0 : 5] andp € (0: 1] [18],
respectively. Moreover, because of the stochastic natutleecAC'O algorithm, 100 different
simulations have been performed for each setting of theredion parameters. Each simulation
has been run with a number of ants equalCto= [3, 5, 8, 10, 100, 1000] for a maximum
number of ' = 1000 iterations.

As a representative result, the average performances @r parameter configuration when
C = 3 are reported in Fig. 4. As it can be observed, the convergeostgfunction value is more
sensitive to the evaporation coefficignand less to the value of the parametéthat controls
the pheromone update. A similar conclusion holds true wisattthe value of”. Concerning the
optimal setup, the configuratidid = 1 andp = 0.05 has been selected since the corresponding
representative point in Fig. 4 lies in the “lowestvalue” region and the valu& = 1 has
already been identified as an optimal choice in other graptcheng problems (e.gTraveling
Salesman Problem [23]).

As regards to the dimension of the ant colony, the analysssiieen devoted to define the
optimal value ofC' in relationship to the dimension of the solution spd¢e*). Towards this
end,C has been varied betwednand --7(**). Figure 5 shows the results of the statistical
study, each cross being the averdgamong the values reached at the end of each grouoof
simulations. For completeness, the standard deviatiohaw/is, as well. From these results,
it can be inferred that the choie@ ~ [T . _L.T(=)] defines a good rule of thumb to
reach the global solution with a percentage ab®3 ®) . On the other hand, the minimum
value ofC}, = 5 ants has been set as lower bound in order to exploit the catypebehavior

of the AC'O in those problems where the previous criterion would give dmall values (i.e.,

(3) 1t is worth noting that the results here reported have beeaingd under the assumption of a maximum
number of iterations equal t& = 1000. Probably, increasing the number of iterations would aloseduction of
the number of ants for obtaining the same conclusions.

11



C < Cp).

3.2 ACO’'sHill-Climbing Behavior

In order to show how the performance of tB&Z M [12] are influenced from the choice of the
initial solution, while theAC'O is not dependent on the starting guess and therefore maustrob
to the local minima problem thanks to its hill-climbing perpes, three samples of compromise
syntheses concerned with small as well as larger arraysiffereht number of sub-arrays are
discussed in the following.

The first experiment deals withd-elements arrayX/ = 10) with inter-element spacing = g
The optimal sum and difference coefficients have been chosaford a Dolph-Chebyshev sum
pattern withSLL = —25dB [3] and a Zolotarev difference pattern with. = —30dB [36],
respectively. As regards to the compromise feed netw@rk; 3 sub-arrays have been used.
Concerning theContiguous Partition Method (C'P M) presented in [12] and customized in the
present work to the searching within the solution graphptstemal weightsy,,,, m = 1,..., M,

are first computed as described in Sect. (2) and then sortedior in order to obtain the list
L ={ly: 1, <lpy,h=1,..,M —1} [12], wherel; = min{g,} andly, = maz {gn}.
Each element of the sorted listis assigned to a level of the solution graph as shown in Fig.
2. Starting from a uniform sub-arraying (i.e., a sub-arrapfiguration wherein the number
of elements within each sub-array differs at most of one el@when) is or not a multiple

of Q), the initial sub-array vector turns out to bE” = {1112233321} and¥ (A(O)) =
2.17 x 1072, Then, the iterative loop of th8 £ )M takes place as described in Sect. 2.1. For
completeness, Figure 2 shows the corresponding evolufitineoB £ )M trial solution in the
solution graph. As it can be noticed, tiB M gets stuck only aftet?ZM = 2 iterations. The
final grouping isAPEM = A® = (1122333321} [Fig. 2(c)] with a convergence fitness
value of U (APFM) = 1.08 x 1072, while the intermediate solutiod) = {1122233321}
[Fig. 2(b)] has a fitness equal & (A(l)) = 1.48 x 10~2. The radiation patterns generated at
the various iterations and the reference pattern are regpantFig. 6, as well.

Successively, thelC'O has been applied to the same test case. Since the numbeal Gioki

12
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lutions within the graph is equal t&(¢*s) = = 36 and C, according to the crite-
2

rion previously defined, would result lower than one, th€' O population has been set to
C = Cyp = 5. Moreover, the pheromone update and the evaporatiop have been fixed
to their optimal values. As expected, tH€’O outperforms theBE M since the fitness value
of the synthesized solutiaA”““ = {1223333332} is equal tol (4"“?) = 8.26 x 1073

[vs. ¥ (APPM) = 1.08 x 1072]. To further confirm theACO effectiveness, it is worth noting
that the clustering determined by th&'O is the one having the minimum fithess among the
T(s) = 36 admissible different clustering. On the contrary, A& M has been able to retrieve
the second best solution coded into the solution graph asrshoFig. 7 (red line) where each
cross denotes the value among th&(¢**) = 36 contiguous partitions ranked according to their
cost function values. More specifically, tli M solution is evidenced with a circle, while the
minimum fitness value or global minimum of the excitation aég cost function coincides
with the ACO clustering [i.e., " = ¥ (A”““)]. On the other hand, it is also interesting
to point out that, even though the £ M solution is the second best compromise, it has four
elements over ten whose sub-array memberships are diffieoam those of the global optimum
AP recognized by thelCO-based algorithmd4¢© = A",

For completeness, Table | details the results obtained thighBE M and the ACO by re-
porting the final sub-array configurations and the weightueal Moreover, the synthesized
difference compromises are shown in Figa8(Because of the excitation-matching nature of
the proposed technique, let us quantify the closeness @ribiag patterns with respect to the

optimal/reference one by computing tpattern matching A index [12] defined as followd):

Iy [IAF @) = |AF ()" du
B Jy 1AF ()] du

, (8)

AF (w)|" and|AF (u)|**" are the normalized reference pattern

n

whereu = sinf, 6 € [0, /2],

and the synthesized one, respectively. As expected ancaitedi by the corresponding lower

(4) Such an index is the main performance indicator since btaffO and BEM are concerned with an
excitation matching problem [1][12][13] and not with themmization of a pattern parameter (e.g., th&L) as
it happens in [6][7][8][9][15][16][17].

13



fitness value, thelCO pattern is closer to the reference one. As a matter of faist At'¢° =
0.2689 vs. ABPEM — ().3199 (Tab. Il). Table Il also reports the values of other indexesrier to
give a complete overview of the features of the obtainecepadt(i.e., sidelobe leve$, L L, and
main lobe width,B1V). Moreover, the computational issues are pointed out bydhewing
indexes: the number of convergence iteratidns,, the number of function evaluations,,,,,

and theC'PU-time t necessary to findi*<»¢) on a3.4 GHz PC with2 GB of RAM. As it
can be noticed, boti®B £ M and ACO are able to find a convergence solution almost in real
time sincet < 1078, Such an event points out once again the computationalesftigiof the

C PM approach [13], but also the usefulness of the graph reptats@mthat enables the use of
an evolutionary algorithm without excessively increasing computational costs and memory
resources.

In the second experiment, the same array geometry of thegueexample has been consid-
ered, but the array has been partitioned igto= 8 sub-arrays. Moreover, a Zolotarev dif-
ference pattern wittb LL = —40dB [36] has been adopted as reference target. It is worth
observing that despite the higher number of sub-arraysditmension of the solution space

is still equal to7(°**) = 36 thanks to the symmetric nature of the binomial distributjiog.,

9 9
T(ess) = = = 36]. Analogously to the previous example, tBd’ M stops after

7 2
kEBEM — 9 jterations synthesizing the solution in Tab. Ill, but intlease othes solutions with

end
lower fitness values are present in the solution graph (Figgréen line). On the other hand,
the ACO has been able to reach the global optimum in Tab. Ill aff&j° = 2 iterations with
a total number of fitness evaluation equaltgi° = 10 sinceC = Cj, = 5. In particular, the
ACO solution presents a fitness value of more than one order iminatg below the one of

ABE]\I

the BEM [i.e., ¥ (A7) = 1.13 x 107° vs. ¥ (AP"M) = 2.49 x 10*] and Zeo ~ 3.76

as it can be qualitatively observed by comparing the pateirFig. 8¢). For the sake of
completeness, Table Il compares the retrieved solutioteyims of performance indexes.

The last experiment of this section is concerned with a lawgform array of40 %-spaced
elements. A Dolph-Chebyshev sum pattern viithl. = —25 d B [3] and a Zolotarev difference
pattern withS L = —30 d B [36] have been chosen as reference patterns and the nunsusds-of

arrays has been set € = 4. In such a case, the number of possible sub-array configusati

14



within the solution space is equal ##°*®) = 969. As far as theACO is concerned( =

10 ants have been used. The two approaches have found thepmrdésg solutions after
kBEM = 21 andk/ S = 34 as shown in Fig. 9 where the behavior of the cost functionndyri
the iterative searching process for both th& M and theAC'O is described. The synthesized
sub-array configurations and weights are given in Tab. I\émghs the corresponding patterns
indexes are reported in Tab. Il. As expected and likewisehtodrevious experiments, the
BEM is still trapped into a local minimum and the retrieved slntturns out to be sub-
optimal. However, it should be observed (Fig. 7 - blue liregttthe BE M configuration is
the third best contiguous partition amoiigf**) = 969 different solutions and the value of the

ratio giiﬁj ~ 1.11 assesses its closeness to the optimal one. As regards tortiputational

issues, such a test further confirms the efficiency ofBlte\/ (in terms of speed) in exploring
the solution space being®™ < 10~7 while t4“C = 4.5 x 1073. As a matter of fact, although
the C PU-time required by theAC'O-based approach is certainly smaller than that of standard
global optimizers, it cannot be omitted that from a compate! point of view theB E M results
more competitive than thaC'O when the ratio%f gets larger and larger. Such a statement will

be further analyzed in the following section.

3.3 ACOQO’'sPerformances and Problem Dimensions

In dealing with the optimal compromise between sum and idiffee patterns, different global
optimization techniques have been applied to determinentb&t suitable partition of the ar-
ray elements into sub-arrays that minimizes a suitable fwgttion related to some pattern
features. Among them, it is worth mentioning tGenetic Algorithm[7], the Differential Evo-
lution Algorithm[8] and its enhanced version [11], and ewulated Annealing [9]. Despite the
different way of tackling the problem at hand (i.e., direptimization of element memberships
and weights [7][8][11] or two-step nested approach [9] expig functional convexity), the
dimension of the solution space to be explored for retrigthre elements aggregation is equal
to 7" = QM since each clustered configuration can be expressed asi@ stid/ digits in

a ()-based notation system [12]. Let us now suppose to use imdast@ fashion (i.e., without

reformulating the problem at hand as a combinatorial ondplal optimizer and to apply the
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rule deduced in Sect. (3.1) for the population size [(E?") ~ 102 x 7] for running a
simulation in a fixed number of iteratior looking for the optimal aggregation within the set
of T*Y) possible solutions. The total PU time necessary to complete such a simulation turns
out beAt(?) = 5t x K x C°) | §¢ being theC' PU-time for one evaluation of the cost function.
Moreover, it should be pointed out that there is not guaetteat the synthesized aggregation
is the global optimum of the functional at hand. Then, leteferrto the combinatorial formu-
lation of the compromise problem and map the reduced solsfiace of dimensiofhi**) into

the graph representation described in Sect. 2.1. By expipstuich a structure and accordingly
using the proposed implementation of tAé€'O, the number of ants of the colony turns out to

beC(s) ~ 1072 x T(°**) much smaller thag'**? sinceT(**) grows at most polynomially [i.e.,

M—1
T(ess) = ] and not exponentially ag*t) [T(t*) = QM]. Therefore, the iterative

Q-1

optimization runs for a time\¢(“) = §¢ x K x C(¢s5) which satisfies the following condition
Atess) < Attt ) sinceC(es*) < C*! . Such a conclusion clearly evidences the significant
reduction of the computational burden as well as the morétpbde and proper use of a suit-
able global optimization technique within the combinaabframework. As a matter of fact,
although also in this case the convergence to the globahojnti solution is not guaranteed, the
probability of reaching it significantly grows compared be tstandard use of global optimizers.
In order to detail such an argumentation, let us assume onathdisposal a limited amount
of time At(*Y) for defining the best aggregation for the compromise proldéimand. On one

hand, theACO-based approach would havek’ = K’ — K more iterations for exploring the

solution space, being’ = &étg(fjs). On the other hand, it would be possible to use a larger
colony of C\**) = %f:; ants for the same number of iteratioisand the following conditions

would hold true:C{*** > C(9) andC\***) ~ T(3)_ In this latter case, the convergence of
the ACO-based procedure to the optimum clustering would be assineé each ant could be
assigned to explore a single and different path of the smiwgraph thus covering/sampling the
whole solution space.

In order to assess and confirm these indications, Figuread @ hsummarize the performance

(5) For the sake of simplicityjt has been assumed to be equivalent for both standard and ratoil
optimizations. However, please also consider th&t®) < 5t(**Y) since usuallyit(*°*) requires the computation
of a pattern feature, whilét(¢**) is related to a matching operation Eq. (3).
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achieved with theBEM and ACO methods. The plots refer to a representative set of simula-
tions performed by varying the number of elements of theyaayzerture betweev = 20 and
N = 500, but maintaining a uniform inter-element distande< %). In all the experiments, the
sets of reference excitations have been chosen to gendbatipla-Chebyshev sum pattern with
SLL = —25dB [3] and a Zolotarev difference pattern witl.L = —25dB [36]. Moreover,
the number of sub-arrays has been fixed}te= 8. As regards to thedC'O values, they are
related to the average performance over a statistical séd aidependent executions of the
same simulation (i.e., with the same parametric configomatbut varying the randomness in
the ACO). In particular, the plots denoted byC'O and ACO* indicate the values obtained
when theACO algorithm has been run fak = 1000 iterations with a colony of>(¢ss) and
C{ess) ants, respectively. As expected, tH€'O-based approach wit@{ess) trial solutions for
each iteration always outperforms ti ). Unfortunately, wheri'¢**) turns out to be too
large, both the computational load and the storage reqeinésrof theACO result quite cum-
bersome and once again, although with larger dimensiomgy tee same drawbacks usually
encountered by standard global optimizers when dealing moh-small array geometries. In
such a situation, th& £ M seems to be more attractive even though less robust agagadt |

minima problems.

4 Conclusions

In a recent paper, it has been shown how the excitation nmgdiormulation of the optimal
compromise problem can be recast as a combinatorial onepigierg the knowledge of in-
dependently optimal sum and difference modes. Thanks teearépresentation of the set of
admissible solutions, a local search strategy, calleddyaetbment methodKE M), has been
implemented to efficiently explore the reduced solutiorcepaith a large saving of computa-
tional resources. Instead, afC'O-based technique has been considered in this paper in order
to avoid the occurrence of sub-optimal aggregations cabygetie presence of local minima

in the non-convex excitation matching functional. Towatkis end, the solution space has
been described through a directed acyclic graph and the Alang Optimizer has been used

to look for the minimum cost path of the graph fully explogiits intrinsic characteristics very
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appropriate for exploring such a kind of architectures.
From the analysis carried out within this research work amdrearized in this paper, the fol-

lowing conclusions can be drawn:

¢ unlike ACO-based approach, both the dimension of the solution spateanputational
burden rise much more rapidly when standard global optireiage used. In practice,
these standard stochastic algorithms work effectively anth small arrays thus synthe-

sizing array solutions having a limited angular resolution

e being a local search technique, thd’M depends on the initial solution, but it is an
excellent computational saving technique suitable fottsysizing very large arraysv >

200) although without any guarantee of avoiding local minimkgons;

e the ACO takes on one side the advantages of global optimizationoappes in facing
non-convexity, while on the other and to the best of the astikmowledge, it is the most
suitable algorithm among state-of-the-art metaheusdic path-searching in a graph-

represented solution space.
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FIGURE CAPTIONS

e Figure 1. Sketch of the sub-arrayed monopulse array antenna.

e Figure 2. Evolution of theBE M solution within theDAG whenM = 10 and@ = 3

(a) at the initialization { = 0) and at iterationlf) £ = 1 and €) k£ = 2.
e Figure 3. Evolution of theAC'O solution within theD AG.

e Figured. ACO Calibration (/V = 40, Q = 6) - Behavior of the average convergence cost
function value versus the pheromone update constdrand the pheromone evaporation

parameterp.

e Figure 5. ACO Calibration (N = 40, @ = 6; H = 1, p = 0.05) - Behaviors of
the statistic values (mean value and standard deviatiotijeoverage convergence cost

function value versus the ant colony dimension,

e Figure 6. ACO’sHill Climbing Behavior (N = 20, Q = 3) - BEM power pattern at

different iterations of the iterative optimizatioh € 0, ..., kepg = 2).

e Figure7. ACO’sHill Climbing Behavior - Cost function values of the solutions coded
in the solutionD AG. The values,,; andigg), indicate the solution index in correspon-
dence to the fitness of the best solution and the solutionreatehrough theBE M,

respectively.

e Figure 8. ACO’sHill Climbing Behavior - Optimal and compromise difference power
patterns obtained with thB £ M and theAC'O when @) N = 20, Q = 3 (Zolotarev [36],
SLL = —-30dB)and p) N = 20, Q = 8 (Zolotarev [36],SLL = —40dB).

e Figure 9. ACO’s Hill Climbing Behavior (N = 40, Q = 4) - Behavior of the cost
function value¥®) during the iterative optimization process when applying B M
and theACO [best solution valueW'®) = min,—, {minizl ,,,,, ; [\If (Agh))} } and

average cost function valugly) = 157 | ¥ (AE"”’) 1.

e Figure10. Comparative Assessment (Zolotarev [36],5LL = —25dB, (Q = 8) - Behavior

of the average convergence cost function value versus theéeuof array elements,
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N, when applying theBEM and theACO with a colony of C(*) (ACO) and C\***)
(ACO*) ants.

e Figure 11. Comparative Assessment (Zolotarev [36],SLL = —25dB, (Q = 8) - Behav-
iors of (@) the SLL and p) the BIWW values of the synthesized compromise patterns versus
the number of array elementd;,, when applying theB £M and theACO with a colony
of C(¢) (ACO) andC\** (ACO*) ants.

TABLE CAPTIONS

e Tablel. ACO’sHill Climbing Behavior (IV = 20, @@ = 3) - Sub-array configurations and
weights determined by thB £ M and theACO.

e Tablell. ACO’sHill Climbing Behavior - Pattern performances and computational in-

dexes.

e Tablelll. ACO’sHill Climbing Behavior (N = 20, () = 8) - Sub-array configurations
and weights computed with the £ M and theACO.

e Table V. ACO’s Hill Climbing Behavior (N = 40, () = 4) - Sub-array configurations
and weights synthesized by means of B M and theACO.
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M =10 | aBFM {1122333321}
aAco {1223333332}

Q=3 | wlEM10.3827|0.9736 | 1.3363
w0 10.1798 | 0.6602 | 1.2549
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Approach o A SLL [dB] | BW [deg| || kend | Fend t [sec] T (ess)
N=2M=20,Q=3
BEM 1.08 x 10721 0.3199 | —18.25 5.28 2 3 <1078 36
ACO 8.26 x 1073 0.2689 || —18.75 5.12 2 10 <1078 36
N=2M=20,Q=S8
BEM 2.49 x 1074 0.0545 | —35.20 5.74 2 3 <1078 36
ACO | 1.13x107°]0.0145| —37.50 5.68 2 | 10 | <107 | 36
N=9oM=40,Q=4
BEM 5.60 x 1073 [ 0.2886 | —20.10 2.50 21 | 22 <1077 969
ACO 4.99 x 1073 0.2609 | —22.85 2.50 34 | 340 | 4.5 x 1073 | 969
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M =10 | aBFM {1235786421}
aAc0 {1357887642}

Q=38 DEM 10,2146 | 0.6107 | 0.9221 | 0.9825 | 1.1582 | 1.1797 | 1.2818 | 1.2864
w0 10.2049 | 0.2432 | 0.5937 | 0.7250 | 0.9221 | 0.9825 | 1.1650 | 1.2838




M =20| aBFM | {11222333444444444332}
aAC0 | 111223334444444444432}
Q=4 | wBFM]0.1779 | 0.5658 | 1.0257 | 1.3288
w0 10.1779 | 0.5055 | 0.8989 | 1.2923
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