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Abstract
In this letter, ray propagation in stratified semi-infinite percolation lattices con-
sisting of a succession of uniform density layers is considered. Two different mathe-
matical approaches for analytically evaluating the penetration depth are presented.
In order to compare performances and to assess the range of validity of the two ap-

proaches, an exhaustive set of numerical Monte-Carlo-like experiments is presented.
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1 Introduction

Wave propagation in random media is a challenging research topic because of the large
number of applications ranging from wireless communication in complex media [1][2]
up to remote sensing [3]. By considering the percolative model proposed in [4]|, where
authors described the urban environment in terms of a uniform random lattice [5], this
letter is focused on the analysis of propagation in stratified random media consisting of
a discontinuous succession of layers with uniform density. In particular, such a work is
aimed at providing an exhaustive numerical validation of two mathematical approaches,
the former based on the result in [4], the latter applying the theory of the Markov chains
6]

This letter is organized as follows. In Section 2, the problem is briefly described and
two mathematical approaches aimed at evaluating the propagation depth are introduced.
Section 3 provides the results of a representative set of numerical experiments, while final

comments and conclusions are drawn in Section 4.

2 Problem Statement and Mathematical Formulation

Let us consider a stratified random lattice described by the following obstacles density

distribution
q1, 7‘0:0<j§’f'1:>j€L1

q2, T1<j§7’2:>j€L2

An, Tn—1<jgrn:>j€Ln

L :

where ¢(j) is the probability that a site belonging to the j-th row is occupied and L,
denotes the n-th layer characterized by an occupancy probability ¢, and constituted by
the rows between (r,—1 + 1) and 7.

The electromagnetic source is assumed to be located in the above empty half-plane and to



radiate a monochromatic plane wave impinging on the lattice with a known incidence angle
0. Each site is large compared to the wavelength, therefore the incident wave is modeled
in terms of a collection of parallel rays. Such rays undergo specular reflection on obstacles,
while other electromagnetic interactions are neglected. The propagation is then described
by determining the probability that a single ray reaches a prescribed level k inside the

lattice before being reflected back in the above empty half-plane, Pr{0 — &k < 0}.

2.1 Martingale Approach (MTGA)

The first mathematical approach is based on the theory presented in [4], where Pr {0 — k£ < 0}
in a random uniform grid is evaluated by applying the theory of the Martingale random
processes [7]. Let us notice that a description of the ray propagation in terms of a Mar-
tingale random process requires that ray jumps following the first one are independent,
identically distributed and zero mean. Such an assumption is generally verified provided
that the incident angle is not too far from 45° and the lattice is dense [8]. An exten-
sion of such an approach to the inhomogeneous case has been proposed in [9]. However,
mathematical considerations as well as numerical experiments have shown that the ob-
tained solution is reliable in correspondence with obstacles’ density profiles with small
variations. Therefore, an ad-hoc formulation when dealing with stratified random lattice

is mandatory.

A stratified environment can be modeled as a succession of uniform layers {L,; n =1,2,3, ...}
and at each layer the propagation is mathematically described through the solution pro-
posed in [4]. In particular, the probability that a ray freely crosses layer L, [i.e., the
probability that a ray traveling with positive direction in the level (r,_; + 1) reaches level

rn before being reflected back in level (r,, 1 + 1)] is equal to

R 1, Tn =Tn 1+ 1,
P=Pr{(rp1+1)r— 1, < (rp1+1)} =

%:TJLVW. [1 - p]e\in] ) Tp > Tp-1 + 1a



where p,, = 1 — g, = pt*%+! is the effective probability that a ray crosses a level with
occupancy probability ¢, without any reflections, N, = (r, — r,_1 — 1) and rx = k.

By assuming that the level £ belongs to the layer Ly, the ray propagation inside the
whole lattice is modeled through the Markov chain [6] shown in Figure 2, where states
jT and j~ denote a ray traveling inside the level j with positive and negative direction,

respectively, and @),=1 — P,. Accordingly, the following solution is obtained

Pr{0— k€ Ly <0} = N . (3)
1 —P, n
P_l + plz [;’ngn + pnf’n—l
n=2

2.2 Markov Approach (MKVA)

In such an approach the original 2D ray-propagation problem is recast as a simple 1D
random walk problem where the dependence on the incidence angle 6 is avoided [10]. As a
matter of fact, whenever a ray hits a vertical face it does not change its vertical direction
of propagation. Thus, just reflections on horizontal faces, whose number is independent
from 0, are taken into account. Accordingly, under the assumption that the propagating
ray never crosses cells that it has already encountered along its path (verified when 6
is not too far from 45° and in the case of sparse random lattices), ray propagation in a
generic nonuniform random lattice is modeled thorugh the Markov chain shown in Fig. 3

whose solution is

P1D2

k—3
Lt pimny ) [t
1=0

Pr{0— k <0} = , k> 1, (4)

where ¢g; = 1 — p; denotes the occupancy probability of the j-th level.
Unlike that in [9], such a formulation satisfactorily works in dealing also with high discon-

tinuities [8] and therefore, it holds true for stratified profiles, as well. Thus, it is enough



to costumize (4) to stratified profile detailed in (1). After some algebra we get

2

Pr{0— k€ Lg < 0} = P . (5)
et 3% -0+ 3 (i 5)
n=2

3 Numerical Validation

In order to validate and compare the proposed solutions, an exhaustive set of numerical
experiments has been carried out. In particular, both three- and four-layers configura-
tions have been taken into account by varing the occupation probability of each layer
{qn; n =1, ..., K} between 0.05 and 0.35 with step 0.1. No higher occupancy probability
values have been considered since, in order to ensure propagation, the occupancy proba-
bility must be lower than the so-called percolation threshold g, [5] (g. & 0.40725 for the
two-dimensional case). Moreover, for completeness, different values of the incidence angle
have been evaluated, 8 = {15°, 30°, 45°, 60°, 75°}.
As a reference, the propagation depth has been estimated by Monte-Carlo-like ray-tracing
experiments. In particular, for each density profile and incidence angle, 100 random grids
have been generated and for each of them 500 rays have been launched from different
entry positions. Then, Pr{0+—— k € Lx < 0} has been estimated from the collection of
paths in the first ky;ax = 32 levels.
In order to quantitatively evaluate the accuracy of the proposed methods, let us define
the following error indexes, namely the prediction error oy

a |Prr{0—k} = Prp {0 — k}|

O = max [Pre (0 — ] x 100, (6)

and the mean error (6)

k
1 max
W34 7
maxr k=1



where the sub-scripts R indicates the value estimated with the reference approach and P
stands for the same value evaluated through either (3) or (5). Moreover, let us define the

global mean error A

slg
A:EZ;((S)S, (8)

S being the total number of considered obstacles’ density profiles and (), the mean error
relative to the s—th distribution.

Furthermore, in order to easiliy identify a profile, let us use the indexes 1, 2, 3, 4 for
indicating an occupation probability equal to 0.05, 0.15, 0.25, and 0.35, respectively.
Accordingly, a sequence of N indexes denote a N —layers stratified profile, each element
of the sequence indicating the occupation probability of the corresponding n—th layers.
As an example, profile 3423 identifies a four-layers profile where ¢; = 0.25, ¢o = 0.35,
g3 = 0.15 and ¢4 = 0.25.

3.1 On the Role of the Obstacles Density

Let us refer to an incidence angle 6 equal to 45° and consider low density profiles (i.e.,
¢n = {0.05,0.15}, n = 1,..., K) and high density profiles (i.e., ¢, = {0.25,0.35}, n =
1,...,k). With reference to Figures 4 and 5 and as expected, it can be noticed that the
MKVA outperforms the MTGA when dealing with low density profiles, while the MTGA
is better in correspondence with high density profiles. This is further confirmed by the
mean error values. As far as the three-layers profiles are concerned, [w)MiTGA} oy = 2.22,

O mrva

[@Mimf‘] = 17.44, [25)1‘47’{“ = 1.66, and [0?)1‘47’{‘“‘ = 2.47. Concerning the four-
212

(O mrva mraa } 343 (O mrca } 343
layers low density profiles, (8) y;iva = 0.71% vs. (8)raa = 1.55% (profile 1212) and
(0) wrreva = 0.17% vs. (0) 1rraa = 2.98% (profile 2121). On the other hand, () x4 =
1.42% vs. (0)yraa = 0-92% (profile 3434) and (0) ;54 = 1.7% vs. () yyraa = 0.69%
(profile 4343).

For completeness, also mized profiles |i.e., stratified random grids made up in part of dense

layers (¢, > 0.25) and in part of sparse layers (g, < 0.15)] have been considered. However,



since similar conclusions can be drawn both for three- and four-layers configurations, only
the mean error values of the three-layers profiles are reported (Fig. 6).

Thanks to such results, some rules-of-use of the two approaches can be drawn. When the
first layer is neither too sparse nor to dense (i.e, 0.15 < ¢; < 0.25), the MKVA outperforms
the MTGA unless the second layer has high occupancy probability (i.e., go = 0.35) or both
g2 > 0.25 and g3 > 0.25, whatever the occupancy probability value of the remaining layers.
When ¢; = 0.05, the MTGA gives better results when either ¢, or g3 are equal to 0.35.
On the other hand, when ¢; = 0.35, the MTGA outperforms the MKVA. Summarizing,
the MKVA outperforms the MTGA in 15 cases over 36 when we deal with a three-layers
profile and in 45 cases over 108 when four-layers profiles are considered.

Another interesting observation is concerned with the role of the discontinuities. By
analyzing the mean error values, it is evident that the range of validity of both approaches
does not depend on the difference between the values of the occupation probabilities in
adjacent layers, but it is affected only by the density of the obstacles at each layer.
Finally, let us point out that the MKVA returns mean error values lower than 2%. As a
matter of fact, by considering both four- and three-layers profiles, (4) ranges from 0.17%
to 1.73%, while it grows up to 3.13% when we apply the MTGA. As far as the global mean
error is concerned, we obtain Ayrgya = 1.09% vs. Ayrrga = 1.35% and Ajyrgyva = 1.06%

vs. Anrea = 1.28% for the three- and four-layers configurations, respectively.

3.2 On the Role of the Incidence Angle

As far as the role of the dependence on the incidence angle f is concerned, Figure 7 plots
the behavior of the global mean error A versus # for a three-layers scenario. Similar
results arise when dealing with four-layers profiles.

As expected, both approaches give better performances when @ is close to 45°. The plots
are almost symmetric with respect to the optimal value 6,,, = 45°. Such a behavior

points out that it does not matter the value of the incidence angle, but only the distance

16 — Oopt |-



Moreover, it is interesting to observe that, although the MKVA does not take into account

the incidence angle, on average it outperforms the MTGA when 6§ = 15°, § = 45° and

0@ = 75° since the ration ﬁj\‘;’iii ranges from 1.24 to 1.39. On the other hand, when
6 = 30° and 0 = 60°, FUEVA — 1.14 and SUEVA — 139, respectively.

Finally, it should be noticed that, despite its independence on #, the MKVA is less sensitive

max A

minA}MKVA = 3.65

to the incidence angle value, as confirmed by the following indexes, [

maxA]
min A 1l MTGA

vs. | = 4.09.

4 Conclusions

Dealing with ray propagation in stratified random lattices, two different mathematical
models, namely the Martingale approach (MTGA) and the Markov approach (MKVA),
have been presented and compared through an exhaustive numerical analysis.

The obtained results are: (a) both approaches give more faithful estimate in correspon-
dence with incidence angles close to 45° and the mean error increases with the distance
|6 — 45°|, (b) both approaches are not affected by the value of the discontinuities, (¢) the
MKVA satisfactorily performs when dealing with sparse media, while the MTGA works
better in correspondence with dense lattices, (d) on average, the MKVA returns lower

mean error than the MTGA.
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Figure Captions

e Figure 1. Sketch of ray propagation in a four-layers random lattice (left-hand side)
and the obstacles’ density distribution relative to the random lattice (right-hand

side).

e Figure 2. Martingale approach - Markov chain mathematically modeling the ray

propagation towards level k£ in a stratified random lattice.

e Figure 3. Markov approach - Markov chain mathematically modeling the ray

propagation in a generic non-uniform half-plane random lattice.

e Figure 4. Three-layers profile, § = 45°, r1 = 8 and r, = 16 - Estimated values of
Pr{0+—— k} versus k when § = 45° for the profiles (a) 121, (b) 212, (c) 343, and
(d) 434.

e Figure 5. Four-layers profile, § = 45°, r; = 8, r = 16 and r3 = 24 - Estimated
values of Pr {0 —— k} versus k when 6 = 45° for the profiles (a) 1212, (b) 2121, (¢)
3434, and (d) 4343.

e Figure 6. Three-layers profile, § = 45°, r; = 8 and ry = 16 - Mean error {p) for
different values of ¢,, n = 1,2, 3, being (a) ¢; = 0.05, (b) ¢ = 0.15, (¢) ¢1 = 0.25,
and (d) ¢; = 0.35.

e Figure 7. Three-layers profile, r; = 8 and ro = 16 - Global mean error A versus

the incidence angle 6.
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