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Abstract

The optimization of the normalized boresight slope of thffedénce pattern in sub-arrayed linear monopulse antemas
presented. The knowledge of the independently optimurermdiffce excitations, which provide the maximum normalizeckight
slope, is exploited with an efficient excitation matchinghteique based on the contiguous partition method. A set ofemical
experiments are provided to assess the effectiveness girtipwsed method in reaching the best achievable perforesaeeen
though with a small number of sub-arrays.

Index Terms

Monopulse array antennas, Sum and difference patterngsit slope.

|. INTRODUCTION

In the framework of radar applications, a key feature of theeana systems is the ability to afford a difference patteith
a null as deep as possible in the boresight direction [1]. Asatter of fact, such a characteristic determines the seihsit
of the radar in term of angle resolution. In [2], it has beeovgh how to obtain the maximum angular sensitivity (i.e., the
deepest slope on boresight) in the case of a linear odd ardplitlistribution. As regards to monopulse radar [3], Baylis
distributions are usually used since they allow the synshefspatterns with a good trade-off between low-sidelobé aarrow
beamwidth. Unfortunately, the synthesized patterns dgoregent the maximum normalized slope for a given array gégme
Moreover, a complete and dedicated feed network would baired) to generate such a difference mode [3][4]. The use of
two independent feed networks for the sum and differencepet is often unacceptable, because of the complexity ef th
HW realization and the arising costs. In order to overcomegtluzawbacks, several techniques, which share parts of #ie fe
network to generate the sum and the difference patterng been presented in the literature [5]-[10]. More in detaile set
of excitations (either the sum or the difference coefficsg¢ns a-priori fixed to afford an optimum pattern. The other pattern
is obtained by properly grouping the array elements into-auhys and assigning to each sub-array a suitable gain tohma
some constraints on the generated beam.
As far as the literature on such a topic is concerned, theceqapation of a reference pattern has been considered iA@h][
wherein the “best compromise” has been computed by meanscabgon matching procedures. On the other hand, in [6]-[9
the optimization of the sidelobe levet L) of the difference pattern, for a pre-fixed sum mode, has lwessidered.
The optimization of other pattern features has been facé¢tilihand in [9] where the directivity and the slope on the Ilsight,
together with a proper control of th&L L, of the difference pattern have been optimized through fergiftial evolution DE)
method and a hybrid approach, respectively. In this lettes, contiguous partition method’P M) [10] is applied to the
optimization of the boresight slope of the difference pattén particular, since th&€® PM has shown its effectiveness not
only in synthesizing a difference pattern close as much asiple to the optimum one in the Dolph-Chebyshev sense [10],
but also in minimizing theSLL [12] of difference beams, this work is aimed at showing it$eptialities and limitations as
well as its flexibility also in this context. Moreover, a coarfson with the results in [9] is also reported to shown hoe th
proposed approach compares with others in the literature.
The paper is organized as follows. In Sect. 2, the problemathamatically formulated by detailing the synthesis pdure.
In Sect. 3, selected results are reported to assess thatyadind versatility of theC PM-based technique. Finally, some
conclusions are drawn (Sect. 4).



Il. MATHEMATICAL FORMULATION

Let us consider a linear array aff = 2 x N elements uniformly-spaced af Following the monopulse principle, the
sum pattern is given by the set,, n = +1, ..., =N of symmetric excitations«,, = a_,), while anti-symmetric coefficients
(6n. = —B-n) generate on receive the difference beam. Accordingly, anoh difference patterns are obtained by adding and
subtracting the two halves of the antenna aperture [13].

When a sub-arraying technique is adopted to generate tlezatite mode from the sum one [5], the synthesis problentaste
as the definition of a suitable grouping, described throdghitteger indexes,, € [1: Q], n = 1,..., N, and the sub-array
gainswg, ¢ = 1, ..., @, to fit some user-defined requirements. In particular, tramm@mise difference pattern is obtained from
the coefficient set

B={b,=—-b_p, =apdpqwg; n€[1:N];q€[l:Q]}. (1)

whered,,, is the Kronecker delta equal ®,, =1 if ¢, = ¢ andd,, = 0 otherwise.

Since the problem at hand is concerned with the maximizaifathe boresight slope of the difference pattern and@hieM

is an excitation matching approach aimed at fitting a refegguattern, it is needed to determine the optimal pattererimg
of slope. Concerning the metric to be used to quantify thesight slope of an array of discrete elements,difference slope
ratio is considered [14]. It is defined as, = Kﬁo K and Ky being the normalized boresight slope of the actual diffeeen
beam and the maximum value that would be achieved with a lingce distribution on the antenna aperture of sizg\,
respectively. In the linear case, it has been shown in [2f tifka distribution providing the maximum value &f, is a linear
odd (with respect to the center of the antenna aperturajlaison. Accordingly, sincek, is known once the array geometry
is given, the synthesis procedure for a discrete elemealasraimed at maximizing the value of the normalized boisig
slope K. Such a value for an anti-symmetric set of excitations iegiby [14]

K s {hnBn}
V2SN SN {80 G}

wherek, = =% andGpn, = S”Eifln_l;)’;);d] - Si’(ﬂfl’j_ﬁl’)lk)f‘ﬂ . Accordingly, the first step of the compromise synthesicpdure

is aimed at computing the excitation coefficied®8”" = {b%*; n = +1,...,4+N} that afford a pattern with the maximum
normalized boresight slopk,,.... in the case of discrete element arrays. Towards this enduti@ional (2) is maximized by
means of a standard steepest-descent method according podtedure described in [14]. Afterward, th&P M is exploited
to find the “best compromise” between sum and differenceepattsuch that the excitatior$ be close as much as possible
to the reference oneB°”'. In particular, once the sum mode coefficients, n = 1, ..., N are fixed to provide an optimum

sum pattern (e.g., a Taylor pattern [15]), the following tcfasction

1 N
U (cn,wq) = N {Z |gnq|2} 3)
n=1

)

opt

whereg, = o, |n — 22221 InqWq (cn)| andqy, = b;—n , is minimized with respect to the unknow(s,, w,), n =1, ..., N;
qg=1,..,Q.
It is worth to notice that, equation (3) mathematically fatimes a minimum variance problem, where each term is e tae
different sub-array. Since the value minimizing the sumhaf square distances, for a given set of real values, is thghtesl
arithmetic mean, the sub-array weights turn out to be

ZN (an)2 OngIn

) = Zn=l L q=1,...,Q. 4
wq (C ) 27]:[:1 (Oén)Q 5nq q 1 Q ( )

As a consequence, the problem solution recast as the dafirofi only the sub-array aggregations, n = 1,..., N. With
reference to (3), let us observe that such a solution is a $spgre partition and Fisher in [16] proved that it isamtiguous
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Fig. 1. Test Case 1 (/N = 20, d = 0.7, Taylor sum pattern [15] - SLL = —30dB, m = 6) - Value of the normalized boresight slope versus the number
of sub-arrays.

N-1
partition * (C'P) of the ordered list of theoptimal gains ~,,. Since the number of'Ps is equal toU = , the

dimension of the solution space of th&” M considerably reduces compared to that of classical opitioz-based approaches
[6]-[9]. In order to sample such a space, fBerder Element Method (BE M) [10] is used. Starting from a randomly chosen
contiguous partitionC(?) = {c%o); n=1, ...,N}, the trial solution is updated}” — C*Y| taking into account that the
border elements (i.e., those elements whose adjacent valyes, or/and~,,; are assigned to a different sub-array) can change
the sub-array membership without violating the conditidrcantiguous partition. The process is iterated until thenieation
criterion, based on the maximum number of iteratidn§.e., : > I) or on the stationariness of the cost function value (i.e.,

Kgu(i=D _yKe ¢@) . ! . .
| O . ‘ < ny, being Ky andng two user-defined control parameters), is verified.

IIl. NUMERICAL RESULTS

In the first example, an array a¥/ = 40 elements spaced by = 0.7 \ is considered. The sum pattern has been fixed to
a Taylor pattern withSLL = —30dB and7 = 6. The reference difference pattef’”’, which guarantees the maximum
boresight slope K,.... = 2.2013) has been computed [14]. Concerning the compromise salutice number of sub-arrays
used in the non-complete feed network has been varied inathge € [1,20]. As far as the initialization of theBEM is
concerned, the initial aggregatigi®) has been chosen with the array elements uniformly diseibamong the&) sub-arrays.
The values ofK in correspondence with the solutions obtained by €hBM are shown in Fig. 1. By quantifying the
closeness of the synthesized normalized difference slopbooesight to the optimal valu&',,,, = 2.2013 with the index

A Koo 7KCP1W

k= —me———— x 100, it turns out that{x < 3 when@ > 4 and¢{x < 1 for Q@ > 8. On the other hand, the

max

simplification of the network architecture Whe%J
(ie., Ex] oy = 4.95 and €k | o_, = 10.74).

The effectiveness of th€'PM in sampling the solution space is pointed out by the value®ain |, I.,,; andT being the
number of cost function evaluations to get the final solugod the totalC’ PU-time (on a3.4 GH z PC with2 GB of RAM),
respectively. As a matter of fact, starting from an uniforlustering ¢ = 0), the trial solution is closer to the reference one
just increasing the number of sub—arrayB(@JQ:g ~ 29 x 1072, \IJ<“JQZ5 ~1.2x1072, \I/(i)JQ:w ~ 2.8 x 1072, and
\I/(i)JQ:w ~ 8.2 x 10~%). Moreover, it should be observed that at md8titerations are enough to reach the convergence
solutions whose excitations and corresponding pattermskown in Fig. 2.

The second example deals with a linear arrayNof= 20 equally-spacedd = 0.5)\) elements. The sum excitations have
been set to those of the Dolph-Chebyshev pattern with. = —20dB [17]. Regarding the definition of the reference set
of excitationsB°?, it has been observed [14] that the element coefficientsthi@rhalf-wavelength spacing case, are simply
computed by sampling the continuous line-source distidlouin [2] (Fig. 3 - McNamara, 1987). Thus, the maximum value

~ 7 and %J = 10 causes a strong reduction of the performance

=3

1 A grouping of array elements is @ntiguous partition when given two elements; and-~y, which belong to they-th sub-array, if another element exists
such that the conditiory; < -; < n holds true, hencey; has to be assigned to the same sub-array.



TABLE |
Test Case 1 (N = 20, d = 0.7A, Taylor sum pattern [15] - SLL = —30dB, n = 6) - COMPUTATIONAL INDEXES.

| | U | Iena | T [sec] |

Q=3 741 3 3.0 x 1078
Q=5 82251 31 3.1 x 1077
Q=10 211 x 106 33 3.3 x 1077
Q=15 1.50 x 1010 9 9.0 x 1078
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Fig. 2. Test Case 1 (N = 20, d = 0.7\, Taylor sum pattern [15] - SLL = —30dB, n = 6) - Plots of the &) excitation coefficients and of the)(
corresponding relative power pattern for various value)of
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Fig. 3. Test Case 2 (N = 10, d = \/2, Dolph-Chebyshev sum pattern [17] - SLL = —20 dB) - Plot of the values of the excitation coefficients for vaso
values of(Q.
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Fig. 4. Test Case 2 (N = 10, d = \/2, Dolph-Chebyshev sum pattern [17] - SLL = —20dB) - Plot of the normalized boresight slope values versus the
number of sub-arrays).
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Fig. 5. Test Case 2 (IV = 10, d = \/2, Dolph-Chebyshev sum pattern [17] - SLL = —20dB) - Plot of the relative power pattern for different values of
Q.

of the boresight slope for an aperture of lendtp\ = 10 is K., = 1.3572 [14]. Also in this case, the estimated values of
K are close {ix < 1) to the reference one whep > 4 (Fig. 4). Such a circumstance is further pointed out in Figvi&re
the synthesized coefficients get closer and closer to thexarte seB°”* whenQ — N.

For completeness, the difference patterns for the expaticensidered in Fig. 3 are reported in Fig. 5. Moreover, thte-array
configurations and the corresponding gains are summanzddh. Il. As far as the computational issues are concered, t
dimensions of the solution spaces are equalitf,_, = UJ,_s = 36 and U|,_5 = 126. Furthermore, the numbers of
iterations to reach the convergence solutionsk@;@JQ:3 =4, IendJQ:5 =1, and IendJQ:8 = 3. As a result, the? PU-time
for the synthesis is lower that) =% sec.

Finally, let us compare with the result reported in [9] wheéhe constrained (sidelobe-wise) optimization of the bighgs
slope is considered whelN = 10 and @ = 8. Towards this end, the sub-array weights are now computkihgoa Convex
Programming ' P) problem as in [9] starting from the sub-array configuratidutained by means of thé PM . Figure 6 shows

TABLE I
Test Case 2 (N = 10, d = \/2, Dolph-Chebyshev sum pattern [17] - SLL = —20 dB) - SUB-ARRAY CONFIGURATIONS AND SUB-ARRAY GAINS.

e ] g

1111222332 0.2328, 0.8925, 1.6912
1122334554 0.1145, 0.3696, 0.7152, 1.0299, 1.6912

1122346785 0.1145, 0.3696, 0.6184, 0.8325, 1.0, 1.1087, 1.4783, 1.9923
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Fig. 6. Test Case 3 (IV = 10, Q = 8, d = A\/2, Dolph-Chebyshev sum pattern [17] - SLL = —20dB) - Plot of the relative power pattern obtained by the
herein proposed hybrid method and that of [9].

TABLE Il
Test Case 3(N = 10, @ = 8, d = A/2, Dolph-Chebyshev sum pattern [17] - SLL = —20 dB) - PERFORMANCE INDEXES

| | K [V/rad] | SLL [dB] | BW [degree]
CcCPM 1.35 —8.0 3.95
CPM — CP (a) 1.28 —10.8 3.90
Hybrid SA 0.90 —35.7 5.90
CPM — CP (b) 0.97 —37.5 5.60

the results of the hybrid approactPM — CP, [18]) as well as those synthesized by &M and in [9]. With reference
to the configuration in Tab. Il, th& LL of the solution computed through the hybrid meth@ad[M — CP (a)] is almost
3dB below that with theC PM, but the slope at boresight slightly worsen. Successivalyre stringent constraints on the
SLL are imposed to fairly compare with the solution of tHe/brid SA in [9]. Accordingly, a new reference pattern has been
assumed (namely a Zolotarev pattern with . = —39 dB [4]), which presents a high value of the boresight slope fgiven
SLL. In this case, the synthesized aggregatiofids} = {1234445678}. The corresponding solutiorC[PM — CP (b)]
outperforms that in [9] for both the boresight slope, therbeadth (BW), and theSLL (Tab. Il1).

Similar conclusions hold true for the case also dealt witf@ihwith Q = 6 , thus confirming the effectiveness and versatility
of the CPM-based approach. In particular, Figure 7 and Tab. IV regwetradiation patterns obtained with the baré& M

as well as the hybrid approaches (i€PM — CP and Hybrid SA [9]) and their performance, respectively.
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Fig. 7. Test Case 4 (N = 10, Q = 6, d = /2, Dolph-Chebyshev sum pattern [17] - SLL = —20dB) - Plot of the relative power pattern obtained by the
herein proposed hybrid method and that of [9].



TABLE IV
Test Case 4 (N = 10, @ = 6, d = \/2, Dolph-Chebyshev sum pattern [17] - SLL = —20 dB) - PERFORMANCE INDEXES

| K [V/rad] | SLL [dB] | BW [degree] |
CcCPM 1.35 —8.2 3.94
CPM — CP (a) 1.25 —9.5 3.92
Hybrid SA 1.05 —29.5 5.26
CPM — CP (b) 1.06 —30.0 5.21

IV. CONCLUSIONS

In this paper, the optimization of the normalized boresiglbpe of the difference pattern of monopulse array antehaas
been carried out by means of ti&P /. In particular, the sub-arraying configuration has beemrnaikto account in order to
reduce the complexity of the synthesized antennas and thel&dge of the independently optimum difference excitaio
which provide the maximum normalized boresight slope hantexploited. The numerical experiments have pointed @itah
proper definition of the sub-array configurations and theesgonding gains allows one to obtain good boresight slaheeg
even though with a limited number of sub-arrays. Constsaimt theS L L have been also taken into account through a hybrid
CPM — CP approach in order to compare with other state-of-the-atthoas dealing with slope maximization.
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