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ADS-Based Guidelinesfor Thinned Planar Arrays

G. Oliveri, L. Manica, and A. Massa

Abstract

This paper proposes an analytical technique based on Alifistence SetsA DSs) for
thinning planar arrays with well controlled sidelobes. Thethod allows one to synthesize
bidimensional arrangements with peak sidelobe levBISI(s) predictable and deducible
from the knowledge of the array aperture, the filling factord the autocorrelation function
of the ADS at hand. The numerical validation, concerned with both barad very large
apertures, points out that the expecfefl values are significantly below those of random
arrays and comparable with those from different séis'§) although obtainable in a wider

range of configurations.

Key words: Array Antennas, Planar Arrays, Thinned Arrays, Sidelolesel Control, AlImost

Difference Sets.



1 Introduction

Antenna arrays for radar tracking, remote sensing, bionadmaging, satellite and ground
communications have often to support three-dimensioraairsag with a suitable beampattern
shape in the whole angular region [1]. Towards this end, gslamrays have to be used and
large apertures are necessary to provide satisfactorjangsolutions along both azimuth and
elevation [1]. On the other hand, the inter-element spashmauld not exceed half-wavelength
to avoid the presence of grating lobes [1]. These requirésngsually result in very inefficient,
heavy, and expensive solutions consisting of planar gaoesewith several thousands close
elements.

In order to reduce the number of elements while keeping ttiatian properties of the original
structures, thinning techniques have been successfiittydaced [2]. Designing thinned planar
arrays is an important research topic since decades (8§ 42[b][6][7][8] and the references
cited therein). As a matter of fact, a suitable thinning\aloone to reduce the array costs,
its weight, and the power consumption. However, it causeddss of the control of the peak
sidelobe level PSL) [6] to be properly counteracted. To this end, several teghes has been
proposed in order to fully exploit the advantages of thinaedngements while minimizing
their drawbacks. First attempts have been conceived tareetpww computational resources
(see Tab. 1in [9]), but they have provided no significant ioygments when compared with
random placements [2][9] extensively employed in pradiiie

More recently, the availability of large computational@asces has justified the use of opti-
mization techniques such as dynamic programming [10], iea&orithms [5][11][8], simu-
lated annealing [12][13], and particle swarm optimizerk [Vhinned arrays synthesized with
optimization tools turn out to be very effective [10][12][&], even though it is not possible
to a-priori estimate the expected performances for a given array apeaitid thinning factor
[6]. Furthermore, computational and convergence issud®rtiee application of stochastic op-
timizers difficult and expensive when dealing with large apertures [6] and, even more, when
planar arrangements are considered.

In order to overcome such drawbacks, an alternative appréacthinning large arrays has

been introduced [4][6][14]. Such an approach relies on tt@agtation of binary sequences



derived from Difference Sets/JSs), which exhibit a two-level autocorrelation function [4]
Besides their analytic nature and the arising inexpensavemtion,D S-based thinned arrays
have several interesting properties. They are deterngalt designed and present predictable
[6] and low PSLs (3 dB and1.5 dB below random arrays for the linear case and the planar
one, respectively). However, only a limited numbero$ sequences exist and the whole set of
aperture sizes and thinning values [6][15] cannot be de#it w

The problem of obtaining sub-optimal sequences (in termeutdcorrelation levels) has been
recently addressed in information theory and “close” segae toDSs have been looked
for. Almost Difference Sets4ADSs) [16][17][18] are a wide class of binary sequences with
three-valued autocorrelations [16][17][18]. They represent the closess toDS's [16][17][18]
(three-levels vs. two-levels) and large repositories qiliexX sequences (e.g., [19]) are avail-
able.

As regards td D geometries, the sidelobe characteristicsidlS-based arrays have been ana-
lyzed in [20] and good performances have been predicted amencally verified dealing with
both small and large apertures. Because of these resuliitsasieterministic nature, ad D.S-
based technique seems to be a good candidate for thinningrpd@rangements of radiating
elements and it will be presented in this paper. More spadificthe objective is not to de-
fine the “optimal” thinning method, but rather to provide epie and reliable technique which
guarantees to the designer predictable performances &kbe into account during the feasibil-
ity study. Towards this end, theS L behavior ofA D S-based planar arrays will be analytically
investigated and different bounds will be provided. It diddoe pointed out that, despite the
linear case [20] where the Blahut’'s theorem [20] has beetiehpa different mathematical
analysis is here necessary. TR8 L bounds are then derived starting from the properties of the
2D discrete Fourier transform.

The paper is organized as follows. After a short overviewAdnS's (Sect. 2), a set of suitable
bounds of thePSL are analytically determined in Sect. 3. Section 4 providsslacted set
of numerical results aimed at validating the obtai&$lL estimators as well as comparing the
ADS performances with both random techniques and state-eftiheptimization approaches.

The exploitation of directive elements is also consideredrider to point out the flexibility of



the ADS thinning theory. Finally, some conclusions are drawn (Sgxt

2 Two-Dimensional Almost Difference Sets

With reference to the 2D problem, let us definérar), K, A, t)-almost difference set as/d-
subsetD = {d, € G, k=0, ..., K — 1} of the Abelian groupG of order PQ (G = Z” ®
Z2M | P and(Q being chosen according the Kronecker Decomposition Tine¢2&]) for which

the multiset
M={m;=(d,—d),d¢#dp; j=0,...., K (K —1) — 1}

containg nonzero elements dk each exacthy\ times and the remaining@ — 1 — t nonzero
elements each exactly + 1 times [18]. Therefore, anl DS satisfies the following existence
condition [17][18]:

KK—-1)=tA+(PQ—-1—-t)(A+1) (1)

whereK > A+ 1,0 < K < PQ, and0 <t < PQ — 1. Moreover, it is worth noticing that
DSs areADSs for whicht = PQQ — 1 ort = 0 [18].

If Disa(PQ, K, A, t)-ADS, then it is possible to derive a two dimensional binary segee
W = {w(p,q) =1(0)if (p,q) € (¢)D; p=0,...,.P—1,¢=0,...,Q — 1} whose2D peri-
odic autocorrelation function [6],,(p, q) (p € [0, P — 1], ¢ € [0, @ — 1] being its periodicity)

is athree-level functioj16][18]

N—-1-t

AﬁDS(I% q) = (K - A)(S(pv Q) + A + Z 6(p - lr,la q— lr72)7 (2)

r=1

whereK > A+ 1,6(p,q) = 1if p = ¢ = 0 andd(p,q) = 0 otherwise, andl,.,l,») = 1,
is an element of the s&t = {1, € Z" ® Z?, r =1,..., N — 1 — t}. For descriptive purposes,
let us consider thelDSs in Tab. | [18][19]. The plots oW and of the three-level function

AAPS(p, q) in correspondence with, (i = 1,2, 3) are shown in Fig. 1.

(1) The symbol @ stands for the direct sum of ZP and Z%, that is G =
{gi=(a,Bn), aj €ZF, B, €29,i=0,..,PQ—1,j=0,...,P—1,h=0,..,Q — 1} andG is equipped
with the component-wise operations derived fréafMandZ®?, thatisg; +go = ((a1 +2)mod P, (31 +52)mod Q)-
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As regards to the closeness of tHe.S to the DS sequences, likewiséD arrangements,
the bidimensional autocorrelation function of BQ, K, A, t)-ADS differs from AP (p, q) =

K 6(p,q) + A [6] by a unity in onlyPQ — 1 — ¢ points [16][18] [Eq. (2)]. Moreover, the DS
autocorrelation function still remains unaltered afteclay shifts of the reference sequence

[16][18] since ifD isanADS, then

D) = {((p+ 02 )modrs (¢ + Ty)moaq); (p,q) € D, 04,0, € Z} (3)

is stillan ADS. As a consequence, starting frong/aQ, K, A, t)-ADS, it is always possible to
build P x @ different(PQ, K, A, t)-ADSs by applying cyclic shifts to its elements.

3 ADS-Based Planar Arrays- Mathematical Formulation

Let us consider a planar array &f x () elements located, according to the binary sequence
W, on a bidimensional lattice of points spaceddyandd, wavelenghts along the andy
directions, respectively. The array factor of such an el@marrangement turns out to be [6][1]

P-1Q-1
AF{W} £ Wap(u,v) = > > w(p, q)exp 275 (pdyu + qdyv)] (4)

=0 ¢=0

hS]

whereu = sin(f)cos(¢) andv = sin(f)sin(¢). Moreover,W,r(u,v) can be also expressed

in terms of the2 D Discrete Time Fourier transformiX7"F'T') of the sequencsV,

P-1Q-1
DTFT{W} £ T(a,5) = Y > w(p,qeap[~j (pa + ). (5)
p=0 ¢=0
as follows
War(u,v) = T(—2nd,u, —27d,v). (6)

Furthermore, by applying the Sampling Theorem [22] to thecfionT(«, ) ,

P-1Q-1 . aP . 68Q
sin (%F — k) sin (52 — Ir)
Te.f) =2 > FbD) 5o ey 75 o\ (7)
% P g (1 )



F being2D Discrete Fourier Transform{F'T) of the sequenc® (DFT {W} £ F(k,l) =
Z Zq S w(p, q)exp [—27rj (% + q@lﬂ), it results that

P-1Q-1

Wap (1, 0) ZZF (k1) sin (rd,uP + k7r) sin (rd,vQ + Ir) (8)
k=0 (=0 Psm (rdyu + 5F) Q sin <7rd v+ l”)
Such a relationship states that the samples of the arrayrfatt = dzp, V=5 Q are equal to
the values of thé F'T of the weighting sequend® in (k, 1)
Wap [~ — L =F(k,1) 9)
AF dxpv dyQ - s V).

For illustrative purposes, Figure 2 shows the plot of theyafiactor ¢, = d, = %) and the
samples of théD F'T" of W in correspondence with the sBt, [Fig. 2(a)] and the seD, [Fig.
2(b)].

As regards to the peak sidelobe level{L), it is defined as

& MRl WiE ™ (u, )

10
Wi (0,0) 1o

pSL{DC |

WhereW("* 74) (u,v) is the array factor coming from the shifted #t"="») andR is the main-

lobe region of extension (see Appendix)

K
Ré{u,v e[-1,1x[-1,1]: >+ <1, uv < } 11
(w,v) € Il ] 4PQd,dy max i pyen, |F(k, )| (11)

with Hy = G\ (0,0)®
By substituting (8) in (10), it appears that

Maz (y )¢ R ZP71 Z F(o-z o'y)(k l) aL7L(7rddLuP+k77rr) 52”(7\'dy1 Q+l7\')

PSL {D(Uwvo—y)} _ k=0 P6L7L(7\'d1u+k ) Q6L7L§7\'dyu+a) _
P-1 Q-1 mn(og,oy) sin(km) sin(lm)

’Zk_o EZ:O ¥ ! (k l)Ps'Ln( ) Qszn(a)

Q-1 1(0y,0, sin(ndguP+kr)  sin(wdyvQ+Iin)

=0 F - y (k l) Psin(wdzu+l%r) Qsin(wdyv+%r)

(12)

2

_ 1 P-1
= K2MAT(uw)¢R k=0

(2) The notationG (0, 0) indicates the set of elements of the Abelian gr@@pvithout the null element,
(0,0).



since F7=7) (0,0) = Y2770 S wlo=)(p,q) = K, W) = {w@=r)(p q); p =
0,..,P—1; ¢=0,..,Q — 1} being the two-dimensional sequence derived fidffr7»). As it
can be noticed, th®SL of an ADS-based array is a function of the coefficiefits=+) (k,1).
Unfortunately, since these coefficients cannot be expdasselosed-form (but their values are
available when the generatingD S is known) and, unlikeD Ss, depends on the indexeand!,

it is not possible to provide 2S5 L threshold as foi) Ss-based planar arrays [6]. Nevertheless,

the following set of inequalities holds true for sufficignidrge values of? and(@ (Appendix)

PSLINF S PSLmzn S PSLopt {D} S PSLmaa: S PSLSUP (13)

wherePSL {D} = min, ) [PSL{D " }|. PSLiyin = 4B, PSLy, = Rl

K2 ’ K2 !
K—A—y/UEDEPQ1-0) K—A+4/(t+1)(PQ—1—t) ) E{T'D,
PSLinr = KQPQ - , PSLsyp = ( 7€ ) t } Q{D} =

MAT (1, 1)e }F(“wv"y)(k, 5) andF {ropt } &~ —0.1+ 1.510g10(PQ).

It is now worth pointing out thatSL,,,;,, and PSL,,,,. can be evaluated only once tHe) S
sequence is exactly known, since the knowledge of the {&ffn-v) (k, 1) \2 is required, while
the bounds®SL;yr andPS Lgyp can bea-priori determined starting for the knowledge of the
characteristic parameters describing thB S (i.e., P, Q, K, A, andt).

For a preliminary validation of such an estimate criteritwt,us refer to the planar array gen-
erated byD, in Tab. I. As expected, th&SL of the seﬂgé"’”"’y) depends on the values of
ando, [Fig. 3(a)] and different shift values give the same optindd'L, PSL,,;, whose value
lies into the range of confidence defined in (13) [Figb)B( The multiplicity of the optimal
solutions indicates that less th&hx () evaluations are actually needed to identify the optimal
ADS-based planar array. This is a negligible computational compared to the burden re-
quired by stochastic optimization techniques to determaitieinned arrangement on the same

aperture.

4 Numerical Analysis

In this section, the results of a numerical assessment amgided and discussed to point out po-

tentialities and limitations of thd D S-based approach proposed as a suitable tool for predicting
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the performance of an effective set of planar thinned arr&gs comparison purposes, random
arrangements [3][6] are considered as reference sin@yideA DS arrays, their performances
can bea-priori estimated. More in detail, the estimator of the normalizedipsidelobe level

of planar randomarrays (RN D) turns out to be [3]

A2 A2 -1
in 1—5W] +1—2{ln {pgw}}
(14)

where 3 is the probability or confidence level that no sidelobe edseiie PSLiyp value.
Moreover,random lattice planar arrays (RN L), whose elements are located on a uniformly-

spaced lattice of points over the aperture, exhibit thefaithg PS L [6]
PSLRNL = PSLRND X (1 — V) (15)

(Wherev = % is the thinning factor).

The first numerical example deals with the analysis of . bounds (13) versug £ ﬁ

for different apertures and when = 0.5 (Fig. 4). As expected (Sect. 2), the upper bound
of PSL tends toPSLps whenn = 1 andn = 0 (PQ — oo) and its value,PSLsyp, IS
always belowPSLryp and PSLgyy, except for a small set of values close tgy = 0.5 and
large apertures®Q > 10°). As a matter of fact, whatever the array dimension, the twors
performances verify in correspondence with= 0.5. Therefore, such an index value will be
analyzed in the following to provide “worst-case” indicats onA D S-based thinning.

Figure 5€) shows the behaviors of théD.S bounds versus the aperture dimension n =
0.5). SinceADS are here available [19FSL,,:, PSLn, andPSL,,,, are reported, as well.
As it can be noticed, these plots confirm tha$ L, » usually overestimates the actual peak
sidelobe of theAD S array (whilePSL,,;, — PSL;nr) and thatPSL,, is always well below
the values exhibited by random families.

For completeness, the remaining of Fig. 5 gives an indioaiiothe estimated behavior D S
arrays in correspondence with different thinning percgesgy = 0.3 - Fig. 5@), v = 0.4 - Fig.

5(b), v = 0.6 - Fig. 5d)] for which ADS's are not still available. As regards to the confidence



rangeA 4pg, defined as

PSLsyp
A £ - 000 16
ADS PSL[NF ) ( )

it slightly increases withP?@ and shows a limited dependence on the aperture dimension (
4dBin 10?2 < PQ < 10%) (Fig. 6). MoreoverA ps(v) = Aaps(1 — v) and the minimum
value of A 4pg Vverifies forv = 0.5 as it can be analytically derived.

Concerning availablelDSs with v # 0.5, Figure 7 shows the behavior of teSL,,, (and
related bounds) of the array generated from the sequBpge = 0.473 andr = 0.485) whose
power pattern and elements arrangement are given in Fig. and Fig. 7(), respectively.
Despite the small apertur8X x 5)), PSL,, still lies in the range of values estimated by (13)
[Figs. 7@)-7(b)] and it appears to be significantly below the random estsiand comparable
with the DS value aty = 1. It is also interesting to notice that the reference arrayvdd
from D, allows one to determine several shifted array configuratieith PS5 L {&("w"’y)} <
PSLgyp [Fig. 3(b)] as well as multiple arrays witf S L {&(”z"’y)} < PSLyus.

Such a feature is not only limited 0, but it is a common property o D S-based arrays as
confirmed by the examples in Figs. 8-10 and concerned witfetaapertures. Furthermore,
it should be pointed out that more than one cyclic shift of tekerenceADS sequencd);

(i = 4,...,7) gives an array pattern witl?.S L {&(‘W’y)} = PSL,, [Figs. 3(b), 8(@), 9@),
10@)]. Such considerations highlight thata)(also through an exhaustive search, less than
P x (@ evaluations are actually needed to identify the optithalS-based planar arrayb) a
very limited number of evaluations is enough to synthesizel®S array with aP.SL value
below that from random/random lattice distributions.

As far as the radiation patterns are concerned, Figur@s1r(c) allow one to point out a fur-
ther interesting property aflDS planar arrays. UnlikeDSs, where|FF (k,1)| is a two-valued
function [6], the unequal magnitudes of the samplegdk, /)| (Fig. 2) lead to a non-uniform
behavior of the array pattern outside the mainlobe regidh sdme non-negligible variations
of the sidelobes [see Figg(c)-10(c)]. This can be exploited as an additional degree of freedom
to be used in antenna synthesis. One efficient way to do thatsnsider directive elements.
As an example, let us consider the planar arrays syntheSizedD , with isotropic or directive

elements (e.g% dipoles along thg axis). Figure 114) gives theP S L values for different shifts
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of the reference set. As it can be observed, the valuB$L,,, reduces PSLQI;Q = —23.66

dBvs. PSL,,, = —21.79 dB) thanks to the use of directive elements and, more irtiagdy,

the optimal shift for the directive array is not equal to ttath isotropic elementSO(‘jfT D,

opt =
ol =20VS. 0pop = 7, 0y opt = 5). This is due to the following. One has to determine the
shift generating the lowest lobes in the whole sidelobeogihen dealing with thei$otropic”
array [Fig. 116)]. Otherwise, the use of directive elements suggests tosithther, ando,
values with lowest sidelobes only near the mainlobe redtim [11(€)] since the element factor
“erases” the highest sidelobes far from the mainlobe regidime resulting antenna pattern [Fig.
11(d)].

The last section of the numerical validation is aimed atrgjvdome indications on the perfor-
mance of thed DS arrays versus those coming from state-of-the-art thintéegniques based
on stochastic optimizers [7][23][5]. SincéD S's are not still available in correspondence with
the thinning percentage of the test cases under analysigotinparison cannot be considered
fully fair, but it can be useful to suggest some guidelingsafdast and reliable choice of the
most suitable synthesis procedure as well as on the actéekaly. results.

Figure 12 shows th&S L of the thinned arrays optimized with the methods in [5] [Fig@)],

[7] [Fig. 12(b)], and [23] [Fig. 12€)], respectively, along with thé’SL bounds derived for
the correspondingl D S-based arrays (i.e., only the valuesi$ Lgyp and PS Ly Since the
ADS sequences, although theoretically existing, have not geedetermined). As it can be
noticed,AD S-based arrays compare favourably in term#6fL with global optimized designs

since, even in the worst case (i.e.5 0.5), PSL;yp < PSL9%° < PSLgyp .

5 Conclusions

In this paperADSs have been considered for the design of thinned planarsaride research
work is aimed at identifying the descriptive parametershaf A D S-based thinning technique
as well as their effect on the array performances. Likewhsdinear case [20], the objective of
this study is to analytically define a “term of comparisonhilp the array designer in identify-
ing the synthesis approach allowing the optimal trade-efileen computational resources and

the achievable result in terms 61S L level. Towards this purpose, the performances of planar
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ADS-based arrays have been investigated and suitable bount®ef®S L have been deter-
mined thanks to a new formulation based on the propertidseatvto-dimensionaD F'T". Such

an analysis has been validated by means of a large set of manexperiments also aimed
at comparing the predicted DS performances with those of random distributions or stochas
tically optimized arrays. The obtained results have pairdat the following features of the

ADS thinning technique:

e the PSL of the synthesized patternaspriori known when thed DS sequence is avail-

able in an explicit form, while suitable bounds are preditgaotherwise;

e because of the three-level autocorrelation functién,S sequences guarantee additional
degrees-of-freedom (compared to the& case) to be profitably exploited (e.g., using

directive elements) for fitting the design constraints;

¢ unlike iterative optimization or trial-and-test randommsyesis techniques, the approach
determines the array configuration just through simpletstof a referencedDS se-

quence;

¢ thanks to the availability of rich repositories 4fD Ss also concerned with large and@

indexes, wide apertures (impracticable for stochastiowpers) can be dealt with;

e the use ofADS does not prevent their integration with optimization teicues, vice
versa it could represent a way (to be explored in succeses@arches) to improve the
convergence rate of iterative methods or for enabling stetb searches in thinning large

arrays by means of a suitableD S-based initialization.
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Appendix

- Definition of the Mainlobe RegionR
Starting from (12) as for planab s arrays [6], it can be proved that theSL of ADS-

based arrays is close to the values of the samples of the facay atu = u,, 11 = m;;o/ 2
U= Uyl = %;0/2. By exploiting such an observation, it results that
PSL {Q(”w’ay)} ~ L maz —— K(_l)mfn — +
R,y y ) er | Qo R o D)ol ()] an
+ ZP—I Q-1 F(Gz,cy)(_l)m+k+n+z
k=0,kl#0 1=0,kl#0 PQ sin[%(m+k+%)]sin[%(n+l+%)]

where the mainlobe regio®, is defined analogously to [6] as the visible region wherdfitise
termin (17) exceeds the magnitude of the second one. Asdegathe first term, its magnitude

is approximately equal to
K

CERICE

and for large values oP and (). Moreover, the largest coefficients in the second term, (i.e.

m+k+ 5 =+l andn + [+ 5 = £1) of (17) are bounded by

4 max(k,l)eHo |F(0'w70'y) |

2

Thus, after simple manipulation, it is possible to show tRaixtends to the region limited by

the following boundary inequality

< o :
4PQxoyo maz . pen, |F=v)|

um—l— ’Un—i- (18)

[NIES
N

- Derivation of PSLgyp in (13)

With reference to discrete version &f Rp,

1 1 K
R é{m,n EZXZ:<m+—><n+—)§ } 19
b ( ) 2 2 dmaz g yern,\Wprr(k, )] 19
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let us consider the following approximation BISL* {D} = min,, o, [PSL {D("* v H

maz g per, {[FO (k,1)|*}
K? x

PSLOpt {D} § min(awvay) (20)

(o, Uy) 2

pP-1
Xma:l:'(m,n)gRD E E
k=0,kl# 0,kl

eI Pkt

20 PQ sin [Z (m+k + )}sm[ (n+1+ )}

( 1)m+k+n+l

where the complex coefficiefit’=7») has been expressed in terms of its amplitugd@f (c=-o+) (k, ) |2,
and phaseg;s("”” o),

It is worth pointing out that, likewiséS's, gb("* “v) is not a-priori known as well as, unlike
DSs, the termmnaz i, jyer, {[F=7¥) (k,1) |*} and they have to be estimated. Towards this end,

by exploiting the circular correlation property 8fF'T [22], it is possible to state that
|[Fl=) (k, Z)}Z = DFT {AP%(p,q)} = K — A+ PQAS(k, 1) + U(k, 1),  (21)
and to obtain the following relationship
maz g, e, {\Www (k. l)}2} = K — A+ mazgpyen, {U(k, 1)} (22)

Wherelll(kv l) £ DFT {?/)(I% q)} belng,lvb(pv Q) £ ZPQ_I_t 6(p - lr,la q— lr72)'

r=1

Concerning the real-valued coefficiewts:, /), by applying the Parseval’s theorem [22]

P-1Q-

"
L
T

1

PO U (k1) [ = v p.a)P=PQ—1-t
k=0 1=0

3
I
o
Q
Il
o

and noticing thaE Z "4 (p,q)|? = PQ—1—tand¥(0,0) = PQ—1—t, the following

holds true

Z Z (t+1)(PQ—1—1t). (23)

k=0,kl5£0 1=0,kl£0

Therefore, since

MAax (k,1)eHo {“Il(kv l)} < MaxeH, {|‘Il(k7 l)|} < \/(t + 1)(PQ —1- t) (24)
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and substituting (22) in (20), we obtain

PSL™{D} 5 (K — A+ I+ D(PQ—1-1)) (25)
Ogx,0 2
P—1 Q-1 8j¢1(€l y)(_1)7rz+k+n+l
. maxmm)¢Rp Zk:O,kl;«éO 1=0,kl#0 pQ sin[%(m+k+%)]sm[%(n+l+%)]
XMAN(5,,0,) 702
As regards the phase ter ‘l’”"’y), the analysis is carried out as in [6] in order to give an

estimate of thePSL. More specifically, although the phase terﬁ;fﬁ””"’y) are deterministic
quantities, they are dealt with as independent identiadiyributed (i.i.d.) uniform random

variables. Under this assumption, (25) can be expressed as

<K A+ /T D(PQ -1 t)) port

PSL7 (D} < e (26)
where for largeP and(@
Fopt ~ min(oz,ay) {ma:)j [UZ7 9 = 17 ceey H]} (27)
U A 0o 0o ej‘bglyz’gy) ’ =1 11. bei i.i.d d iabl Adis th
) S D (=D | ¢ =1,...,II, being i.i.d. random variables aidis the

cardinality of Rp (= PQ). Since the statistics df’** are not available in closed form, Monte

Carlo simulations have been performed to provide an appration of its mean valu& {T"?*}
E{T"} ~ —0.1 + 1.5log1o(PQ). (28)

By substituting (28) in (26), the upper bouth L5/ p is finally obtained.

- Derivation of PSL;yr in (13)
By sampling (12) at« = 55, v = QL%), s=0,...,P—1,t=0,..,Q — 1, it can be easily

shown that

15



PSL#{D} = PSL{D""L| - (29)

T Pdg VT Qdy

2

P—-1 Q-1 p(og,o sin[w(s+k)] sin|[m(t+1)]
Maz(s,tyemg | Lhao Do FO® 7Y (k1) = (oz,0y) 2
. Pszn[T] Qszn[T] . ma:c(sjt)eHO‘IF z,0y (57t)‘
= e = 2

By substituting (22) in (29), and observing that

maz nem, {Y(k, 1)} > _\/(t + 1);2@_—11 —t) )

it turns out

K — A . (t+1)(PQ—1—1)
PSL {D} > V. @' 2 pSLiap (31)

K2

- Derivation of PS L, in (13)

With reference to (20), let us assume that e S D at hand is known. Thus,

2
Q{D} £ maz g e, [F7 (k,1)] (32)

is now a known quantity. By substituting (32) in (20), we abta

(U:caffy

P—1 Q—l ej¢kl )(_1)m+k+n+l
k=0,kl#0 £«1=0,kl#0 pQ szn[% (m-i—k-i—%)]szn[% (n-i—l-i—%)]

K2

PSL?{D} $ Q{D} min(, q,) | Mmaim gy

(33)
As regards to the phase termg‘f"’y), let us consider the same procedure used for deriving
PSLgsyp and let us rewrite (33) as follows

9 {D} Fopt

P17 (D} £ — =0

(34)

whereI'?! is successively approximated with its mean value (28) taioli®S L, .
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- Derivation of PSL,,;, in (13)
Analogously to the derivation dPSL,,.., a lower bound for”S L,,; whenD is known can be

obtained starting from (29) and employing (32):
2
MAT (s 1)k, ‘F(ow,ay) (s,t)‘ ~ Q{D} 4 pgr

PSLOpt {D} Z K2 - K2 min-

(35)
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FIGURE CAPTIONS

e Figurel. Autocorrelation functions and associated binary sequeottheADSs in Tab.

I: (a)(d) D,, (b)(e) D,, and €)(f) D.

e Figure 2. Plot of the normalized array factor derived frd = D\”*="*=") and asso-

ciated|F(k,)| values: &) i = 1 and p) i = 2.

e Figure 3. PSL values of theADS-based planar arrays derived from the sequences
Qé”””’”y), o, =0,..,P—10, = 0,..,Q — 1 (a) and PSL bounds ). Number of

elements:P x ) = 7 x 11 - Aperture size3\ x 5.

e Figure 4. Numerical Validation. Plots of theP.SL bounds ofADS-based planar arrays,
the estimator of thé’S L of random RN D) and random latticef N L) arrays, and values
of the PSL of DS-based finite arrays versuswhenv = 0.5 and @) PQ = 102, (b)
PQ =104, (c) PQ = 105,

e Figure 5. Numerical Validation. Plots of theP.SL bounds of4DS-based planar arrays
and the estimators of theSL of random RN D) and random lattice RN L) arrays
versus the array apertur@(), whenn = 0.5and @) v = 0.3, (b) v = 0.4, (c) v = 0.5,
(d) v = 0.6.

e Figure 6. Numerical Validation. Plots of A 4ps versus the array apertur@&(), when

n = 0.5 and in correspondence with different thinning value<[[0, 1]].

e Figure 7. Numerical Validation - Planar Array D [Number of elementsP x Q =

7 x 11 - Aperture size3\ x 5)\]. Plots of thePS L bounds versus] the array aperture
PQ [v =0.4805,n = 0.4736] and ) n [PQ = 77, v = 0.4805]. Plot of the normalized

array factor €) generated from th®$”*-based array arrangemeit) (

e Figure 8. Numerical \alidation - Planar Array D" [Number of elementsP x Q =

23 x 23 - Aperture sizel1\ x 11\]. PSL values of thed D S-based arrays derived from
the sequence@ﬁf’z"’y), 0,=0,..,P—1,0,=0,..,Q—1(a). Plots of thePSL bounds

20



versus b) n [PQ = 529, v = 0.5]. Plot of the normalized array factoc)generated from

the D7"-based array arrangemeit) (

opt

e Figure 9. Numerical Validation - Planar Array D" [Number of elementsP x Q) =
73 x 23 - Aperture size36)\ x 36]. PSL values of thed D S-based arrays derived from
the sequenced; (0000) 5 =0,..,P—1, o, =0,...,Q—1(a). Plots of thePSL bounds
versus ) n [PQ = 5329, v = 0.5]. Plot of the normalized array factoc) generated

from theDZ"'-based array arrangemeit) (

e Figure 10. Numerical Validation - Planar Array D [Number of elementsP x Q =
199 x 199 - Aperture size:99\ x 99\]. PSL values of theADS-based arrays derived
from the sequenced (00 00) 5 =0,..,P—1, o, =0,...,Q — 1 (a). Plots of thePSL
bounds versush) n [PQ = 39601, v = 0.5]. Plot of the normalized array factoc)

generated from th®g”'-based array arrangemeit) (

e Figure 11. Numerical Validation - Non-Isotropic elements. PSL values of theADS-
based arrays generated from the sequeﬁ_lfé@"y), 0, =0,...,P—1,0,=0,...,0Q -1
(a). Normalized array patterns of the arrays generated froenstrquencesof DY =

D' with isotropic elementsD** with isotropic €) and directive elementsi).

e Figure 12. Comparative Assessment. Plots of theP .S L bounds versus the array aperture,
PQ, whenn = 0.5 and for @) v = 0.54 [5], (b) v = 0.507 [7], (c) v = 0.48 [23], (d)
v =0.44 [23].

TABLE CAPTIONS

e Tablel. Examples ofADSs and descriptive parameters.

21



(@) (d)

26 i o A+l

(b) G)

ANS (pa) ® K

(©) (f)

Figurel- G. Oliveri et al., “ADS-Based Guidelines for ...
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ADS | P | @Q K A t vE 45 | 1= po—7 | Reference
D, 4 7 15 7 6 ~ 0.5357 ~ (.22 [18]
D, 7007 25 12 24 || ~0.5102 0.5 [18]
D, 7 11 37 17 36 ~ 0.4805 | =~ 0.4736 [18]
D, | 23| 23| 265 | 132 | 264 ~0.5 0.5 [19]
D; 73 73 2665 | 1332 | 2664 ~ 0.5 0.5 [19]
Dy 199 | 199 | 19801 | 9900 | 19800 ~ 0.5 0.5 [19]

Tablel - G. Oliveri et al., “ADS-Based Guidelines for ..”
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