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Introduction
Antenna arrays able to generate two different patterns are widely used in
tracking radar systems [1]. Optimal (in the Dolph-Chebyshev sense) sum [2] and
difference patterns [3] can be generated by using two independent feed
networks. Unfortunately, such a situation generally turns out to be impracticable
because of its costs, the occupied physical space, the circuit complexity, and
electromagnetic interferences. Thus, starting from the optimal sum pattern a
sub-optimal solution for the difference pattern is usually synthesized by means
of the sub-array technique. The array elements are grouped in sub-arrays
properly weighted for matching the constrains of the difference beam.
Finding the best elements grouping and the sub-array weights is a complex and
challenging research topic, especially when dealing with large arrays. As far as
linear arrays are concerned, McNamara proposed in [4] an analytical method for
determining the “best compromise” difference pattern. Unfortunately, when the
ratio between the elements of the array and sub-arrays increases, such a
technique exhibits several limitations mainly due to the ill-conditioning of the
problem and the computational costs due to exhaustive evaluations. A non-
negligible saving might be achieved by applying optimization algorithms (see for
instance [5] and [6]) aimed at minimizing a suitable cost function.
Notwithstanding, optimization-based approaches still appear computationally
expensive when dealing with large arrays because of wide dimension of solution
space to be sampled.
In order to properly deal with these computational issues, this contribution
presents an innovative approach based on an optimal excitation matching
procedure. By exploiting the relationship between independently-optimal sum
and difference patterns, the dimension of the solution space is considerably
reduced and efficiently sampled by taking into account the presence of array
elements more suitable to change sub-array membership. In the following, the
proposed technique is described pointing out, through a representative case, its
potentialities and effectiveness in dealing with large arrays.

Problem Statement and Mathematical Formulation
Let us consider a linear array of N =2M elements. According to the standard
sub-array technique, the sum pattern is generated by means of the symmetric
set of the optimal excitations A= {am =a_,;m=1....M }, while the difference
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pattern is synthesized by grouping the array elements in Q sub-arrays and

associating to each of them aweight w,; q=1,...,Q (Fig 1).
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Figure 1 - Antenna feed network using the sub-arraying technique.
Accordingly, the difference pattern is characterized by a set of anti-symmetric
excitations B = {bm =-b,;b, = Wi @y M =1...,M;q :1,...,Q}. In order to
determine the sub-array configuration and the corresponding weights, the set of
optimal difference excitations B™ = {8 =-4_.:m=1...,M} [3] is used as a
reference “target” and the closeness of a trial solution B' to the optimal one is
guantified through the following cost function
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where Qt = {Cfn; m=1..., M} is the grouping vector that describes the
corresponding trial sub-array configuration, C:n € [1,Q] being the sub-array index
of the m-th element of the array. The reference parameters {v,, m=1...,M}

can be defined according to two different strategies, namely the Gain Sorting
(GS),

o
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and the Residual Error Sorting (RES),
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respectively. On the other hand, the estimated parameters
{dm(g), m=1....M }, are defined as follows:
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where 5cmq =1lifc,=q, 5cmq =0 otherwise. Concerning the sub-array weights
{Wq, q :1,...,Q}, they are not directly optimized, but they are analytically-
computed as function of dm(gt), m=1...,M, once the configuration
c™ = arg{minCt [‘P(Qt )]} is determined.

Towards this purpose, a reduced set of candidate solutions belonging to the so-
called “essential solution space” S is considered. As a matter of fact, it can be
easily shown that once the reference parameters have been ordered in a sorted
list, the grouping of the array elements that minimizes the cost function defines
a contiguous partition of the ordered list [7]. Accordingly, the dimension of the
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solution space is reduced from U=Q™" to U™ = . As far as the

opt

sampling of S© is concerned [i.e., the search of C™ through the minimization

of (1)], the convergent succession of trial solutions {Qt —>C®: t :1,2,...,t°pt} is
generated by taking into account that only some elements, indicated as “border
elements”, are candidate to change sub-array of membership without generating
non-admissible solutions.

Results
In the following, a representative test case is dealt with in order to assess the
effectiveness of the proposed approach when synthesizing large monopulse
arrays. Let us consider a linear array of N =500 elements and optimal sum and
difference excitations generating a Dolph-Chebyshev pattern with SLL = -25dB

and a Zolotarev pattern characterized by a SLL = -30dB, respectively.
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Figure 2 - Synthesized difference patterns (N = 500, Q = 4).



Figure 2 shows the patterns synthesized whit the GS and the RES when Q =4. As
it can be noticed, the GS algorithm outperforms the RES algorithm, satisfactorily
approximating the optimal main lobe characteristics and achieving a maximum
SLL of —17.5dB, two peaks away from the central null position.

As far as the computational costs are concerned, the values of the computational
indexes reported in Tab. | clearly point out the non-negligible reduction of the
solution space as well as the efficiency of the proposed approach in exploring the
set of the admissible solutions.

U U® toPt Iteration Time [sec]
GS RES GS RES
3.27x10™° | 2.54x10° 47 3 1.007 2.297

Table | - Computational indexes.

Conclusions
An innovative approach for the synthesis of large linear monopulse arrays has
been presented. By exploiting some features of the set of admissible solutions,
the dimension of the solution space has been considerably-reduced and
efficiently explored through a simple and computationally effective approach,
thus making the proposed technique very useful and attractive when dealing
with large arrays as well as planar and conformal structures.
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