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Abstract: This paper presents a methodology based on Almost Difference Sets (ADSs) for the design of shared
aperture arrays with well behaved sidelobes. Thanks to the autocorrelation properties of ADSs, such a
technique allows the design of fully interleaved arrays with predictable performances. Analytical and numerical
results are provided in order to point out the computational efficiency and the effectiveness of the approach
both in the linear and in the planar case.
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1. Introduction

Shared aperture antennas are of great interest in modern systems for communications, detection, location and
remote sensing, because of the need to realize multiple functions in a limited space [1]. In this framework,
aperture arrays of intermixed elements (often indicated as interleaved, interlaced or interspread arrays)
provide interesting performances in terms of hardware complexity, aperture efficiency, and flexibility [1]. In
order to overcome their drawbacks in terms of gain and PSL control [2], stochastic optimization methods or
hybrid methodologies [1-4] have been successfully applied. However, stochastic optimization approaches can
be computationally inefficient when dealing with large apertures and a-priori estimates of the expected
performances are usually not available [1].

In this paper, the problem of designing an equally-weighted fully-interleaved array is addressed to provide
design guidelines to be employed when, whether by choice or by necessity, a computationally efficient and
sub-optimal solution with predictable performances is preferred to a random or a stochastically-optimized
design. Towards this end, the synthesis of interleaved arrays is faced with an innovative approach that exploits
the so-called Almost Difference Sets (ADSs), and its performances are numerically analyzed. ADSs are binary
sequences characterized by a three-level autocorrelation [5] which have been recently used to the design of
thinned arrays with predictable sidelobes [7]. As regards their applicability in interleaved arrangements, it is to
be noticed that the complementary of an ADS is still an ADS [8]. Such property suggests the design of ADS-
based interleaved arrangements by simply associating each subarray to the Os (or 1s) of an ADS sequence (e.g.
taken from [9]). From the previous consideration and already published results on ADSs, the main expected
advantages of interleaved array designs based on such sequences are the following: (a) design simplicity and
computational efficiency, as ADS designs do not require any optimization; (b) high PSL performances, as a
consequence of their radiating properties [9]; remarkable flexibility, since several tradeoff solutions can be
obtained from a single ADS design, thanks to the fact that a cyclic shift of an ADS is still an ADS both in the
linear and in the planar case [7,8,11]. Such expected properties are analytically discussed in the following, and
several linear and planar interleaved designs are provided in order to numerically assess the performances of
the proposed methodology.

2. Almost Difference Sets: Definition, Properties and Associated Thinned Arrays
Let us consider a planar uniform lattice of N =PxQ positions spaced by Sy XSy wavelengths (Q =1

corresponds to the linear case). A thinned array with K, active elements defined on such an aperture will
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P-1Q-1
exhibit an array factor equal to S, (u,v)= ZW,(p,q)exp[iZﬁ(pSXu+qsyv)], where Wl(p,q)e{O,l}

-0 g=0

=}
o

P-1Q-1
(p=0,.P-1, g=0,..,0-1) and w, (p,q) = K, . By exploiting the technique outlined in [7], the ADS-
p=0q=0
associated thinned array is defined as follows:
1 if (p,q) e D, (pe D, inthelinear case)
w, (p,q) = | ' (1)
0 otherwise

where D, isa (N,K,,A,,t,;)-ADS, i.e. a particular subset D, = {a, ezV;i=0,..,K, —l} of an Abelian group
Z" of order N for which the multiset Q = {qj =a, —a,,a, #a,, ] =0,.,K, (K, —1)—1} contains t, nonzero

elements of Z" exactly A, times, and the remaining N —1—t, exactly A, +1 times [7] (ADSs represent

therefore a generalization of DSs [7]). By simple manipulations, it turns out that the power pattern of the ADS-
based finite linear array satisfies the following

IS, Uy, Vi) [P=FIA, (z,,7,)]1= F(k,1) (2)
n m
at fixed known sampling points U, = P—,vm = Q_ , Where F is the Fourier transform operator and
S, Sy
A (z4,7,) is the periodic autocorrelation function of the sequence w, (p,q) [7], which is given by
p-1Q-1
A(r7y) =D W, (p,g)w, [(p +7,)mod P, (q + ry)mod Q]. (3)
p=0q=0
and turns out to exhibit the following three-level behaviour [7]
K, if r,=7,=0
A (r,.7,)=1 A,  fortvalues of (rx,z'y) (4)
A, +1 otherwise

In [7], starting from (2), suitable bounds for the PSL of ADS-based thinned arrays, which is defined as

max | S, (u,v)|?
SL=— e (5)
15,(0,0)]

(M being the mainlobe region) were derived.

3. ADS-based Interleaved Array Design
In order to introduce the exploitation of ADSs for interleaved array design, let us consider the following
Theorem:
Theorem | [8]: if D, isa (N,K,,A,,t,)-ADS, then its complementary set is Do =Z" \D, is a
(N,K¢g,Ag,te)-ADS with Ko =N -K,, A =N -2K, +A,.
Accordingly, starting from a binary ADS sequence w, (p,q) defining a thinned array on a given aperture, one
can obtain a fully interleaved arrangement with similar properties by simply associating the following binary
sequence to a second sub-array
we (p.a)=1-w,(p,q) p=0,..,P-10=0,.,Q-1 (6)
As a consequence, the aperture efficiency of the resulting interleaved arrangement turns out to be equal to 1.
In order to illustrate such property, let us consider the (26,13,6,19)—ADS, which is defined as [9]
D, ={0,4,51012,14,15,16,17,19,22,23,25} (7)
The resulting linear interleaved arrangement, which is plotted in Fig. 1, confirms that each of the 26 elements
composing the shared aperture is associated either to one sub-array or to the other.



Fig. 1 — Properties of ADS-based interleaved arrangements [(26,13,6,19) -ADS]. Geometry of the ADS-based
linear interleaved arrangement [shared aperture size: 12.51].

Similar considerations could be performed also in the planar case. As a visual example, the interleaved
arrangement resulting from the (49,25,12,24)—ADS is provided in Fig. 2.
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Fig. 2 — Properties of ADS-based interleaved arrangements [(49,25,12,24)-AD5]. ADS-based planar
interleaved arrangement [shared aperture size: 3Ax31].

Since the sub-arrays arising from the described procedure are essentially two ADS-based thinned independent
arrays, several of the results already deduced for those arrangements can be extended straightforwardly. More
specifically, by simple manipulations one could show that

Ac(zy,7,)=A(z,,7)) + N =2K, (8)
[Ac(z4,7,) being the cyclic autocorrelation of w (p,q) ] i.e., the cyclic autocorrelations of the two ADS-based
sub-arrays are equal, except for a fixed and known shift (Fig. 3), and, consequently [exploiting (2)] that

ety =¥, (o7, 9)

N
where ¥ = (——1}, i.e. the samples of the autocorrelation pattern of the two arrays are equal, except for a
I

fixed and known shift factor. Due to such properties, it turns out that
1. the design of an ADS based interleaved array is computationally very efficient (it is only required to
associate the 0s and 1s of known sequences to the two sub-arrays) [Eq. (6)];
the two resulting sub-array have very similar radiation properties when K, = K. [Eq. (9)];
each of the resulting sub-array has a well-behaved PSL [7];
4. thanks to the cyclic shift property of ADSs [7], each ADS sequence corresponds to N different
interleaved arrangements, which can provide different tradeoffs in terms of PSL on the two sub-arrays.
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Fig. 3 — Properties of ADS-based interleaved arrangements. Autocorrelation of (a) linear ADS-based
interleaved arrays (N = 26), and (b) planar ADS-based interleaved arrays (P = Q = 7).

4. Numerical Results
In order to numerically point out the characteristics and advantages discussed above of ADS-based
interleaved arrays, let us consider as a first example the design of an ADS-based linear interleaved array. In
Figure 4(a) the PSL of the two interleaved arrangements obtained by cyclically shifting a reference ADS, i.e.
using

D ={a, +o)modN;a, €Z";i =0,...K, -1 (10)
DY = {ac +o)mod N;ag € Z";i =0,., K¢ —1f (11)

(where o =0,.,N-1) is reported for three representative examples of ADSs taken from [9]

K t . . .
(N =60,88,108,v = WI =05,n= Nl =0.25). As expected, different tradeoff designs can be obtained from
each ADS [Fig. 4(a)].
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Fig. 4 — Numerical validation. Behaviour of PSL{D(C‘T) } vs. PSL{DE") } for (a) linear interleaved
arrangements with N =60,88,108; (b) planar interleaved arrangements with P =Q =7,17,29.



Moreover, it is seen that the PSL performances increase with the array size (as it happens for ADS-based
thinned arrays [7]), for both interleaved sub-arrays. By analyzing the behavior of the beampattern obtained for
a representative case (Fig. 5- N =88, o =23), one can also observe that the power patterns of the two fully-
interleaved sub-arrays are very similar: this is a consequence of the fact that both sub-arrays show a power

pattern which complies with Eq. (2) (Fig. 5), and therefore have to assume the same values for u, = —

N=88, 6=23
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Fig. 5 — Numerical validation. Power patterns of a representative tradeoff ADS-based linear arrangement
for N =88, and predicted samples F(K).

Similar observations hold true also for the planar case [Fig. 4(b) - P=Q=7,17,29; v=0.5,7 =0.5]. From the
reported results, one can notice that the PSL of the two ADS-based interleaved sub-arrays is similar for each
considered shift, as it happened in the linear case [Fig. 4(b) vs. Fig. 4(a)]. This is also confirmed by the plots of
the power pattern of two representative ADS planar interleaved arrays (Fig. 6 - P=0Q=29). As it can be
noticed, the two sub-arrays exhibit a close radiation pattern. Moreover, as expected from the previous
Sections, the sidelobes exhibit a quite regular behavior (i.e. similar ripple levels for each sidelobe). Such a
property, shich can be also noticed in the linear case (Fig. 5), is a consequence of the ADS sampling properties
[Eq. (2)], and is similar to the radiation properties of thinned arrays based on ADSs.
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Fig. 6 — Numerical validation. Power patterns of a representative tradeoff ADS-based linear arrangement
forP=0Q=29.



4. Conclusions

In this paper, an ADS-based methodology has been proposed for interleaving equally weighted linear

arrays operating on the same frequency band. Such a deterministic approach is not aimed at obtaining optimal
arrays, but rather at providing guidelines for the efficient design of shared aperture arrangements with
predictable performances. The obtained results have pointed out the efficiency, effectiveness, simplicity and
reliability of ADS-based shared aperture arrangements.
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