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Abstract

The synthesis of compromise sum and difference patterngrge Iplanar arrays is addressed in this letter by means of a
suitable implementation of th€ontiguous Partition Method (C PM). By exploiting some properties of the solution space, the
generation of compromise sum-difference patterns is tersathe searching of the optimal path in a graph that codeadimssible
solution space. Some numerical experiments are providextder to assess the effectiveness of the proposed method.

Index Terms

Monopulse Antennas, Large Planar Arrays, Compromise fPaggnthesis, Sum and Difference Beams.

I. INTRODUCTION

Search-and-track systems based on monopulse principlegr@eantennas able to simultaneously provide (on receiua)
and difference patterns. In real world applications, suate@nas are usually highly directive with narrow beams ifibeaith
B, typically of the order ofl° in each angular direction) and low sidelobe levedd.{s). Moreover, the difference pattern is
required to have the slope at boresight as deep as possibigtove the radar sensitivity. In order to fit these requiests,
solutions based on planar arrays of wide dimensions withelatumbers of elements are usually adopted [1][2]. In thieca
complex circuitry is needed to generate three independeaitnis (i.e., a sum pattern and two orthogonal difference et
with greater costs and an enhancement of the mutual eleagoetic interferences. In order to avoid such drawbacles, th
sub-arraying strategy has been proposed [3]-[9]. Althoilig¢onditioning does not affect global optimization-teasmethod,
the computational burden raises exponentially with the lpemnmof elements and it turns out to be a cumbersome penaltein t
synthesis of large two-dimensionall) arrays. As a consequence, the synthesis of planar arrayisd® previously addressed
in a few works. More in detail, the synthesis of the three nmrse modes of stripline-fed slot arrays and the problem of
mutual coupling effects have been considered in [10] and, [Ebpectively. A method to improve in a particular azimalth
sector the difference radiation pattern sidelobe level nfanopulse antenna of a corporate-fed array type is presémfd 2].
Successively, an improved sub-arraying method has beastigated in [4]. The synthesis of planar arrays has beem als
addressed by means of a Simulated Annealifig)(algorithm even though for assigned (i.e., not involvedhia bptimization)
sub-array configurations. Unfortunately, only small stames often not adequate for practical applications haealoensidered.

Recently, a computationally effective strategy has beesemted in [9], namely the contiguous partition meth€d{/),
which takes definite advantage from the knowledge of theeefse or optimal difference excitations. As a positive @ngence,
the CPM guarantees fast convergence to the solution also in fadgig-dimensional problems (i.e., with a large number of
unknowns) as shown in [13] dealing with linear arrays. Meexpsuch a method demonstrated its robustness as well as an
easy implementation. In order to evaluate the validity & timderlying idea and to further assess the flexibility of dhe)M,
the approach is applied here to the synthesis of la@eplanar arrays with a large numbel (> 1000) of radiating elements.
On the other hand, it should be pointed out that this work<leéth an excitation matching problem (i.e., the definitidrao
“best compromise” difference pattern close as much as ples& the reference one) and not thé L control of the achieved
solution. As a matter of fact, th€ P, in its bare version, does not allow a direct control of sugiaeameter. The potentiality
of a modified version of th€’ PM in effectively dealing with theS L L control has been discussed in [14], where the reference
difference pattern is updated until the constraints on thmpromise solution were satisfied.
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Fig. 1. Sub-Arrayed Planar Array Synthesis (N = 7860, d = % r = 20\) - Relative power distribution of the referenca) (Taylor sum pattern
(SLL = —50dB, = = 20) and of the ) H — mode Bayliss difference patternS(LL = —50dB, = = 18) .

Il. MATHEMATICAL FORMULATION

Let us consider a planar array withi elements uniformly-spaced on an apertuiebéing the inter-element distance along
the x andy axes) that generates the following array pattern:

M P ) .
AF (97 (;S) = Z Z Impejw(cos GTm+sin dyp) (1)
m=—M p=—P,,
Impy (m,p # 0) being an excitation coefficient andl = Z%}M P,,. Moreover,z,, = [m - —39"2(7")} xd, m==%1,..,£M

andy, = {p - %@} xd,p==1,..,£P,.
The reference sum pattern and the difference ones (i.e.Ftheode and theff-mode) are generated by setting the array
excitationsI = {I,,,; m = 1,.M; p=1,...,P,} t0 § = {smp = 8(—m)p = Sm(=n) = S(=m)(—p); M = 1,...,M;

p=1,.., Py} and to D° = {d,%p =dl = Ay = —dS s m o= 1M p=1,..,P,}, A = E, H,
respectively. The above assumed quadrantal symmetry ésymimetry allows one to consider only, = % excitations

during the synthesis process. However, since the impleatientof three totally independent signal feeds is gengrailt
of the question, the optimal compromise technique is adb@ech a method consists in first fixing the element exciatio
affording the optimal sum pattern (i.ef,= S) and then determining the best partition of the array elements i) sub-
arrays (i.e., the aggregation vectdf® = {a%,; m =1,..,M; p=1,..., P, }, wherea’, , € [1,Q]) and the sub-array weights
W* = {wh; ¢=1,..,Q} such that the difference patteras” = AF {QA}, A = E, H, generated by the compromise
excitationsC* = {c&, = smpd (aly,, @) WS m=1,..,M; p=1,..., P, }* approximate as closely as possible the reference
ones,AF = AF {QA}.

Towards this end and likewise the linear case [9], a suitabktomization of the” P M technique is adopted for the two-
dimensional architecture, as well. In the following, the/4ints of such an implementation will be detailed alsontiag out
the main differences with respect to the case of linear array

Starting from the observation [9] that the compromise sofuis a contiguous partition (C P) of the ordered listL, =
{lnsn=1,.. N}, b < lpyr (0 =1,..., N, = 1), Iy = minmy, {vn, }» In, = mazm, {v5,}, 74, being thereference gain
defined aSy,%p = %, the solution space (i.e., the whole set@#Ps) is coded into a suitable graph to minimize the storage
costs as well as to facilitate the sampling of the space ofisglnte solutions. As a matter of fact, the use of the treseta
representation of the linear case would have required anegiigible amount of computer memory and a redundant detsani
with some portions of the tree recursively-shared. The lgiapgcomposed by) rows andN,. columns. They-th row is related
to the ¢-th sub-array 4 = 1, ..., Q), whereas the:-th column @ = 1,..., N,.) maps thel,,-th element ofL. A path of the
graph codes a compromise solution and it is constituted bgt @fsN, vertexes{t,; n =1, ..., N, }, connected byV, — 1
links, {e,; n=1,..,N, —1}.

15 (a,ﬁp, q) =1if a,ﬁp =g andé (a,ﬁp, q) = 0, otherwise.
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Fig. 2. Sub-Arrayed Planar Array Synthesis (N = 7860, d = % r = 20)\) - Polar plots of the synthesizefIL R values in the range € [0°, 89°] when
Q = 3, 5, 10, 15, 20 (Reference Bayliss patterniLL = —50dB, i = 18).

The optimal compromise corresponds to the aggregajﬁ;g that minimizes the cost function

0(a) = 523 3 o () @
_ Ny g=1m=1p=1 " " AT ’

which quantifies the distance between the reference exeitabnd the compromise oneﬁ%nq = Gmng (AA) being the
estimated gains given by
gA — Z%:l 257:11.1 anpé(u’ﬁp’ q)’yﬁp
mpa Z%:l 257:“1 S%npé(a"%?’ q) ’ (3)
m=1,..M; p=1,...Py,; ¢g=1,...,Q.

_Optl
the graph{vyx; k=1, ..., kena} is generated by exploring the graph structukebeing the iteration index. The initial path

Py = {(tﬁf),eﬁff)) in=1,..N;m=1,...N, — 1} is generated by settingrg (tﬁo)) = 1 andarg (tg\?)) = @ and

In order to determined”,, a sequence of trial solution%AkA; k=1, ...,kend} or, in an equivalent fashion, paths of

randomly assigning the other vertexes to the sub-arrays thatarg (tiloll) < arg (t%o) < arg (t(o) and there is an

n+1
uniform distribution of the array elements among the sulayer. Then, the trial pathyy, is iteratively updatedy, — g1,
AkA — AkAH) just modifying the memberships of thmrder vertexes® of v, and the corresponding links, until a maximum
number of iterations<,,,.. (k > Kq2) Or the following stationary condition holds true. The da@u reached ak = k.4
(i.e., the pathy), and the corresponding aggregatig@) is assumed as optimal compromise and used to define thersayb-a
weights as follows

qu =0 (av%zp’ q) gﬁpq

4
m=1,..M; p=1,...Py; ¢g=1,...,Q.

IIl. NUMERICAL ASSESSMENT

This section is devoted to assess the reliability and effayieof the CPM in synthesizing wide planar arrays composed
by large numbers of radiating elements. As an illustrates tase, let us consider a planar geometry with circulantary
and radiusr = 20\. The N = 7860 radiating elements are displaced on a regular g}idpaced along the two Cartesian
directions. Concerning the optimal patterns, the sum atioits S have been fixed to those of the Taylor pattern [15] with
SLL = —50dB andm = 20 [Fig. 1(a)]3, whereas the referendé —mode D" has been chosen to afford a Bayliss pattern [15]
with SLL = —50dB and7@ = 18 [Fig. 1(b)]. The beamwidths of the sum and difference patterns araléqu3s = 1.57° and
BEH = 1.26°, respectively. Because of the aperture geometry, the @giion has been limited to the differenée — mode
since theE — mode excitations satisfy the following relationship” = {of,=—-bl im=1,..,M;p=1,..,P,}. Such a

mp?
2A vertext, (n = 2,...,N —1) is calledborder vertex when it has at most one of its adjacent vertexgs,; or tn+1, that belongs to a different row of
the graph.
3In the figures,u = sin 6 cos ¢ andv = sin @ sin ¢ [15], whered € [0,7/2] and ¢ € [0, 2x].



TABLE |
VALUES OF THE PATTERN INDEXES

[dB] || Q=3 | Q=5 |Q:10|Q:15|Q:20|Ref.[15]
SLL [dB] —23.72 —32.19 —41.62 —43.79 —46.81 —50.00
By [deg] 1.251 1.233 1.229 1.228 1.224 1.224
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Fig. 3. Sub-Arrayed Planar Array Synthesis (N = 7860, d = % r = 20)) - Behavior of the cost functios versus the iteration indek.

condition allows one to synthesize a radar antenna with éimeesangular resolution in both the azimuthal)(and elevation
(E) directions. On the other hand, it should be noticed that@i) might be applied twice and independently for the
two difference modes to obtain different performances @leach angular coordinate without a significant increasihthe
computational costs. As far as the sub-arraying strateggrnigerned, the number of sub-arrays of the compromise fetaoink
has been varied in the range= [3, 20]. Moreover, besides the3 d B beamwidthB,,, let us consider the sidelobe rati§ [ R)
as a quantitative index to evaluate the sidelobe featurdsea$ynthesized pattern in the whole aperture. It is defiiseilfows
SLL ()
maxg [AF (0, )]
AF (0, ¢) being the array factor. Since the differenée — mode vanishes aip = 90°, the values of theSLR of the
synthesized patterns have been controlled in the rangd0°, 89°]. Fig. 2 shows the plots of th6 L Rs to fully evaluate the
CPM behavior whernp = 3, 5, 10, 15, 20. For completeness, the values of the maximum level of therstary lobes on the
whole aperture and the3dB B,, are reported in Tab. |. As expected, theP? M guarantees to asymptotically approximate
the reference pattern when the number of sub-arrays gedsrcémd closer tdV,.. Such a property is further confirmed by the
behavior of the cost functio® (Fig. 3), which quantifies the fitting of the compromise eatdns with the reference ones.
These plots point out the robustness and effectivenes®gdrttposed method in matching the reference pattern. As enudt
fact, ever since the initial iteratiork (= 0) when an uniform partitioning of the ordered listis chosen, the solution appears to
be closer and closer to the reference one just increasinguhmber of sub-arrays (Fig. 3, = 0). Moreover, for a given value
of Q, the CPM better approximates the Bayliss pattern iterativély>( 1) changing the sub-array memberships of the border
elements. Fig. 4) and Fig. 4b) give the plots of thes-cuts at¢p = 0° and the pictorial representations of t§é L behavior,
respectively, of the compromise solutions synthesizedneyXP M as well as those of the optimal patterns. Moreover, the
relative power distributions obtained at the convergememiion & = k.,.q) when@ = 3 and@ = 10 are shown in Fig. 5
. In order to allow the reproduction of those patterns, to ls® ased as benchmarks in future comparisons, Fig. 6 and Tab.
Il give a pictorial representation of the sub-array confaians and the values of the sub-array gains, respectitaally,
since a key feature of the proposed technique is the fastarecgence, let us focus on thiéPM computational efficiency
by analyzing the values of the indexes reported in Tab. lllarin detail,%...q is the number of cost function evaluations
to reach the final solutiori]’ is the corresponding’ PU-time. MoreoverU andU(¢**) indicate the dimension of the solution
space of the stochastic optimization-based approachesfaie C' P, respectively. Due to the non-negligible reduction of

,0<h< T (5)

SLR(¢) = 5
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Fig. 4. Sub-Arrayed Planar Array Synthesis (IV = 7860, d = % r = 20)) - (@) Azimuthal (@ = 0°) plot of the relative power andb) behavior of the
SLL versus the azimuth angle for the Bayliss patte®i.{,.; = —50dB, 7 = 18), the synthesized ones wit) = 3, 10, 20 sub-arrays, and the Taylor
pattern GLL = —50dB, i = 20).
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Fig. 5. Sub-Arrayed Planar Array Synthesis (N = 7860, d = % r = 20)\) - Relative power distribution of the differencH — mode pattern when &)
Q=3and p) Q =5.
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Figd Z) QSJtrgrrayed Planar Array Synthesis (N = 7860, d = % r = 20) - Sub-array configuration of the differendé — mode pattern whend) Q@ = 3
an =5.



TABLE Il
SUB-ARRAY GAINS FOR THE SOLUTION WITHQ = 3 AND @ = 10.

| Q || wy, ., wgig=1,...,Q |

3 0.288, 0.870, 1.484
10 0.041, 0.135, 0.258, 0.421, 0.528, 0.795, 1.009, 1.230, 1.462, 1.711
TABLE Il

VALUES OF THE COMPUTATIONAL INDEXES

| || kond | T [sec] | Uess | U |
Q=3 579 11.56 1.92 x 109 1) (10937)
Q=5 1804 33.54 6.18 x 1011 1) (101373)
Q=10 1084 20.96 1.17 x 1024 1) (101965)
Q=15 2795 24.19 1.35 x 103° 1) (102311)
Q =20 3207 48.57 2.79 x 1045 o (102556)

the dimension of the solution space as well as the efficiefitheograph-based searching procedure,@héU-time to obtain
the final solution is less than one minute 08.4aGHz PC with2 GB of RAM , whatever the experiment (Tab. III).

IV. CONCLUSIONS

In this letter, the design of large planar arrays generatmgpromise sum-difference patterns has been carried bysnefa
the CPM, which exploits the knowledge of the independently optimaum and difference excitations. Starting from a graph-
based representation of the space of admissible solutibassynthesis of compromise difference modes has beennebitai
through a path searching procedure that allows a consitieraduction of the problem complexity as well as a significan
saving in terms of storage resources an&U-time.
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