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ADS-Based Guidelines for Thinned Planar Arrays

G. Oliveri, L. Manica, and A. Massa

Abstract

This paper proposes an analytical technique based on AlmostDifference Sets (ADSs) for

thinning planar arrays with well controlled sidelobes. Themethod allows one to synthesize

bidimensional arrangements with peak sidelobe levels (PSLs) predictable and deducible

from the knowledge of the array aperture, the filling factor,and the autocorrelation function

of theADS at hand. The numerical validation, concerned with both small and very large

apertures, points out that the expectedPSL values are significantly below those of random

arrays and comparable with those from different sets (DSs) although obtainable in a wider

range of configurations.

Key words: Array Antennas, Planar Arrays, Thinned Arrays, Sidelobe Level Control, Almost

Difference Sets.
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1 Introduction

Antenna arrays for radar tracking, remote sensing, biomedical imaging, satellite and ground

communications have often to support three-dimensional scanning with a suitable beampattern

shape in the whole angular region [1]. Towards this end, planar arrays have to be used and

large apertures are necessary to provide satisfactory angular resolutions along both azimuth and

elevation [1]. On the other hand, the inter-element spacingshould not exceed half-wavelength

to avoid the presence of grating lobes [1]. These requirements usually result in very inefficient,

heavy, and expensive solutions consisting of planar geometries with several thousands close

elements.

In order to reduce the number of elements while keeping the radiation properties of the original

structures, thinning techniques have been successfully introduced [2]. Designing thinned planar

arrays is an important research topic since decades (see [2][3][4][5][6][7][8] and the references

cited therein). As a matter of fact, a suitable thinning allows one to reduce the array costs,

its weight, and the power consumption. However, it causes the loss of the control of the peak

sidelobe level (PSL) [6] to be properly counteracted. To this end, several techniques has been

proposed in order to fully exploit the advantages of thinnedarrangements while minimizing

their drawbacks. First attempts have been conceived to require low computational resources

(see Tab. I in [9]), but they have provided no significant improvements when compared with

random placements [2][9] extensively employed in practice[2].

More recently, the availability of large computational resources has justified the use of opti-

mization techniques such as dynamic programming [10], genetic algorithms [5][11][8], simu-

lated annealing [12][13], and particle swarm optimizers [7]. Thinned arrays synthesized with

optimization tools turn out to be very effective [10][12][7][8], even though it is not possible

to a-priori estimate the expected performances for a given array aperture and thinning factor

[6]. Furthermore, computational and convergence issues make the application of stochastic op-

timizers difficult and expensive when dealing with1D large apertures [6] and, even more, when

planar arrangements are considered.

In order to overcome such drawbacks, an alternative approach for thinning large arrays has

been introduced [4][6][14]. Such an approach relies on the exploitation of binary sequences
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derived from Difference Sets (DSs), which exhibit a two-level autocorrelation function [4].

Besides their analytic nature and the arising inexpensive generation,DS-based thinned arrays

have several interesting properties. They are deterministically designed and present predictable

[6] and lowPSLs (3 dB and1.5 dB below random arrays for the linear case and the planar

one, respectively). However, only a limited number ofDS sequences exist and the whole set of

aperture sizes and thinning values [6][15] cannot be dealt with.

The problem of obtaining sub-optimal sequences (in terms ofautocorrelation levels) has been

recently addressed in information theory and “close” sequences toDSs have been looked

for. Almost Difference Sets (ADSs) [16][17][18] are a wide class of binary sequences with

three-valued autocorrelations [16][17][18]. They represent the closest sets toDSs [16][17][18]

(three-levels vs. two-levels) and large repositories of explicit sequences (e.g., [19]) are avail-

able.

As regards to1D geometries, the sidelobe characteristics ofADS-based arrays have been ana-

lyzed in [20] and good performances have been predicted and numerically verified dealing with

both small and large apertures. Because of these results andits deterministic nature, anADS-

based technique seems to be a good candidate for thinning planar arrangements of radiating

elements and it will be presented in this paper. More specifically, the objective is not to de-

fine the “optimal” thinning method, but rather to provide a simple and reliable technique which

guarantees to the designer predictable performances to be taken into account during the feasibil-

ity study. Towards this end, thePSL behavior ofADS-based planar arrays will be analytically

investigated and different bounds will be provided. It should be pointed out that, despite the

linear case [20] where the Blahut’s theorem [20] has been applied, a different mathematical

analysis is here necessary. ThePSL bounds are then derived starting from the properties of the

2D discrete Fourier transform.

The paper is organized as follows. After a short overview onADSs (Sect. 2), a set of suitable

bounds of thePSL are analytically determined in Sect. 3. Section 4 provides aselected set

of numerical results aimed at validating the obtainedPSL estimators as well as comparing the

ADS performances with both random techniques and state-of-the-art optimization approaches.

The exploitation of directive elements is also considered in order to point out the flexibility of
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theADS thinning theory. Finally, some conclusions are drawn (Sect. 5).

2 Two-Dimensional Almost Difference Sets

With reference to the 2D problem, let us define a(PQ,K,Λ, t)-almost difference set as aK-

subsetD = {dk ∈ G, k = 0, ..., K − 1} of the Abelian groupG of orderPQ (G , Z
P ⊗

Z
Q(1) , P andQ being chosen according the Kronecker Decomposition Theorem [21]) for which

the multiset

M = {mj = (dh − dℓ) ,dℓ 6= dh; j = 0, ..., K (K − 1) − 1}

containst nonzero elements ofG each exactlyΛ times and the remainingPQ− 1 − t nonzero

elements each exactlyΛ + 1 times [18]. Therefore, anADS satisfies the following existence

condition [17][18]:

K(K − 1) = tΛ + (PQ− 1 − t)(Λ + 1) (1)

whereK ≥ Λ + 1, 0 ≤ K ≤ PQ, and0 ≤ t ≤ PQ − 1. Moreover, it is worth noticing that

DSs areADSs for whicht = PQ− 1 or t = 0 [18].

If D is a (PQ,K,Λ, t)-ADS, then it is possible to derive a two dimensional binary sequence

W = {w(p, q) = 1(0) if (p, q) ∈ (/∈)D; p = 0, ..., P − 1, q = 0, ..., Q− 1} whose2D peri-

odic autocorrelation function [6]Aw(p, q) (p ∈ [0, P − 1], q ∈ [0, Q− 1] being its periodicity)

is athree-level function[16][18]

AADS
w (p, q) = (K − Λ)δ(p, q) + Λ +

N−1−t
∑

r=1

δ(p− lr,1, q − lr,2), (2)

whereK ≥ Λ + 1, δ(p, q) = 1 if p = q = 0 andδ(p, q) = 0 otherwise, and(lr,1, lr,2) , lr

is an element of the setL =
{

lr ∈ Z
P ⊗ Z

Q, r = 1, ..., N − 1 − t
}

. For descriptive purposes,

let us consider theADSs in Tab. I [18][19]. The plots ofW and of the three-level function

AADS
w (p, q) in correspondence withDi (i = 1, 2, 3) are shown in Fig. 1.

(1) The symbol ⊗ stands for the direct sum of Z
P and Z

Q, that is G =
{

gi = (αj , βh), αj ∈ Z
P , βh ∈ Z

Q, i = 0, ..., PQ− 1, j = 0, ..., P − 1, h = 0, ..., Q − 1
}

andG is equipped
with the component-wise operations derived fromZ

P andZ
Q, that isg1+g2 = ((α1+α2)mod P , (β1+β2)mod Q).
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As regards to the closeness of theADS to theDS sequences, likewise1D arrangements,

the bidimensional autocorrelation function of a(PQ,K,Λ, t)-ADS differs fromADS
w (p, q) =

K δ(p, q) + Λ [6] by a unity in onlyPQ− 1− t points [16][18] [Eq. (2)]. Moreover, theADS

autocorrelation function still remains unaltered after cyclic shifts of the reference sequence

[16][18] since ifD is anADS, then

D
(σx,σy) = {((p+ σx)mod P , (q + σy)mod Q); (p, q) ∈ D, σx, σy ∈ Z} (3)

is still anADS. As a consequence, starting from a(PQ,K,Λ, t)-ADS, it is always possible to

buildP ×Q different(PQ,K,Λ, t)-ADSs by applying cyclic shifts to its elements.

3 ADS-Based Planar Arrays - Mathematical Formulation

Let us consider a planar array ofP × Q elements located, according to the binary sequence

W, on a bidimensional lattice of points spaced bydx anddy wavelenghts along thex andy

directions, respectively. The array factor of such an elements arrangement turns out to be [6][1]

AF {W} , WAF (u, v) =
P−1
∑

p=0

Q−1
∑

q=0

w(p, q)exp [2πj (pdxu+ qdyv)] (4)

whereu = sin(θ)cos(φ) andv = sin(θ)sin(φ). Moreover,WAF (u, v) can be also expressed

in terms of the2D Discrete Time Fourier transform (DTFT ) of the sequenceW,

DTFT {W} , T(α, β) =
P−1
∑

p=0

Q−1
∑

q=0

w(p, q)exp [−j (pα + qβ)] , (5)

as follows

WAF (u, v) = T(−2πdxu,−2πdyv). (6)

Furthermore, by applying the Sampling Theorem [22] to the functionT(α, β) ,

T(α, β) =

P−1
∑

k=0

Q−1
∑

l=0

F (k, l)
sin

(

αP
2

− kπ
)

P sin
(

α
2
− kπ

P

)

sin
(

βQ
2
− lπ

)

Qsin
(

β
2
− lπ

Q

) , (7)
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F being2D Discrete Fourier Transform (DFT ) of the sequenceW (DFT {W} , F(k, l) =

∑P−1
p=0

∑Q−1
q=0 w(p, q)exp

[

−2πj
(

pk
P

+ ql
Q

)]

), it results that

WAF (u, v) =
P−1
∑

k=0

Q−1
∑

l=0

F (k, l)
sin (πdxuP + kπ)

P sin
(

πdxu+ kπ
P

)

sin (πdyvQ+ lπ)

Qsin
(

πdyv + lπ
Q

) . (8)

Such a relationship states that the samples of the array factor atu = k
dxP

, v = l
dyQ

are equal to

the values of theDFT of the weighting sequenceW in (k, l)

WAF

(

− k

dxP
,− l

dyQ

)

= F(k, l). (9)

For illustrative purposes, Figure 2 shows the plot of the array factor (dx = dy = 1
2
) and the

samples of theDFT of W in correspondence with the setD1 [Fig. 2(a)] and the setD2 [Fig.

2(b)].

As regards to the peak sidelobe level (PSL), it is defined as

PSL
{

D
(σx,σy)

}

,
max(u,v)/∈R|W (σx,σy)

AF (u, v)|2

|W (σx,σy)
AF (0, 0)|2

(10)

whereW (σx,σy)
AF (u, v) is the array factor coming from the shifted setD

(σx,σy) andR is the main-

lobe region of extension (see Appendix)

R ,

{

(u, v) ∈ [−1, 1] × [−1, 1] : u2 + v2 ≤ 1, uv ≤ K

4PQdxdy max(k,l)∈H0 |F(k, l)|

}

(11)

with H0 , G\(0, 0)(2)

By substituting (8) in (10), it appears that

PSL
{

D
(σx,σy)

}

=
max(u,v)/∈R

˛

˛

˛

˛

˛

PP−1
k=0

PQ−1
l=0 F

(σx,σy)(k,l)
sin(πdxuP+kπ)

P sin(πdxu+ kπ
P )

sin(πdyvQ+lπ)

Q sin(πdyv+ lπ
Q )

˛

˛

˛

˛

˛

2

˛

˛

˛

˛

˛

PP−1
k=0

PQ−1
l=0 F

(σx,σy)(k,l) sin(kπ)

P sin( kπ
P )

sin(lπ)

Q sin( lπ
Q )

˛

˛

˛

˛

˛

2 =

= 1
K2max(u,v)/∈R

∣

∣

∣

∣

∑P−1
k=0

∑Q−1
l=0 F

(σx,σy) (k, l) sin(πdxuP+kπ)

P sin(πdxu+ kπ
P )

sin(πdyvQ+lπ)

Q sin(πdyv+ lπ
Q )

∣

∣

∣

∣

2

.

(12)

(2) The notationG\(0, 0) indicates the set of elements of the Abelian groupG without the null element,
(0, 0).
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sinceF
(σx,σy) (0, 0) =

∑P−1
p=0

∑Q−1
q=0 w

(σx,σy)(p, q) = K, W
(σx,σy) =

{

w(σx,σy)(p, q); p =

0, ..., P −1; q = 0, ..., Q− 1} being the two-dimensional sequence derived fromD
(σx,σy). As it

can be noticed, thePSL of anADS-based array is a function of the coefficientsF
(σx,σy) (k, l).

Unfortunately, since these coefficients cannot be expressed in closed-form (but their values are

available when the generatingADS is known) and, unlikeDSs, depends on the indexesk andl,

it is not possible to provide aPSL threshold as forDSs-based planar arrays [6]. Nevertheless,

the following set of inequalities holds true for sufficiently large values ofP andQ (Appendix)

PSLINF ≤ PSLmin ≤ PSLopt {D} ≤ PSLmax ≤ PSLSUP (13)

wherePSLopt {D} = min(σx ,σy)

[

PSL
{

D
(σx,σy)

}]

,PSLmin = Ω{D}
K2 ,PSLmax =

Ω{D}E{Γopt
PQ}

K2 ,

PSLINF =
K−Λ−

q

(t+1)(PQ−1−t)
PQ−1

K2 , PSLSUP =

“

K−Λ+
√

(t+1)(PQ−1−t)
”

E{Γopt
PQ}

K2 , Ω {D} =

max(k,l)∈H0

∣

∣F
(σx,σy)(k, l)

∣

∣

2
, andE

{

Γopt
PQ

}

≈ −0.1 + 1.5 log10(PQ).

It is now worth pointing out thatPSLmin andPSLmax can be evaluated only once theADS

sequence is exactly known, since the knowledge of the term
∣

∣F
(σx,σy) (k, l)

∣

∣

2
is required, while

the boundsPSLINF andPSLSUP can bea-priori determined starting for the knowledge of the

characteristic parameters describing theADS (i.e.,P ,Q,K, Λ, andt).

For a preliminary validation of such an estimate criterion,let us refer to the planar array gen-

erated byD3 in Tab. I. As expected, thePSL of the setD(σx,σy)
3 depends on the values ofσx

andσy [Fig. 3(a)] and different shift values give the same optimalPSL, PSLopt, whose value

lies into the range of confidence defined in (13) [Fig. 3(b)]. The multiplicity of the optimal

solutions indicates that less thanP ×Q evaluations are actually needed to identify the optimal

ADS-based planar array. This is a negligible computational cost compared to the burden re-

quired by stochastic optimization techniques to determinea thinned arrangement on the same

aperture.

4 Numerical Analysis

In this section, the results of a numerical assessment are described and discussed to point out po-

tentialities and limitations of theADS-based approach proposed as a suitable tool for predicting
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the performance of an effective set of planar thinned arrays. For comparison purposes, random

arrangements [3][6] are considered as reference since, likewiseADS arrays, their performances

can bea-priori estimated. More in detail, the estimator of the normalized peak sidelobe level

of planar random arrays (RND) turns out to be [3]

PSLRND =

−ln
[

1 − β
λ2

π2x0y0(P−1)(Q−1)

]

+ 1 − 2

{

ln

[

1 − β
λ2

π2x0y0(P−1)(Q−1)

]}−1

K
(14)

whereβ is the probability or confidence level that no sidelobe exceeds thePSLRND value.

Moreover,random lattice planar arrays (RNL), whose elements are located on a uniformly-

spaced lattice of points over the aperture, exhibit the followingPSL [6]

PSLRNL = PSLRND × (1 − ν) (15)

(whereν = K
PQ

is the thinning factor).

The first numerical example deals with the analysis of thePSL bounds (13) versusη , t
PQ−1

for different apertures and whenν = 0.5 (Fig. 4). As expected (Sect. 2), the upper bound

of PSL tends toPSLDS whenη = 1 andη = 0 (PQ → ∞) and its value,PSLSUP , is

always belowPSLRND andPSLRNL except for a small set ofη values close toη = 0.5 and

large apertures (PQ ≥ 106). As a matter of fact, whatever the array dimension, the worst

performances verify in correspondence withη = 0.5. Therefore, such an index value will be

analyzed in the following to provide “worst-case” indications onADS-based thinning.

Figure 5(c) shows the behaviors of theADS bounds versus the aperture dimension (ν = η =

0.5). SinceADS are here available [19],PSLopt, PSLmin, andPSLmax are reported, as well.

As it can be noticed, these plots confirm thatPSLSUP usually overestimates the actual peak

sidelobe of theADS array (whilePSLmin → PSLINF ) and thatPSLopt is always well below

the values exhibited by random families.

For completeness, the remaining of Fig. 5 gives an indication on the estimated behavior ofADS

arrays in correspondence with different thinning percentages [ν = 0.3 - Fig. 5(a), ν = 0.4 - Fig.

5(b), ν = 0.6 - Fig. 5(d)] for which ADSs are not still available. As regards to the confidence
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range∆ADS, defined as

∆ADS ,
PSLSUP

PSLINF

, (16)

it slightly increases withPQ and shows a limited dependence on the aperture dimension (∼

4 dB in 102 ≤ PQ ≤ 106) (Fig. 6). Moreover,∆ADS(ν) = ∆ADS(1 − ν) and the minimum

value of∆ADS verifies forν = 0.5 as it can be analytically derived.

Concerning availableADSs with ν 6= 0.5, Figure 7 shows the behavior of thePSLopt (and

related bounds) of the array generated from the sequenceD3 (η = 0.473 andν = 0.485) whose

power pattern and elements arrangement are given in Fig. 7(c) and Fig. 7(d), respectively.

Despite the small aperture (3λ× 5λ), PSLopt still lies in the range of values estimated by (13)

[Figs. 7(a)-7(b)] and it appears to be significantly below the random estimates and comparable

with theDS value atη = 1. It is also interesting to notice that the reference array derived

from D3 allows one to determine several shifted array configurations withPSL
{

D3
(σx,σy)

}

≤

PSLSUP [Fig. 3(b)] as well as multiple arrays withPSL
{

D3
(σx,σy)

}

≤ PSLmax.

Such a feature is not only limited toD3, but it is a common property ofADS-based arrays as

confirmed by the examples in Figs. 8-10 and concerned with larger apertures. Furthermore,

it should be pointed out that more than one cyclic shift of thereferenceADS sequenceDi

(i = 4, ..., 7) gives an array pattern withPSL
{

Di
(σx,σy)

}

= PSLopt [Figs. 3(b), 8(a), 9(a),

10(a)]. Such considerations highlight that: (a) also through an exhaustive search, less than

P × Q evaluations are actually needed to identify the optimalADS-based planar array; (b) a

very limited number of evaluations is enough to synthesize an ADS array with aPSL value

below that from random/random lattice distributions.

As far as the radiation patterns are concerned, Figures 7(c)-10(c) allow one to point out a fur-

ther interesting property ofADS planar arrays. UnlikeDSs, where|F (k, l)| is a two-valued

function [6], the unequal magnitudes of the samples of|F (k, l)| (Fig. 2) lead to a non-uniform

behavior of the array pattern outside the mainlobe region with some non-negligible variations

of the sidelobes [see Figs.7(c)-10(c)]. This can be exploited as an additional degree of freedom

to be used in antenna synthesis. One efficient way to do that isto consider directive elements.

As an example, let us consider the planar arrays synthesizedfrom D4 with isotropic or directive

elements (e.g.,λ
2

dipoles along they axis). Figure 11(a) gives thePSL values for different shifts
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of the reference set. As it can be observed, the value ofPSLopt reduces (PSLdir
opt = −23.66

dB vs. PSLopt = −21.79 dB) thanks to the use of directive elements and, more interestingly,

the optimal shift for the directive array is not equal to thatwith isotropic elements (σdir
x,opt = 5,

σdir
y,opt = 20 vs. σx,opt = 7, σy,opt = 5). This is due to the following. One has to determine the

shift generating the lowest lobes in the whole sidelobe region when dealing with the “isotropic”

array [Fig. 11(b)]. Otherwise, the use of directive elements suggests to choose theσx andσy

values with lowest sidelobes only near the mainlobe region [Fig. 11(c)] since the element factor

“erases” the highest sidelobes far from the mainlobe regionin the resulting antenna pattern [Fig.

11(d)].

The last section of the numerical validation is aimed at giving some indications on the perfor-

mance of theADS arrays versus those coming from state-of-the-art thinningtechniques based

on stochastic optimizers [7][23][5]. SinceADSs are not still available in correspondence with

the thinning percentage of the test cases under analysis, the comparison cannot be considered

fully fair, but it can be useful to suggest some guidelines for a fast and reliable choice of the

most suitable synthesis procedure as well as on the achievablePSL results.

Figure 12 shows thePSL of the thinned arrays optimized with the methods in [5] [Fig.12(a)],

[7] [Fig. 12(b)], and [23] [Fig. 12(c)], respectively, along with thePSL bounds derived for

the correspondingADS-based arrays (i.e., only the values ofPSLSUP andPSLINF since the

ADS sequences, although theoretically existing, have not beenyet determined). As it can be

noticed,ADS-based arrays compare favourably in terms ofPSLwith global optimized designs

since, even in the worst case (i.e.,η = 0.5), PSLINF < PSLglo ≤ PSLSUP .

5 Conclusions

In this paper,ADSs have been considered for the design of thinned planar arrays. The research

work is aimed at identifying the descriptive parameters of theADS-based thinning technique

as well as their effect on the array performances. Likewise the linear case [20], the objective of

this study is to analytically define a “term of comparison” tohelp the array designer in identify-

ing the synthesis approach allowing the optimal trade-off between computational resources and

the achievable result in terms ofPSL level. Towards this purpose, the performances of planar
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ADS-based arrays have been investigated and suitable bounds for thePSL have been deter-

mined thanks to a new formulation based on the properties of the two-dimensionalDFT . Such

an analysis has been validated by means of a large set of numerical experiments also aimed

at comparing the predictedADS performances with those of random distributions or stochas-

tically optimized arrays. The obtained results have pointed out the following features of the

ADS thinning technique:

• thePSL of the synthesized pattern isa-priori known when theADS sequence is avail-

able in an explicit form, while suitable bounds are predictable, otherwise;

• because of the three-level autocorrelation function,ADS sequences guarantee additional

degrees-of-freedom (compared to theDS case) to be profitably exploited (e.g., using

directive elements) for fitting the design constraints;

• unlike iterative optimization or trial-and-test random synthesis techniques, the approach

determines the array configuration just through simple shifts of a referenceADS se-

quence;

• thanks to the availability of rich repositories ofADSs also concerned with largeP andQ

indexes, wide apertures (impracticable for stochastic optimizers) can be dealt with;

• the use ofADS does not prevent their integration with optimization techniques, vice

versa it could represent a way (to be explored in successive researches) to improve the

convergence rate of iterative methods or for enabling stochastic searches in thinning large

arrays by means of a suitableADS-based initialization.
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Appendix

- Definition of the Mainlobe RegionR

Starting from (12) as for planarDS arrays [6], it can be proved that thePSL of ADS-

based arrays is close to the values of the samples of the arrayfactor atu = um+ 1
2

, m+1/2
Px0

,

v = vn+ 1
2

, n+1/2
Qy0

. By exploiting such an observation, it results that

PSL
{

D
(σx,σy)

}

≈ 1
K2max„

u
m+ 1

2
,v

n+ 1
2

«

/∈R

∣

∣

∣

∣

K(−1)m+n

PQ sin[ π
P (m+ 1

2)]sin[
π
Q(n+ 1

2)]
+

+
∑P−1

k=0,kl 6=0

∑Q−1
l=0,kl 6=0

F
(σx,σy)(−1)m+k+n+l

PQsin[ π
P (m+k+ 1

2)]sin[
π
Q(n+l+ 1

2)]

∣

∣

∣

∣

2

.

(17)

where the mainlobe region,R, is defined analogously to [6] as the visible region where thefirst

term in (17) exceeds the magnitude of the second one. As regards to the first term, its magnitude

is approximately equal to
K

π2
(

m+ 1
2

) (

n + 1
2

)

and for large values ofP andQ. Moreover, the largest coefficients in the second term (i.e.,

m+ k + 1
2

= ±1 andn+ l + 1
2

= ±1) of (17) are bounded by

4max(k,l)∈H0
|F(σx,σy)|

π2
.

Thus, after simple manipulation, it is possible to show thatR extends to the region limited by

the following boundary inequality

um+ 1
2
vn+ 1

2
≤ K

4PQx0y0max(k,l)∈H0
|F(σx,σy)| . (18)

- Derivation of PSLSUP in (13)

With reference to discrete version ofR, RD,

RD ,

{

(m,n) ∈ Z × Z :

(

m+
1

2

) (

n+
1

2

)

≤ K

4max(k,l)∈H0 |WDFT (k, l)|

}

(19)
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let us consider the following approximation ofPSLopt {D} = min(σx,σy)

[

PSL
{

D
(σx,σy)

}]

PSLopt {D} . min(σx,σy)

[

max(k,l)∈H0

{

|F(σx,σy) (k, l) |2
}

K2
× (20)

×max(m,n)/∈RD

∣

∣

∣

∣

∣

∣

P−1
∑

k=0,kl 6=0

Q−1
∑

l=0,kl 6=0

ejφ
(σx,σy)

kl (−1)m+k+n+l

PQsin
[

π
P

(

m+ k + 1
2

)]

sin
[

π
Q

(

n + l + 1
2

)

]

∣

∣

∣

∣

∣

∣

2



where the complex coefficientF
(σx,σy) has been expressed in terms of its amplitude,

√

|F(σx,σy) (k, l) |2,

and phase,φ(σx,σy)
kl .

It is worth pointing out that, likewiseDSs, φ(σx,σy)
kl is not a-priori known as well as, unlike

DSs, the termmax(k,l)∈H0

{

|F(σx,σy) (k, l) |2
}

and they have to be estimated. Towards this end,

by exploiting the circular correlation property ofDFT [22], it is possible to state that

∣

∣F
(σx,σy) (k, l)

∣

∣

2
= DFT

{

AADS
w (p, q)

}

= K − Λ + PQΛ δ(k, l) + Ψ(k, l), (21)

and to obtain the following relationship

max(k,l)∈H0

{

∣

∣F
(σx,σy) (k, l)

∣

∣

2
}

= K − Λ +max(k,l)∈H0
{Ψ(k, l)} (22)

whereΨ(k, l) , DFT {ψ(p, q)} beingψ(p, q) ,
∑PQ−1−t

r=1 δ(p− lr,1, q − lr,2).

Concerning the real-valued coefficientsΨ(k, l), by applying the Parseval’s theorem [22]

1

PQ

P−1
∑

k=0

Q−1
∑

l=0

|Ψ (k, l) |2 =

P−1
∑

p=0

Q−1
∑

q=0

|ψ (p, q) |2 = PQ− 1 − t,

and noticing that
∑P−1

p=0

∑Q−1
q=0 |ψ (p, q) |2 = PQ−1−t andΨ(0, 0) = PQ−1−t, the following

holds true
P−1
∑

k=0,kl 6=0

Q−1
∑

l=0,kl 6=0

|Ψ(k, l)|2 = (t+ 1)(PQ− 1 − t). (23)

Therefore, since

max(k,l)∈H0
{Ψ(k, l)} ≤ max(k,l)∈H0

{|Ψ(k, l)|} ≤
√

(t+ 1)(PQ− 1 − t) (24)

14



and substituting (22) in (20), we obtain

PSLopt {D} .
(

K − Λ +
√

(t+ 1)(PQ− 1 − t)
)

× (25)

×min(σx ,σy)











max(m,n)/∈RD

∣

∣

∣

∣

∑P−1
k=0,kl 6=0

∑Q−1
l=0,kl 6=0

e
jφ

(σx,σy)

kl (−1)m+k+n+l

PQsin[ π
P (m+k+ 1

2)]sin[
π
Q(n+l+ 1

2)]

∣

∣

∣

∣

2

K2











.

As regards the phase termsφ(σx,σy)
kl , the analysis is carried out as in [6] in order to give an

estimate of thePSL. More specifically, although the phase termsφ(σx,σy)
kl are deterministic

quantities, they are dealt with as independent identicallydistributed (i.i.d.) uniform random

variables. Under this assumption, (25) can be expressed as

PSLopt {D} .

(

K − Λ +
√

(t+ 1)(PQ− 1 − t)
)

Γopt

K2
(26)

where for largeP andQ

Γopt ≈ min(σx ,σy) {max [Ui; i = 1, ...,Π]} (27)

Ui ,

∣

∣

∣

∣

∑∞
k=−∞

∑∞
l=−∞

e
jφ

(σx,σy)
kl

π2(k+ 1
2)(l+ 1

2)

∣

∣

∣

∣

2

, i = 1, ...,Π, being i.i.d. random variables andΠ is the

cardinality ofRD (≈ PQ). Since the statistics ofΓopt are not available in closed form, Monte

Carlo simulations have been performed to provide an approximation of its mean valueE {Γopt}

E
{

Γopt
}

≈ −0.1 + 1.5 log10(PQ). (28)

By substituting (28) in (26), the upper boundPSLSUP is finally obtained.

- Derivation of PSLINF in (13)

By sampling (12) at (u = s
Pdx

, v = t
Qdy

), s = 0, ..., P − 1, t = 0, ..., Q − 1, it can be easily

shown that

15



PSLopt {D} ≥ PSL
{

D
(σx,σy)

}⌋

u= s
Pdx

,v= t
Qdy

= (29)

=
max(s,t)∈H0

˛

˛

˛

˛

˛

PP−1
k=0

PQ−1
l=0 F

(σx,σy)(k,l) sin[π(s+k)]

P sin[ π(s+k)
P ]

sin[π(t+l)]

Q sin[ π(t+l)
Q ]

˛

˛

˛

˛

˛

2

K2 =
max(s,t)∈H0|F(σx,σy)(s,t)|2

K2

By substituting (22) in (29), and observing that

max(k,l)∈H0
{Ψ(k, l)} ≥ −

√

(t+ 1)(PQ− 1 − t)

PQ− 1
(30)

it turns out

PSLopt {D} ≥
K − Λ −

√

(t+1)(PQ−1−t)
PQ−1

K2
, PSLINF . (31)

- Derivation of PSLmax in (13)

With reference to (20), let us assume that theADS D at hand is known. Thus,

Ω {D} , max(k,l)∈H0

∣

∣F
(σx,σy) (k, l)

∣

∣

2
(32)

is now a known quantity. By substituting (32) in (20), we obtain

PSLopt {D} . Ω {D}min(σx,σy)











max(m,n)/∈RD

∣

∣

∣

∣

∣

∣

∣

∣

∑P−1
k=0,kl 6=0

∑Q−1
l=0,kl 6=0

e
jφ

(σx,σy)
kl (−1)m+k+n+l

PQ sin[ π
P (m+k+ 1

2)]sin[
π
Q(n+l+ 1

2)]

K2

∣

∣

∣

∣

∣

∣

∣

∣

2










.

(33)

As regards to the phase termsφ(σx,σy)
kl , let us consider the same procedure used for deriving

PSLSUP and let us rewrite (33) as follows

PSLopt {D} .
Ω {D}Γopt

K2
(34)

whereΓopt is successively approximated with its mean value (28) to obtainPSLmax.

16



- Derivation of PSLmin in (13)

Analogously to the derivation ofPSLmax, a lower bound forPSLopt whenD is known can be

obtained starting from (29) and employing (32):

PSLopt {D} ≥ max(s,t)∈H0

∣

∣F
(σx,σy) (s, t)

∣

∣

2

K2
=

Ω {D}
K2

, PSLmin. (35)
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FIGURE CAPTIONS

• Figure 1. Autocorrelation functions and associated binary sequences of theADSs in Tab.

I: (a)(d) D1, (b)(e) D2, and (c)(f ) D3.

• Figure 2. Plot of the normalized array factor derived fromDi = D
(σx=0, σy=0)
i and asso-

ciated|F(k, l)| values: (a) i = 1 and (b) i = 2.

• Figure 3. PSL values of theADS-based planar arrays derived from the sequences

D
(σx, σy)
3 , σx = 0, ..., P − 1,σy = 0, ..., Q − 1 (a) andPSL bounds (b). Number of

elements:P ×Q = 7 × 11 - Aperture size:3λ× 5λ.

• Figure 4. Numerical Validation. Plots of thePSL bounds ofADS-based planar arrays,

the estimator of thePSL of random (RND) and random lattice (RNL) arrays, and values

of thePSL of DS-based finite arrays versusη whenν = 0.5 and (a) PQ = 102, (b)

PQ = 104, (c) PQ = 106.

• Figure 5. Numerical Validation. Plots of thePSL bounds ofADS-based planar arrays

and the estimators of thePSL of random (RND) and random lattice (RNL) arrays

versus the array aperture,PQ, whenη = 0.5 and (a) ν = 0.3, (b) ν = 0.4, (c) ν = 0.5,

(d) ν = 0.6.

• Figure 6. Numerical Validation. Plots of∆ADS versus the array aperture,PQ, when

η = 0.5 and in correspondence with different thinning values [ν ∈ [0, 1]].

• Figure 7. Numerical Validation - Planar Array D
opt
3 [Number of elements:P × Q =

7 × 11 - Aperture size:3λ× 5λ]. Plots of thePSL bounds versus (a) the array aperture

PQ [ν = 0.4805, η = 0.4736] and (b) η [PQ = 77, ν = 0.4805]. Plot of the normalized

array factor (c) generated from theDopt
3 -based array arrangement (d).

• Figure 8. Numerical Validation - Planar Array D
opt
4 [Number of elements:P × Q =

23× 23 - Aperture size:11λ× 11λ]. PSL values of theADS-based arrays derived from

the sequencesD(σx, σy)
4 , σx = 0, ..., P −1, σy = 0, ..., Q−1 (a). Plots of thePSL bounds
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versus (b) η [PQ = 529, ν = 0.5]. Plot of the normalized array factor (c) generated from

theD
opt
4 -based array arrangement (d).

• Figure 9. Numerical Validation - Planar Array D
opt
5 [Number of elements:P × Q =

73× 23 - Aperture size:36λ× 36λ]. PSL values of theADS-based arrays derived from

the sequencesD(σx, σy)
5 , σx = 0, ..., P −1, σy = 0, ..., Q−1 (a). Plots of thePSL bounds

versus (b) η [PQ = 5329, ν = 0.5]. Plot of the normalized array factor (c) generated

from theD
opt
5 -based array arrangement (d).

• Figure 10. Numerical Validation - Planar Array D
opt
6 [Number of elements:P × Q =

199 × 199 - Aperture size:99λ × 99λ]. PSL values of theADS-based arrays derived

from the sequencesD(σx, σy)
6 , σx = 0, ..., P − 1, σy = 0, ..., Q− 1 (a). Plots of thePSL

bounds versus (b) η [PQ = 39601, ν = 0.5]. Plot of the normalized array factor (c)

generated from theDopt
6 -based array arrangement (d).

• Figure 11. Numerical Validation - Non-Isotropic elements. PSL values of theADS-

based arrays generated from the sequencesD
(σx, σy)
4 , σx = 0, ..., P − 1,σy = 0, ..., Q− 1

(a). Normalized array patterns of the arrays generated from the sequences (b) D
opt
4 =

D
(7,5)
4 with isotropic elements,D(5,20)

4 with isotropic (c) and directive elements (d).

• Figure 12. Comparative Assessment. Plots of thePSL bounds versus the array aperture,

PQ, whenη = 0.5 and for (a) ν = 0.54 [5], (b) ν = 0.507 [7], (c) ν = 0.48 [23], (d)

ν = 0.44 [23].

TABLE CAPTIONS

• Table I. Examples ofADSs and descriptive parameters.
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Figure 1 - G. Oliveri et al., “ADS-Based Guidelines for ...”
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(a)

(b)

Figure 2 - G. Oliveri et al., “ADS-Based Guidelines for ...”
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ADS P Q K Λ t ν , K
PQ

η , t
PQ−1

Reference

D1 4 7 15 7 6 ≈ 0.5357 ≈ 0.22 [18]

D2 7 7 25 12 24 ≈ 0.5102 0.5 [18]

D3 7 11 37 17 36 ≈ 0.4805 ≈ 0.4736 [18]

D4 23 23 265 132 264 ≈ 0.5 0.5 [19]

D5 73 73 2665 1332 2664 ≈ 0.5 0.5 [19]

D6 199 199 19801 9900 19800 ≈ 0.5 0.5 [19]

Table I - G. Oliveri et al., “ADS-Based Guidelines for ...”
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