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Abstract

Dealing with the synthesis of monopulse array antennas, many stochastic optimization

algorithms have been used for the solution of the so-called optimal compromise problem

between sum and difference patterns when sub-arrayed feed networks are considered. More

recently, hybrid approaches, exploiting the convexity of the functional with respect to a

sub-set of the unknowns (i.e., the sub-array excitation coefficients) have demonstrated their

effectiveness. In this letter, an hybrid approach based on the Ant Colony Optimization

(ACO) is proposed. At the first step, theACO is used to define the sub-array membership

of the array elements, while, at the second step, the sub-array weights are computed by

solving a convex programming problem.
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1 Introduction

In the framework of multi-beam antenna synthesis, several strategies have been proposed for

the optimal design of monopulse arrays able to simultaneously generate a sum and multiple dif-

ference patterns [1][2]. Because of the complexity of the feed network when using independent

sum and difference excitations, compromise approaches have been investigated to identify suit-

able trade-off solutions that guarantee reduced manufacturing costs and satisfactory radiation

performances.

The feeding of the array elements by means of sub-arrays witha reduced number of control

elements has been widely adopted [3]. As regards to compromise synthesis [4], the sum channel

is fed by a complete and independent module to obtain an optimal pattern, while the sub-arrays

outputs are properly weighted and combined to synthesize sub-optimal difference beams.

Since the functional describing the “optimal sum/difference compromise” problem is charac-

terized by the presence of many local minima, global optimization approaches have been used

(e.g., simulated annealing [5], genetic algorithms [6], and differential evolution [7][8]). By ex-

ploiting the convexity of the functional with respect to thesub-array weights [9], an effective

hybrid approach has been presented in [10] where the synthesis problem is recast as a convex

programming optimization once the sub-array configurationis given. Although the set of “op-

timal” sub-array excitations can be unequivocally determined for a fixed element grouping, the

solution of the aggregation problem still remains non-unique and stochastic optimization ap-

proaches cannot be profitably used without a non-negligiblecomputational burden because of

the wide number of admissible sub-array configurations.

To overcome this drawback, the knowledge of the optimal sum and difference excitations has

been exploited in [11] by addressing the compromise synthesis through an excitation matching

procedure. In such a way, the dimension of the solution spacehas been greatly reduced and

an efficient use of global optimization algorithms enabled also thanks to a suitable graph-based

representation of the whole set of admissible sub-array configurations. In such a framework,

a strategy based on Ant Colony Optimization (ACO) [12] has been preliminary presented in

[13] to effectively sample the solution space. Successively, the approach has been extensively

validated on a large set of numerical examples [14] pointingout a loss of the control of the

behavior of the sidelobes without proper countermeasures.
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Similarly to [10][15][16], this letter describes a hybrid two-step procedure aimed at synthesiz-

ing an optimal compromise solution in terms of both reference matching and sidelobe control.

Unlike [15][16], the grouping of the array elements is determined by solving the excitation

matching problem through theACO-based global optimization [14]. At the second step, the

computation of the sub-array weights is recast as the solution of a standard quadratic program-

ming aimed at enforcing peak sidelobe level control.

The letter is organized as follows. In Sect. 2, the compromise problem is mathematically formu-

lated and the hybrid synthesis procedure is described, as well. To demonstrate the effectiveness

of the proposed approach, some representative results froman extensive set of experiments are

reported and discussed in Sect. 3. Eventually, some conclusions are drawn in Sect. 4.

2 Mathematical Formulation

Let us consider a uniform linear array ofN = 2 × M , m = 1, ..., M , equally-spaced radiating

elements. The element excitations generating the sum and the difference patterns are supposed

to be real and symmetric with respect to the center of the antenna to steer both beams at broad-

side.

Dealing with isotropic sources and considering the compromise solution with an optimal sum

and a sub-optimal difference, the sum mode radiated by the array is given by [10]

AF s (θ) = 2
M
∑

m=1

αmcos

[

2m − 1

2
kdsin (θ)

]

, (1)

while the difference mode turns out to be

AF d (θ) = j2
M
∑

m=1

bmsin

[

2m − 1

2
kdsin (θ)

]

(2)

whereαm = α
−m andb

−m = −bm, m = 1, ..., M , are the set of optimal sum and compro-

mise difference excitations [4], respectively. Moreover,k = 2π
λ

, λ andd being the free space

wavelength and the array inter-element distance, respectively, andθ is the angle with respect to

boresight.

Following the guidelines of the excitation matching strategy described in [11], the compromise

problem is recast as the minimization of the following cost function

Ψ (C, W ) =
1

M

M
∑

m=1

α2
m





βm

αm

−
Q

∑

q=1

δcmqwq





2

(3)
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where the unknown quantitiesC = {cm ∈ [1, Q] ; m = 1, . . . , M} andW = {wq; q = 1, . . . , Q}

are the membership integer vector describing the sub-arrayconfiguration of the array elements

and the set of sub-array weights, respectively. Moreover,βm = −β
−m, m = 1, ..., M , are the

excitations affording the optimal/reference difference pattern, andδcmq is the Kronecker delta

function (i.e.,δcmq = 1 if cm = q andδcmq = 0 otherwise).

As regards to the sub-optimal coefficientsbm, m = 1, ..., M , affording the compromise differ-

ence pattern in (2), they are defined asbm = αmδcmqwq, m = 1, ..., M . It is simple noticing

that (3) defines a least square problem where, for a given configurationC, the set of sub-array

weights minimizing (3) is unequivocally determined by imposing
∂Ψ (C, W )

∂wq

⌋

C

= 0, q = 1, ..., Q. (4)

Accordingly, it turns out that the sub-array weights can be computed as the weighted arithmetic

mean (with weightsα2
m) of the optimal parametersβm

αm
[11]:

wq (C) =

∑M
m=1 α2

m

(

βm

αm
δcmq

)

∑M
m=1 α2

m (δcmq)
, q = 1, ..., Q. (5)

In order to determine the “best” aggregation [i.e.,Copt = MinC {C, W (C)}, where the array

vectorW (C) is computed as in (5)], which minimizes the functional in (3), theACO-based

procedure described in [13] is used to sample the solution space of admissible element clustering

mapped into a suitable graph representation [11].

Although computationally efficient and reliable, the main drawback of such a method lies in

the impossibility of having ”an individual control of the sidelobe levels of final patterns” [10]

because of the excitation matching nature of the underlyingmathematical formulation. In order

to overcome this drawback and instead of using Eq. (5), the sub-array weights are determined

minimizing the following convex function [10]

ΨCP (W ) =
dRe

{

AF d (θ)
}

dθ

∣

∣

∣

∣

∣

∣

θ=0o

, (6)

subject to a set of non-negative constraints on the power pattern
∣

∣

∣AF d (θ)
∣

∣

∣

2
≤ UB (θ), still

keeping theACO-defined aggregation,Copt = CACO. More specifically, the functionUB (θ)

defines an upper bound mask andRe denotes the real part.

As regards to the convex programming minimization, the iterative process starts atk = 0 from

the guess solution defined byC = CACO andW (0) = WACO =
{

wACO
q

(

CACO
)

, q = 1, ..., Q
}
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and standardMATLAB subroutines are used [19].

3 Numerical Results

In order to show the potentialities of the proposed hybrid approach, some preliminary results

are discussed and compared with the solutions obtained by means of another hybrid approach

presented in [16] as well as from single-step (unconstrained) excitation matching approaches

based on the minimization of (3).

The first example (Experiment 1) is concerned with a linear antenna ofN = 20 elements

spaced byd = λ
2
. The sum channel provides a Dolph-Chebyshev pattern withSLL = −25 dB

[17], while Q = 8 sub-arrays are considered to generate the compromise pattern whose ref-

erence difference excitations afford a Zolotarev difference pattern withSLL = −40 dB [18].

Starting from a uniform distribution of the array elements in each sub-array, the Border Ele-

ment Method (BEM) (i.e., a local search technique proposed in [11]) gets stuck into a local

minimum of the solution space ofU = 36 admissible aggregations afterk = KBEM
end = 3

iterations (k being the iteration index). The corresponding solution presents a cost function

value equal toΨ
(

CBEM
)

= 2.49 × 10−4. On the other hand, theACO-based procedure has

succeeded in finding the global minimum of the matching problem inKACO
end = 2 iterations [

Ψ
(

CACO
)

= 1.13 × 10−5] with a colony of onlyI = 5 ants,H = 0.1 andρ = 0.05 [13]

being theACO parameters setting. The synthesized sub-array configurations areCBEM =

{1 2 3 5 7 8 6 4 2 1} andCACO = {1 3 5 7 8 8 7 6 4 2} and the corresponding sub-array weights

obtained through Eq. (5) areW BEM = {0.21, 0.61, 0.92, 0.98, 1.16, 1.18, 1.28, 1.29} and

WACO = {0.20, 0.24, 0.59, 0.73, 0.92, 0.98, 1.17, 1.28}.

In order to complete the two-step hybrid strategy, the convex programming procedure has been

used to minimize the peak sidelobe starting from the sub-array configurations found at the

end of the first step. The values of the sub-array weights synthesized by means of the hy-

brid approaches areW Hyb−BEM = {2.11, 5.85, 8.51, 8.99, 10.78, 11.05, 12.10, 12.04} and

WHyb−ACO = {2.18, 2.44, 6.26, 7.39, 9.71, 10.06, 12.15, 13.46}. The arising patterns to-

gether with those obtained with the one-step excitation matching approaches (i.e.,BEM and

ACO) are shown in Fig. 1 with a detail of the behavior of the secondary lobes. Both hybrid ap-

proaches outperform their corresponding single-step counterpart in terms ofSLL minimization
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(Tab. I). Such an event further confirms the importance of exploiting the partial convexity of the

problem at hand [10][15]. As far as theHybrid − ACO is concerned, the convergence pattern

faithfully matches the reference one and outperforms the solution of theHybrid − BEM [15]

as well as that of the “bare” ACO of more than3.5 dB and2.4 dB, respectively.

For completeness, the plots of the cost function (6) and of the indexCθ
k during the iterative

optimization are shown in Fig. 2, whereCθ
k = maxθ

{

AF d
k (θ) − UB (θ)

}

, θ ∈
[

−π
2
; π

2

]

,

UB (θ) being set to−40 dB below the peak of the main lobe in the angular range|θ| ≥ 14.5o.

As it can be noticed, theHybrid−ACO turns out to be more effective than theHybrid−BEM

both in minimizing (6) and fitting the pattern constraints [AF d
k (θ) → UB (θ)].

As regards to the computational efficiency of the methods at hand, the optimal values of the

cost function for each approach,Ψ, the number iterations required until convergence,Kend,

the mismatch between the synthesized pattern and the user-defined constraint,Cθ
Kend

, and the

CPU-time,T , needed to get the final solution on a3 GHz PC with2 GB of RAM are reported

in Tab. II. As expected, because of the constrained optimization problem at hand, the solution

of the quadratic programming problem is much more computationally expensive than that of

the corresponding (unconstrained) excitation matching one (Tab. II).

In the second example (Experiment 2), a larger array withN = 40 elements (d = λ
2
) is consid-

ered. Unlike the previous example, the number of sub-arraysis reduced fromQ = 8 to Q = 4.

The sum excitations have been set to those of a Dolph-Chebyshev pattern withSLL = −25 dB

[17], while the reference difference excitations have beenchosen to afford a Zolotarev differ-

ence pattern withSLL = −30 dB [18]. As regards to the number of possible sub-array config-

urations, the dimension of the solution space defined through the excitation matching procedure

[11] containsU = 969 different compromise solutions. As regards to theACO, a colony of

I = 10 ants has been used by keeping unaltered the remainingACO parameters.

As far as the excitation matching (or single-step) approaches are concerned, theBEM and

the ACO converge to their final solutions (Tab. III) withinKBEM
end = 21 andKACO

end = 34

iterations, respectively. Moreover, the convergence costfunction values turns out to be equal to

Ψ
(

CBEM
)

= 5.48 × 10−3 andΨ
(

CACO
)

= 5.00 × 10−3. Although the close values ofΨ at

the convergence, it is worth noting that theBEM is once again trapped into a local minimum

of (3).
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As far as the hybrid procedures are concerned, the mask on thesecondary lobes has been set

to UB (θ) = −25 dB below the peak value for|θ| ≥ 6.3o. The synthesized patterns and the

equivalent compromise difference excitations are shown inFig. 3 and Fig. 4, respectively. Anal-

ogously to the previous experiment, the importance of avoiding local minima and exploiting the

potentialities of an hybrid approach are further underlined by values of the pattern indexes in

Tab. IV. More specifically, it is worth pointing out that whentheBEM fails in retrieving the

optimal sub-array configuration, the successive application of the convex programming pro-

cedure cannot be fully/profitably exploited. As a matter of fact, the solution synthesized by

means of the “bare”ACO approach outperforms the one with theHybrid−BEM in terms of

SLL minimization (i.e.,SLLHyb−BEM = −22.60 dB vs. SLLACO = −22.93 dB), although

no-constraints on theSLL have been imposed. Furthermore, theACO allows a non-negligible

computational saving, as pointed out by the values in Tab. V,since it is able to find the final so-

lution almost in real time. On the other hand, the advantagesof using an hybrid method clearly

appear from the pattern indexes in Tab. IV.

4 Conclusions

In this work, the effectiveness of using hybrid approaches when dealing with the optimal com-

promise sum-difference problem has been pointed out. It hasalso been verified that anACO-

based exploration of the solution space for the definition ofthe sub-array configuration allows

one to obtain more effective compromise solutions at the second step of the hybrid procedure

where a constrained optimization based on the solution of a convex programming problem is

considered.
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FIGURE CAPTIONS

• Figure 1. Experiment 1(N = 20, Q = 8) - Compromise difference pattern obtained with

theBEM , theACO and their corresponding hybrid implementations.

• Figure 2. Experiment 1(N = 20, Q = 8) - Behavior of the cost function and maximum

mismatch value of the power pattern constraints for the hybrid implementation of the

BEM and of theACO.

• Figure 3. Experiment 2(N = 40, Q = 4) - Compromise difference pattern obtained with

theBEM , theACO and their corresponding hybrid implementations.

• Figure 4. Experiment 2(N = 40, Q = 4) - Optimal (Zolotarev,SLL = −30 dB

[18]) and compromise difference excitations obtained withtheBEM , theACO and their

corresponding hybrid implementations together with the reference .
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TABLE CAPTIONS

• Table I. Experiment 1(N = 20, Q = 8) - Pattern indexes.

• Table II. Experiment 1(N = 20, Q = 8) - Computational indexes.

• Table III. Experiment 2(N = 40, Q = 4) - Sub-array configurations and weights.

• Table IV. Experiment 2(N = 40, Q = 4) - Pattern indexes.

• Table V. Experiment 2(N = 40, Q = 4) - Computational indexes.
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Approach BW [deg] SLL [dB] Dmax [dB]

BEM 5.73 −35.22 9.89

Hybrid BEM 5.73 −36.31 9.89

ACO 5.67 −37.50 9.94

Hybrid ACO 5.70 −39.92 9.92

Reference [18] 5.67 −40.00 9.94

Tab. I - P. Rocca et al., “Ant Colony Based Hybrid Approach ...”
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Approach Ψ Cθ
Kend

Kend T [sec]

BEM 2.49 × 10−4 − 3 < 10−8

Hybrid − BEM −281.81 7.1 × 10−1 3 + 63 6.305

ACO 1.13 × 10−5 − 2 < 10−8

Hybrid − ACO −286.04 7.5 × 10−7 2 + 89 6.775

Tab. II - P. Rocca et al., “Ant Colony Based Hybrid Approach ...”
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Approach C

BEM {1 1 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 2}

ACO {1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 3 2}

w1 w2 w3 w4

BEM 0.18 0.57 1.02 1.33

Hybrid BEM 0.15 0.28 0.69 0.86

ACO 0.18 0.51 0.90 1.29

Hybrid ACO 0.16 0.33 0.63 0.96

Tab. III - P. Rocca et al., “Ant Colony Based Hybrid Approach ...”
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Approach BW [deg] SLL [dB] Dmax [dB]

BEM 2.50 −20.96 13.39

Hybrid BEM 2.50 −22.60 13.38

ACO 2.52 −22.93 13.36

Hybrid ACO 2.52 −23.76 13.37

Reference [18] 2.52 −30.00 13.41

Tab. IV - P. Rocca et al., “Ant Colony Based Hybrid Approach ...”
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Approach Ψ Cθ
Kend

Kend T [sec]

BEM 5.48 × 10−3 − 21 ≃ 10−7

Hybrid BEM −85.44 5.80 × 10−7 21 + 146 27.273

ACO 5.00 × 10−3 − 34

Hybrid ACO −97.60 2.02 × 10−7 34 + 78

Tab. V - P. Rocca et al., “Ant Colony Based Hybrid Approach ...”
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