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1. INTRODUCTION

In the last years, significant efforts have been made to develop unsupervised systems able to detect landmines or
unexploded ordnances for both military and civilian purposes. Several solutions have been proposed based on different
methodologies to face this problem in a fast and effective way [1]. In such a framework, learning-by-examples (LBE)
techniques [2][3] have demonstrated to be promising solutions able to enable detection procedures efficient in terms of
both resolution and required time/computational resources.

This paper is aimed at describing the detection problem as a three-dimensional classification process and analyzing its
extension from theory to real experiments through a careful numerical analysis. Thanks to an integrated strategy based on
a Support Vector Machine (SVM) classifier and a multi-resolution approach, a multi-resolution detection is obtained by
means of an iterative zooming that considers only the regions characterized by an high probability to be occupied by the
buried object. The arising time and computational saving allows the definition of an high-resolution map despite the
complexity of the three-dimensional scenario at hand.

2. MATHEMATICAL FORMULATION

Let us consider a three-dimensional investigation domain, characterized by a relative dielectric permittivity £, and a
conductivity 0. A set of P buried objects are located at unknown positions (Xp, Yo Zp); p =1,...,P. Each object is
modeled as a finite-length cylinder of radius I, and height h0 of electrical properties £, and o, . Above the investigation
domain surface, a set of N sensors measures the electromagnetic field Et(X, Y, Z) scattered at different positions

(Xn, Yo Z, ); Nn=1,...,N when a dipolar-like source at (XS, Ve ZS) illuminates the scenario under analysis. By assuming
the knowledge of the soil, it is then possible to determine the so-called scattered field
E,(x,y,2)-Ei(x,y,2)
E.(x,y,z)=
E (xy,2)

field with (i.e., Et) and without (i.e., Ei) the unknown buried objects. The problem at hand is that of localizing the

defined as the normalized difference between the measured electromagnetic

unknown objects starting from the available field values, ¥ = {ES(Xn, Yo Z, ); n=1,..., N}. The problem is then recast

as a classification one aimed at defining a three-dimensional probability map of the presence of the buried objects inside
the investigation domain. In order to achieve a suitable spatial resolution, a multi-step strategy based on a synthetic
zooming is used.

More specifically, at the initialization step (S = 0), the investigation domain is partitioned into M three-dimensional

cubic cells centered at the locations (Xr(no), y(o) Z(O));m =1,...,M of a uniform lattice. The M -th cuboid is “occupied”

m T m
(i.e. ;(rfqo) =+1), if a buried object lies in the M -th sub-domain, otherwise it is labeled as “empty” (i.e. ;(rfqo) =-1). For

each cell, it is possible to define the a posteriori probability pr(no) = Pr{;(rﬁ]o) = +l| ‘I’}, that it belongs to the “occupied”



class [3] starting from the knowledge of the array ¥ .Therefore, the probability vector P® = { r(no) m=1..,M } has to
be estimated to compute a complete probability map of the whole investigation domain. Such a classification problem,
where only two classes are admissible, can be profitably solved by means of a SVM-based [4] approach, assuming the
knowledge of a set of K input-output relations [(Xk, Vior Zy ), Yo ]k 'k =1,...,K called training set. Once the classification
has been performed, it is possible to identify on the probability map a set of Regions of Interest (ROls), where the
probability values are greater than a fixed user-defined threshold [, . The synthetic zooming is then successively

performed by partitioning the ROIs in M three-dimensional cells of coordinates (Xr(nl), y(l),zr(nl))m =1,..,M . Such a

m
zooming procedure is iterated until a suitable spatial resolution is achieved or until a stationary condition on the dimension
of the ROIs between two consecutive steps holds true. Accordingly, the final probability map is fully determined by

e — {p&im =1,.,M |,

3. NUMERICAL RESULTS

In order to assess the reliability and effectiveness of the iterative SVM approach, but also its feasibility in a real
environment, several numerical simulations have been carried out. More specifically, realistic scenarios have been carefully
modeled and some representative results are shown in the following. As an example, let us consider the test case of a

buried object (&, =2.5,0, =0) is located at (XO =1174,y,=1174,2, = —0.321) in an investigation domain
(&4 =4.0,0, =0.004) of dimension 3.64x3.64x0.641.Asetof N =100 sensors has been uniformly distributed
on a plane 0.11 above the surface to collect the electromagnetic field samples, while a source located at
(Xs =1.844,y, =1.844,z, =0.1/1) illuminated the scenario. Concerning the SVM classifier, a training set of

K =300 samples has been generated by means of a FEM electromagnetic simulator. Finally, the scattering data have
been blurred by adding a Gaussian random noise (SNR = 30dB ). The estimated probabilities along the three orthogonal
planes passing through the center of the buried object are shown in Fig. 1(a). For comparison purposes, the result obtained
with the single-resolution approach is shown [Fig. 1(b)] as well. As it can be observed, the zooming approach allows one to
obtain a more accurate localization of the object.
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Figure 1 — Estimated probabilities for (a) the zooming technique and (b) the standard approach.

5. REFERENCES

[1] IEEE Trans. Geosci. Remote Sens., Special Issue on: “New Advances in Subsurface Sensing: Systems, modeling and Signal
Processing,” vol. 32, Jun. 2001.
[2] I. T. Rekanos, “Inverse scattering of dielectric cylinders by using radial basis function neural networks,” Radio Sci., vol. 36, no. 5,

pp. 841-849, 2001.



[3] A. Massa, A. Boni, and M. Donelli, “A classification approach based on SVM for electromagnetic subsurface sensing,” IEEE Trans.
Geosci. Remote Sens., vol. 43, pp. 2084-2093, Sep. 2005.
[4] V. Vapnick, Statistical Learning Theory, Wiley, New York, 1998.



	OF TRENTO
	DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

	TEMP.C180.pdf
	THREE-DIMENSIONAL REAL-TIME LOCALIZATION OF SUBSURFACE OBJECTS – FROM THEORY TO EXPERIMENTAL VALIDATION


