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Abstract

Dealing with the synthesis of monopulse array antennasyrsi@chastic optimization
algorithms have been used for the solution of the so-calfginal compromise problem
between sum and difference patterns when sub-arrayed &egrks are considered. More
recently, hybrid approaches, exploiting the convexity leé functional with respect to a
sub-set of the unknowns (i.e., the sub-array excitatiofffictents) have demonstrated their
effectiveness. In this letter, an hybrid approach basedhenAnt Colony Optimization
(ACO) is proposed. At the first step, theC' O is used to define the sub-array membership
of the array elements, while, at the second step, the saly-aveights are computed by

solving a convex programming problem.



1 Introduction

In the framework of multi-beam antenna synthesis, severalegies have been proposed for
the optimal design of monopulse arrays able to simultanggenerate a sum and multiple dif-
ference patterns [1][2]. Because of the complexity of thesifaetwork when using independent
sum and difference excitations, compromise approacheslheen investigated to identify suit-
able trade-off solutions that guarantee reduced manufagteosts and satisfactory radiation
performances.

The feeding of the array elements by means of sub-arraysawtduced number of control
elements has been widely adopted [3]. As regards to comgesynthesis [4], the sum channel
is fed by a complete and independent module to obtain an appattern, while the sub-arrays
outputs are properly weighted and combined to synthesitzeptimal difference beams.

Since the functional describing the “optimal sum/diffexercompromise” problem is charac-
terized by the presence of many local minima, global optatian approaches have been used
(e.g., simulated annealing [5], genetic algorithms [6] differential evolution [7][8]). By ex-
ploiting the convexity of the functional with respect to thigb-array weights [9], an effective
hybrid approach has been presented in [10] where the syathexblem is recast as a convex
programming optimization once the sub-array configuraisogiven. Although the set of “op-
timal” sub-array excitations can be unequivocally detexdifor a fixed element grouping, the
solution of the aggregation problem still remains non-uei@nd stochastic optimization ap-
proaches cannot be profitably used without a non-negligibfeputational burden because of
the wide number of admissible sub-array configurations.

To overcome this drawback, the knowledge of the optimal snthdifference excitations has
been exploited in [11] by addressing the compromise syghleugh an excitation matching
procedure. In such a way, the dimension of the solution spasebeen greatly reduced and
an efficient use of global optimization algorithms enablst shanks to a suitable graph-based
representation of the whole set of admissible sub-arrajigwmtions. In such a framework,
a strategy based on Ant Colony Optimizatiof{O) [12] has been preliminary presented in
[13] to effectively sample the solution space. Succesgitbe approach has been extensively
validated on a large set of numerical examples [14] pointaoga loss of the control of the

behavior of the sidelobes without proper countermeasures.



Similarly to [10][15][16], this letter describes a hybridid-step procedure aimed at synthesiz-
ing an optimal compromise solution in terms of both refeeen@tching and sidelobe control.
Unlike [15][16], the grouping of the array elements is detgred by solving the excitation
matching problem through thaC'O-based global optimization [14]. At the second step, the
computation of the sub-array weights is recast as the soluti a standard quadratic program-
ming aimed at enforcing peak sidelobe level control.

The letter is organized as follows. In Sect. 2, the compremisblem is mathematically formu-
lated and the hybrid synthesis procedure is described, bhsWwalemonstrate the effectiveness
of the proposed approach, some representative resultsgnoaxtensive set of experiments are

reported and discussed in Sect. 3. Eventually, some cdonkiare drawn in Sect. 4.

2 Mathematical Formulation

Let us consider a uniform linear array 8f = 2 x M, m = 1, ..., M, equally-spaced radiating
elements. The element excitations generating the sum ardifference patterns are supposed
to be real and symmetric with respect to the center of thenaiatéo steer both beams at broad-
side.

Dealing with isotropic sources and considering the compsersolution with an optimal sum

and a sub-optimal difference, the sum mode radiated by thag & given by [10]

M 2 o 1
AF?® () =2 ayucos [ = kdsin (9)} : (1)
m=1
while the difference mode turns out to be
M 2m — 1
AF(0) = 123 bysin { kdsin (9)] @)
m=1
wherea,, = a_,, andb_,, = —b,,, m = 1,..., M, are the set of optimal sum and compro-

mise difference excitations [4], respectively. Moreovers- 27” A andd being the free space
wavelength and the array inter-element distance, rey@igtandd is the angle with respect to
boresight.

Following the guidelines of the excitation matching stggtdescribed in [11], the compromise

problem is recast as the minimization of the following castdtion
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where the unknown quantiti€s = {c,, € [1,Q]; m=1,..., M}andW ={w,;; ¢=1,...,Q}
are the membership integer vector describing the sub-awmafiguration of the array elements
and the set of sub-array weights, respectively. Moregvgr= —3_,,, m = 1, ..., M, are the
excitations affording the optimal/reference differenegtern, ands,.,,, is the Kronecker delta
function (i.e.,0.,,, = 1 if ¢,,, = ¢ andd,, , = 0 otherwise).

As regards to the sub-optimal coefficients, m = 1, ..., M, affording the compromise differ-
ence pattern in (2), they are definedbas= «,,9.,,,w, m = 1,..., M. Itis simple noticing
that (3) defines a least square problem where, for a givengumationC', the set of sub-array

weights minimizing (3) is unequivocally determined by inspw
ov (C, W
C

ow,
Accordingly, it turns out that the sub-array weights can deputed as the weighted arithmetic

mean (with weights?2 ) of the optimal parameter%’i [11]:
27]\?{: a?n 67” 6Crn
wy (C) = : (am q)
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In order to determine the “best” aggregation [i@”" = Minc {C, W (C)}, where the array

L, qg=1,...,0Q. (5)

vectorIV (C') is computed as in (5)], which minimizes the functional in, @) ACO-based
procedure described in [13] is used to sample the solutiacespf admissible element clustering
mapped into a suitable graph representation [11].

Although computationally efficient and reliable, the manmawlback of such a method lies in
the impossibility of having &n individual control of the sidelobe levels of final patt&rfi0]
because of the excitation matching nature of the underlyiathematical formulation. In order
to overcome this drawback and instead of using Eq. (5), theastay weights are determined

minimizing the following convex function [10]

 dRe {AF'(0)}

db ’
=00

v (W) (6)

subject to a set of non-negative constraints on the powdzerp#MFd (9)‘2 < UB (), still
keeping theAC'O-defined aggregatio;”’ = C“““. More specifically, the functioi B ()
defines an upper bound mask aRiel denotes the real part.

As regards to the convex programming minimization, theaiige process starts &t= 0 from

the guess solution defined by= C4°° andW ¥ = WAC© = {w;“CO (QACO) qg=1,.., Q}

4



and standard/ AT L AB subroutines are used [19].

3 Numerical Results

In order to show the potentialities of the proposed hybrigrapch, some preliminary results
are discussed and compared with the solutions obtained bysna another hybrid approach
presented in [16] as well as from single-step (unconsthie&citation matching approaches
based on the minimization of (3).

The first example Experiment 1 is concerned with a linear antenna &f = 20 elements

spaced byl = 2. The sum channel provides a Dolph-Chebyshev pattern $uith = —25 dB

o>~

[17], while Q@ = 8 sub-arrays are considered to generate the compromiserpatte®se ref-
erence difference excitations afford a Zolotarev diffeepattern withSLL = —40dB [18].
Starting from a uniform distribution of the array elementseiach sub-array, the Border Ele-
ment Method BE M) (i.e., a local search technique proposed in [11]) getsksituto a local
minimum of the solution space d¢f = 36 admissible aggregations after= KBEM = 3
iterations € being the iteration index). The corresponding solutiorspris a cost function
value equal tol (CPF) = 2.49 x 10~". On the other hand, théC'O-based procedure has
succeeded in finding the global minimum of the matching pobin KA9° = 2 iterations [

end

v (QACO) = 1.13 x 10~°] with a colony of only/ = 5 ants,” = 0.1 andp = 0.05 [13]

C«BEJ\/[ _

being theACO parameters setting. The synthesized sub-array confignsafireC =
{1235786421} andC*°? = {1357887642} and the corresponding sub-array weights
obtained through Eq. (5) ai”*" = {0.21, 0.61, 0.92, 0.98, 1.16, 1.18, 1.28, 1.29} and
WACO = 10.20, 0.24, 0.59, 0.73, 0.92, 0.98, 1.17, 1.28}.

In order to complete the two-step hybrid strategy, the cemregramming procedure has been
used to minimize the peak sidelobe starting from the suftyaconfigurations found at the
end of the first step. The values of the sub-array weightshegited by means of the hy-
brid approaches are/¥*~PEM — (911 5.85, 8.51, 8.99, 10.78, 11.05, 12.10, 12.04} and
WHY=ACO — 1918, 2.44, 6.26, 7.39, 9.71, 10.06, 12.15, 13.46}. The arising patterns to-
gether with those obtained with the one-step excitatiorchag approaches (i.eBEM and
ACO) are shown in Fig. 1 with a detail of the behavior of the se@pdbbes. Both hybrid ap-

proaches outperform their corresponding single-step opart in terms of L. L minimization
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(Tab. 1). Such an event further confirms the importance ofatipg the partial convexity of the
problem at hand [10][15]. As far as théybrid — ACO is concerned, the convergence pattern
faithfully matches the reference one and outperforms theisa of the Hybrid — BEM [15]

as well as that of the “bare” ACO of more tharb d B and2.4 d B, respectively.

For completeness, the plots of the cost function (6) and efitdexC? during the iterative
optimization are shown in Fig. 2, wher&! = maxy {AF,ff (0)—UB (9)}, 0 € [—g; E],

U B (0) being set to—-40 d B below the peak of the main lobe in the angular rafgje> 14.5°.
As it can be noticed, th& ybrid— ACO turns out to be more effective than thie)brid— BE M
both in minimizing (6) and fitting the pattern constraints{¢ (¢) — U B (9)].

As regards to the computational efficiency of the methodsaadhthe optimal values of the
cost function for each approacky, the number iterations required until convergense,,,,
the mismatch between the synthesized pattern and the efeed constrainth(end, and the
C'PU-time, T, needed to get the final solution o3 & H » PC with2 G B of RAM are reported
in Tab. Il. As expected, because of the constrained optitmizgroblem at hand, the solution
of the quadratic programming problem is much more companatly expensive than that of
the corresponding (unconstrained) excitation matchirey(@ab. I1).

In the second exampl&gperiment 2, a larger array withV = 40 elementsd = g) is consid-
ered. Unlike the previous example, the number of sub-aisagesduced fron) = 8 to ) = 4.
The sum excitations have been set to those of a Dolph-Chebystitern withSLL = —25dB
[17], while the reference difference excitations have belemsen to afford a Zolotarev differ-
ence pattern witty L. = —30d B [18]. As regards to the number of possible sub-array config-
urations, the dimension of the solution space defined thrdlg excitation matching procedure
[11] containsU = 969 different compromise solutions. As regards to th€'O, a colony of

I = 10 ants has been used by keeping unaltered the remaiiiig parameters.

As far as the excitation matching (or single-step) appreacire concerned, thBeEM and
the ACO converge to their final solutions (Tab. Ill) withikZ2EM = 21 and K/1S° = 34
iterations, respectively. Moreover, the convergence ftogttion values turns out to be equal to
G (QBEM) = 5.48 x 1073 and ¥ (QACO) = 5.00 x 1072, Although the close values df at

the convergence, it is worth noting that tBé” M is once again trapped into a local minimum

of (3).



As far as the hybrid procedures are concerned, the mask osettandary lobes has been set
to UB () = —25dB below the peak value fgf| > 6.3°. The synthesized patterns and the
equivalent compromise difference excitations are showdign3 and Fig. 4, respectively. Anal-
ogously to the previous experiment, the importance of aagitbcal minima and exploiting the
potentialities of an hybrid approach are further undedig values of the pattern indexes in
Tab. IV. More specifically, it is worth pointing out that whéime B E M fails in retrieving the
optimal sub-array configuration, the successive appboatif the convex programming pro-
cedure cannot be fully/profitably exploited. As a matter aftf the solution synthesized by
means of the “bareAC'O approach outperforms the one with thebrid — BE M in terms of
SLL minimization (i.e.,SLLAv=BEM — 99 60dB vs. SLLAC = —22.93dB), although
no-constraints on th&€ L L. have been imposed. Furthermore, th€O allows a non-negligible
computational saving, as pointed out by the values in Tabirée it is able to find the final so-
lution almost in real time. On the other hand, the advantafiesing an hybrid method clearly

appear from the pattern indexes in Tab. IV.

4 Conclusions

In this work, the effectiveness of using hybrid approachbsmdealing with the optimal com-
promise sum-difference problem has been pointed out. lalsmsbeen verified that anCO-

based exploration of the solution space for the definitiothefsub-array configuration allows
one to obtain more effective compromise solutions at thersgstep of the hybrid procedure
where a constrained optimization based on the solution @&ex programming problem is

considered.
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FIGURE CAPTIONS

e Figurel. Experiment XN = 20, Q = 8) - Compromise difference pattern obtained with

the BEM, the AC'O and their corresponding hybrid implementations.

e Figure 2. Experiment AN = 20, @) = 8) - Behavior of the cost function and maximum
mismatch value of the power pattern constraints for the idyionplementation of the

BEM and of theACO.

e Figure3. Experiment ZN = 40, (Q = 4) - Compromise difference pattern obtained with

the BEM, the AC'O and their corresponding hybrid implementations.

e Figure 4. Experiment 2(N = 40, Q = 4) - Optimal (Zolotarev,SLL = —30dB
[18]) and compromise difference excitations obtained withB £ M, the ACO and their

corresponding hybrid implementations together with tHernence .
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TABLE CAPTIONS

e Tablel. Experiment AN = 20, Q = 8) - Pattern indexes.

Tablell. Experiment XN = 20, Q = 8) - Computational indexes.

Tablelll. Experiment AN = 40, Q = 4) - Sub-array configurations and weights.

Table V. Experiment ZN = 40, (Q = 4) - Pattern indexes.

Table V. Experiment AN = 40, Q = 4) - Computational indexes.
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Fig. 1- P. Rocca et al., “Ant Colony Based Hybrid Approach ...”
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Fig. 3- P. Rocca et al., “Ant Colony Based Hybrid Approach ...”
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Fig. 4 - P. Rocca et al., “Ant Colony Based Hybrid Approach ...
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Approach BW [deg] | SLL [dB] | Dy [dB]
BEM 5.73 —35.22 9.89
Hybrid BEM 5.73 —36.31 9.89
ACO 5.67 —37.50 9.94
Hybrid ACO 5.70 —39.92 9.92
Reference [18] 5.67 —40.00 9.94

Tab. | - P. Rocca et al., “Ant Colony Based Hybrid Approach ...”
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Approach Y Cf(end Keng | T [sec]

BEM 2.49 x 1074 — 3 <1078

Hybrid — BEM || —281.81 |7.1x107'|34+63]| 6.305

ACO 1.13 x 107° — 2 <1078

Hybrid — ACO —286.04 |[75x 1077|2489 | 6.775

Tab. Il - P. Rocca et al., “Ant Colony Based Hybrid Approach ...
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Approach C

BEM {11222333444444444332}
ACO {11223334444444444432}

wy | wy | ws wy

BEM 0.18 | 0.57 | 1.02 1.33

Hybrid BEM | 0.15 | 0.28 | 0.69 0.86

ACO 0.18 | 0.51 | 0.90 1.29

Hybrid ACO | 0.16 | 0.33 | 0.63 0.96

Tab. Il - P. Roccaet al., “Ant Colony Based Hybrid Approach ...”
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Approach BW [deg] | SLL [dB] | Dy [dB]
BEM 2.50 —20.96 13.39
Hybrid BEM 2.50 —22.60 13.38
ACO 2.52 —22.93 13.36
Hybrid ACO 2.52 —23.76 13.37
Reference [18] 2.52 —30.00 13.41

Tab. IV - P. Rocca et al., “Ant Colony Based Hybrid Approach ...”
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Approach 1 Cf(end Kong T [sec]
BEM 5.48 x 1073 — 21 ~ 1077
Hybrid BEM —85.44 5.80 x 1077 | 21 4 146 | 27.273
ACO 5.00 x 1073 — 34
Hybrid ACO —97.60 2.02x 1077 | 34+ 78

Tab. V - P. Rocca et al., “Ant Colony Based Hybrid Approach ...
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